
Felipe Manuel Castro Cerda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1497981/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microstructure, Anisotropy and Formability Evolution of an Annealed AISI 430 Stainless Steel Sheet. Steel Research International, 2022, 93, 2100114.	1.8	1
2	Influence of Mo–Nb–Ti additions and peak annealing temperature on the microstructure and mechanical properties of low alloy steels after ultrafast heating process. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 808, 140928.	5.6	8
3	Balanced Constrained Carbon Equilibrium Accompanied by Carbide Precipitation. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 2155-2157.	2.2	1
4	The Effect of Different Annealing Strategies on the Microstructure Development and Mechanical Response of Austempered Steels. Metals, 2021, 11, 1041.	2.3	4
5	Improvement of the strength-ductility balance in ultrafast heated steels by combining high-temperature annealing and quenching and partitioning process. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 827, 142045.	5.6	8
6	Evolution of Face-Centered Cubic Ti Alloys Transformation by X-ray Diffraction Profile Analysis in Mechanical Alloying. Metals, 2021, 11, 1841.	2.3	1
7	The influence of the heating rate on the microstructure and mechanical properties of a peak annealed quenched and partitioned steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 797, 140061.	5.6	14
8	Modeling the Mechanical Response of a Dual-Phase Steel Based on Individual-Phase Tensile Properties. Metals, 2020, 10, 1031.	2.3	2
9	Isothermal Phase Transformations in a Low Carbon Steel During Single and Two-Step Partitioning. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 1506-1518.	2.2	6
10	Behavior of ultrafast annealed advanced high strength steels under static and dynamic conditions. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 780, 139168.	5.6	12
11	Effect of the austenitizing parameters on the microstructure and mechanical properties of 75Cr1 tool steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 785, 139331.	5.6	7
12	Novel experimental method to determine the limit strain by means of thickness variation. International Journal of Mechanical Sciences, 2019, 153-154, 208-218.	6.7	9
13	Atomic-scale investigations of isothermally formed bainite microstructures in 51CrV4 spring steel. Materials Characterization, 2019, 152, 67-75.	4.4	15
14	"Flash―Annealing in a Coldâ€Rolled Low Carbon Steel Alloyed with Cr, Mn, Mo, and Nb: Part II—Anisothermal Recrystallization and Transformation Textures. Steel Research International, 2019, 90, 1800277.	1.8	1
15	Exploring the microstructure and tensile properties of cold-rolled low and medium carbon steels after ultrafast heating and quenching. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 745, 509-516.	5.6	18
16	â€ ⁻ Flash' Annealing in a Coldâ€Rolled Low Carbon Steel Alloyed With Cr, Mn, Mo, and Nb: Part I ― Continuous Phase Transformations. Steel Research International, 2019, 90, 1800098.	1.8	3
17	Effects of Heat Treatment on Morphology, Texture, and Mechanical Properties of a MnSiAl Multiphase Steel with TRIP Behavior. Metals, 2018, 8, 1021.	2.3	8
18	Static and dynamic response of ultra-fast annealed advanced high strength steels. EPJ Web of Conferences, 2018, 183, 03017.	0.3	1

#	Article	IF	CITATIONS
19	Temperature Dependence of the Microstructure and Mechanical Properties of a Twinning-Induced Plasticity Steel. Metals, 2018, 8, 262.	2.3	10
20	The effect of the pre-heating stage on the microstructure and texture of a cold rolled FeCMnAlSi steel under conventional and ultrafast heating. Materials Characterization, 2017, 130, 188-197.	4.4	9
21	Austenite formation in 0.2% C and 0.45% C steels under conventional and ultrafast heating. Materials and Design, 2017, 116, 448-460.	7.0	52
22	Advanced High Strength Steels: Improved Properties by Design of Textures and Microstructures. IOP Conference Series: Materials Science and Engineering, 2017, 219, 012004.	0.6	6
23	The Effect of Heating Rate on the Microstructure of a Soft-Annealed Medium Carbon Steel. Steel Research International, 2017, 88, 1700158.	1.8	11
24	The Effect of Heating Rate on the Recrystallization Behavior in Cold Rolled Ultra Low Carbon Steel. Steel Research International, 2017, 88, 1600351.	1.8	15
25	The Effect of Ultrafast Heating in Cold-Rolled Low Carbon Steel: Recrystallization and Texture Evolution. Metals, 2016, 6, 288.	2.3	19
26	The Effect of Ultrafast Heating on Cold-Rolled Low Carbon Steel: Formation and Decomposition of Austenite. Metals, 2016, 6, 321.	2.3	16
27	Microstructure, texture and mechanical properties in a low carbon steel after ultrafast heating. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 672, 108-120.	5.6	46