Ian D Loram

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1497556/publications.pdf Version: 2024-02-01

IAN DIORAM

#	Article	IF	CITATIONS
1	Direct measurement of human ankle stiffness during quiet standing: the intrinsic mechanical stiffness is insufficient for stability. Journal of Physiology, 2002, 545, 1041-1053.	1.3	431
2	Human postural sway results from frequent, ballistic bias impulses by soleus and gastrocnemius. Journal of Physiology, 2005, 564, 295-311.	1.3	257
3	Human balancing of an inverted pendulum: position control by small, ballisticâ€like, throw and catch movements. Journal of Physiology, 2002, 540, 1111-1124.	1.3	256
4	Human control of an inverted pendulum: Is continuous control necessary? Is intermittent control effective? Is intermittent control physiological?. Journal of Physiology, 2011, 589, 307-324.	1.3	213
5	Intermittent control: a computational theory of human control. Biological Cybernetics, 2011, 104, 31-51.	0.6	203
6	The proprioceptive and agonist roles of gastrocnemius, soleus and tibialis anterior muscles in maintaining human upright posture. Journal of Physiology, 2009, 587, 2399-2416.	1.3	154
7	Active, non-spring-like muscle movements in human postural sway: how might paradoxical changes in muscle length be produced?. Journal of Physiology, 2005, 564, 281-293.	1.3	140
8	Human balancing of an inverted pendulum: is sway size controlled by ankle impedance?. Journal of Physiology, 2001, 532, 879-891.	1.3	125
9	Use of ultrasound to make noninvasive in vivo measurement of continuous changes in human muscle contractile length. Journal of Applied Physiology, 2006, 100, 1311-1323.	1.2	124
10	Paradoxical muscle movement in human standing. Journal of Physiology, 2004, 556, 683-689.	1.3	122
11	Human balancing of an inverted pendulum with a compliant linkage: neural control by anticipatory intermittent bias. Journal of Physiology, 2003, 551, 357-370.	1.3	105
12	Changes in joint angle, muscleâ€ŧendon complex length, muscle contractile tissue displacement, and modulation of EMG activity during acute wholeâ€body vibration. Muscle and Nerve, 2009, 40, 420-429.	1.0	101
13	Postural activation of the human medial gastrocnemius muscle: are the muscle units spatially localised?. Journal of Physiology, 2011, 589, 431-443.	1.3	97
14	The frequency of human, manual adjustments in balancing an inverted pendulum is constrained by intrinsic physiological factors. Journal of Physiology, 2006, 577, 417-432.	1.3	90
15	The passive, human calf muscles in relation to standing: the nonâ€linear decrease from short range to long range stiffness. Journal of Physiology, 2007, 584, 661-675.	1.3	87
16	The passive, human calf muscles in relation to standing: the short range stiffness lies in the contractile component. Journal of Physiology, 2007, 584, 677-692.	1.3	69
17	Myoelectric activity along human gastrocnemius medialis: Different spatial distributions of postural and electrically elicited surface potentials. Journal of Electromyography and Kinesiology, 2013, 23, 43-50.	0.7	61
18	Intermittent control models of human standing: similarities and differences. Biological Cybernetics, 2014, 108, 159-168.	0.6	60

Ian D Loram

#	Article	IF	CITATIONS
19	Visual control of stable and unstable loads: what is the feedback delay and extent of linear timeâ€invariant control?. Journal of Physiology, 2009, 587, 1343-1365.	1.3	55
20	Recruitment of motor units in the medial gastrocnemius muscle during human quiet standing: is recruitment intermittent? What triggers recruitment?. Journal of Neurophysiology, 2012, 107, 666-676.	0.9	55
21	The Consequences of Short-Range Stiffness and Fluctuating Muscle Activity for Proprioception of Postural Joint Rotations: The Relevance to Human Standing. Journal of Neurophysiology, 2009, 102, 460-474.	0.9	46
22	Automated regional analysis of B-mode ultrasound images of skeletal muscle movement. Journal of Applied Physiology, 2012, 112, 313-327.	1.2	45
23	Identification of intermittent control in man and machine. Journal of the Royal Society Interface, 2012, 9, 2070-2084.	1.5	43
24	Estimating Skeletal Muscle Fascicle Curvature From B-Mode Ultrasound Image Sequences. IEEE Transactions on Biomedical Engineering, 2013, 60, 1935-1945.	2.5	43
25	A novel system of electrodes transparent to ultrasound for simultaneous detection of myoelectric activity and B-mode ultrasound images of skeletal muscles. Journal of Applied Physiology, 2013, 115, 1203-1214.	1.2	42
26	Cautious gait in relation to knowledge and vision of height: is altered visual information the dominant influence?. Journal of Neurophysiology, 2012, 107, 2686-2691.	0.9	38
27	Manually controlled human balancing using visual, vestibular and proprioceptive senses involves a common, low frequency neural process. Journal of Physiology, 2006, 577, 403-416.	1.3	37
28	Predictive feedback in human simulated pendulum balancing. Biological Cybernetics, 2009, 101, 131-146.	0.6	36
29	Paradoxical Muscle Movement during Postural Control. Medicine and Science in Sports and Exercise, 2009, 41, 198-204.	0.2	35
30	Refractoriness in Sustained Visuo-Manual Control: Is the Refractory Duration Intrinsic or Does It Depend on External System Properties?. PLoS Computational Biology, 2013, 9, e1002843.	1.5	34
31	Does the Motor System Need Intermittent Control?. Exercise and Sport Sciences Reviews, 2014, 42, 117-125.	1.6	33
32	Estimating Full Regional Skeletal Muscle Fibre Orientation from B-Mode Ultrasound Images Using Convolutional, Residual, and Deconvolutional Neural Networks. Journal of Imaging, 2018, 4, 29.	1.7	33
33	Real-Time Ultrasound Segmentation, Analysis and Visualisation of Deep Cervical Muscle Structure. IEEE Transactions on Medical Imaging, 2017, 36, 653-665.	5.4	28
34	Human standing: does the control strategy preprogram a rigid knee?. Journal of Applied Physiology, 2013, 114, 1717-1729.	1.2	27
35	Ultrasound-Based Detection of Fasciculations in Healthy and Diseased Muscles. IEEE Transactions on Biomedical Engineering, 2016, 63, 512-518.	2.5	24
36	An evaluation of 3D head pose estimation using the Microsoft Kinect v2. Gait and Posture, 2016, 48, 83-88.	0.6	22

