Nicola Lotti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1497474/publications.pdf Version: 2024-02-01

NICOLALOTTI

#	Article	IF	CITATIONS
1	Adaptive Model-Based Myoelectric Control for a Soft Wearable Arm Exosuit: A New Generation of Wearable Robot Control. IEEE Robotics and Automation Magazine, 2020, 27, 43-53.	2.0	86
2	EMG-Driven Machine Learning Control of a Soft Glove for Grasping Assistance and Rehabilitation. IEEE Robotics and Automation Letters, 2022, 7, 1566-1573.	5.1	24
3	Myoelectric or Force Control? A Comparative Study on a Soft Arm Exosuit. IEEE Transactions on Robotics, 2022, 38, 1363-1379.	10.3	22
4	Underactuated Soft Hip Exosuit Based on Adaptive Oscillators to Assist Human Locomotion. IEEE Robotics and Automation Letters, 2022, 7, 936-943.	5.1	21
5	On the edge between soft and rigid: an assistive shoulder exoskeleton with hyper-redundant kinematics. , 2019, 2019, 618-624.		20
6	Relationship Between Muscular Activity and Assistance Magnitude for a Myoelectric Model Based Controlled Exosuit. Frontiers in Robotics and Al, 2020, 7, 595844.	3.2	18
7	Rigid, Soft, Passive, and Active: A Hybrid Occupational Exoskeleton for Bimanual Multijoint Assistance. IEEE Robotics and Automation Letters, 2022, 7, 2557-2564.	5.1	18
8	Intention-detection strategies for upper limb exosuits: model-based myoelectric vs dynamic-based control. , 2020, , .		9
9	Enhancing Gait Assistance Control Robustness of a Hip Exosuit by Means of Machine Learning. IEEE Robotics and Automation Letters, 2022, 7, 7566-7573.	5.1	8
10	Rendering Immersive Haptic Force Feedback via Neuromuscular Electrical Stimulation. Sensors, 2022, 22, 5069.	3.8	8
11	Toward EMG-controlled force field generation for training and rehabilitation: From movement data to muscle geometry. , 2017, 2017, 90-95.		2
12	Estimation of Muscle Torques from EMG and Kinematics During Planar Arm Movements. , 2018, , .		1
13	A Model-Based Control Strategy for Upper Limb Exosuits. Biosystems and Biorobotics, 2022, , 339-343.	0.3	0
14	A User Model for Adaptation of Task Parameters in Robot-Assisted Exercise. Biosystems and Biorobotics, 2019, , 200-204.	0.3	0