IAN D LORAM

#	Article	IF	CITATIONS
37	Predictive feedback control and Fitts–law. Biological Cybernetics, 2008, 98, 229-238.	0.6	21
38	Estimation of absolute states of human skeletal muscle via standard B-mode ultrasound imaging and deep convolutional neural networks. Journal of the Royal Society Interface, 2020, 17, 20190715.	1.5	20
39	Postural threat differentially affects the feedforward and feedback components of the vestibularâ€evoked balance response. European Journal of Neuroscience, 2013, 38, 3239-3247.	1.2	19
40	A video based method to quantify posture of the head and trunk in sitting. Gait and Posture, 2017, 51, 181-187.	0.6	19
41	Frequency-domain identification of the human controller. Biological Cybernetics, 2012, 106, 359-372.	0.6	18
42	Effects of attentional focus on walking stability in elderly. Gait and Posture, 2017, 55, 94-99.	0.6	17
43	Foreground Detection Analysis of Ultrasound Image Sequences Identifies Markers of Motor Neurone Disease across Diagnostically Relevant Skeletal Muscles. Ultrasound in Medicine and Biology, 2019, 45, 1164-1175.	0.7	15
44	Objective Analysis of Neck Muscle Boundaries for Cervical Dystonia Using Ultrasound Imaging and Deep Learning. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 1016-1027.	3.9	15
45	Proactive Selective Inhibition Targeted at the Neck Muscles: This Proximal Constraint Facilitates Learning and Regulates Global Control. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25, 357-369.	2.7	13
46	Visuoâ€manual tracking: does intermittent control with aperiodic sampling explain linear power and nonâ€linear remnant without sensorimotor noise?. Journal of Physiology, 2017, 595, 6751-6770.	1.3	12
47	Wavelet-frequency analysis for the detection of discontinuities in switched system models of human balance. Human Movement Science, 2017, 51, 27-40.	0.6	11
48	A Semi-automated Programme for Tracking Myoblast Migration Following Mechanical Damage: Manipulation by Chemical Inhibitors. Cellular Physiology and Biochemistry, 2011, 27, 625-636.	1.1	10
49	Fully automated image-based estimation of postural point-features in children with cerebral palsy using deep learning. Royal Society Open Science, 2019, 6, 191011.	1.1	10
50	Deep Residual Networks for Quantification of Muscle Fiber Orientation and Curvature from Ultrasound Images. Communications in Computer and Information Science, 2017, , 63-73.	0.4	10
51	Interfacing sensory input with motor output: does the control architecture converge to a serial process along a single channel?. Frontiers in Computational Neuroscience, 2013, 7, 55.	1.2	8
52	Working towards an objective segmental assessment of trunk control in children with cerebral palsy. Gait and Posture, 2018, 65, 45-50.	0.6	7
53	Force accuracy rather than high stiffness is associated with faster learning and reduced falls in human balance. Scientific Reports, 2020, 10, 4953.	1.6	7

54 Intermittent control of unstable multivariate systems. , 2015, 2015, 1436-9.

6

Ian D Loram

#	Article	IF	CITATIONS
55	Crosstalk opposing view: Fear of falling does not influence vestibularâ€evoked balance responses. Journal of Physiology, 2015, 593, 2983-2984.	1.3	5
56	The effect of fear of falling on vestibular feedback control of balance. Physiological Reports, 2017, 5, e13391.	0.7	4
57	Auto-regressive moving average analysis of linear and discontinuous models of human balance during quiet standing. Chaos, 2014, 24, 022101.	1.0	3
58	Reply from Ian D. Loram, Constantinos N. Maganaris and Martin Lakie. Journal of Physiology, 2005, 569, 706-706.	1.3	2
59	Complexity and dynamics of switched human balance control during quiet standing. Biological Cybernetics, 2015, 109, 469-478.	0.6	2
60	The potential of an automated system to identify the upper limb component of a controlled sitting posture. Gait and Posture, 2017, 58, 223-228.	0.6	2
61	Intermittent control explains human motor remnant without additive noise. , 2011, , .		1
62	Rebuttal from Raymond Reynolds, Callum Osler, Linda Tersteeg and Ian Loram. Journal of Physiology, 2015, 593, 2987-2987.	1.3	1
63	Effect of motor and sensory noise in the control of upright standing. Progress in Brain Research, 2019, 248, 319-327.	0.9	1
64	Intermittent Control of Movement and Balance. , 2020, , 1-6.		1
65	Intermittent Control of Movement and Balance. , 2022, , 1689-1694.		1
66	The development of a video retrieval system using a clinician-led approach. Expert Systems With Applications, 2020, 142, 112992.	4.4	0