Haiyan Miao

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1497383/haiyan-miao-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

26 2,283 46 46 g-index h-index papers citations 46 4.48 2,523 5.3 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
46	Wind Shielding Impacts on Water Quality in an Urban Reservoir. <i>Water Resources Management</i> , 2018 , 32, 3549-3561	3.7	5
45	The effects of multiple query evidences on social image retrieval. <i>Multimedia Systems</i> , 2016 , 22, 509-52	232.2	15
44	Sensor Placement and Measurement of Wind for Water Quality Studies in Urban Reservoirs. <i>ACM Transactions on Sensor Networks</i> , 2015 , 11, 1-27	2.9	23
43	Measuring the laminar burning velocity and Markstein length of premixed methane/nitrogen/air mixtures with the consideration of nonlinear stretch effects. <i>Fuel</i> , 2014 , 121, 208-215	7.1	11
42	Optimal sensor placement and measurement of wind for water quality studies in urban reservoirs 2014 ,		22
41	Effects of fuel constituents and injection timing on combustion and emission characteristics of a compression-ignition engine fueled with diesel-DMM blends. <i>Proceedings of the Combustion Institute</i> , 2013 , 34, 3013-3020	5.9	44
40	Building a Large Scale Test Collection for Effective Benchmarking of Mobile Landmark Search. <i>Lecture Notes in Computer Science</i> , 2013 , 36-46	0.9	15
39	The effects of heterogeneous information combination on large scale social image search 2011,		1
38	Effect of dimethoxy-methane and exhaust gas recirculation on combustion and emission characteristics of a direct injection diesel engine. <i>Fuel</i> , 2011 , 90, 1731-1737	7.1	55
37	Flammability limits of hydrogen-enriched natural gas. <i>International Journal of Hydrogen Energy</i> , 2011 , 36, 6937-6947	6.7	59
36	Experimental study on premixed combustion of spherically propagating methanol-air-nitrogen flames. <i>Frontiers of Energy and Power Engineering in China</i> , 2010 , 4, 223-233		2
35	Measurement of laminar burning velocities and analysis of flame stabilities for hydrogen-air-diluent premixed mixtures. <i>Science Bulletin</i> , 2009 , 54, 846-857	10.6	9
34	Explosion characteristics of hydrogenBitrogenBir mixtures at elevated pressures and temperatures. <i>International Journal of Hydrogen Energy</i> , 2009 , 34, 554-561	6.7	90
33	Numerical study of the effect of hydrogen addition on methanellir mixtures combustion. <i>International Journal of Hydrogen Energy</i> , 2009 , 34, 1084-1096	6.7	177
32	Laminar burning velocity and Markstein length of nitrogen diluted natural gas/hydrogen/air mixtures at normal, reduced and elevated pressures. <i>International Journal of Hydrogen Energy</i> , 2009 , 34, 3145-3155	6.7	31
31	Measurements of laminar burning velocities and onset of cellular instabilities of methaneBydrogenBir flames at elevated pressures and temperatures. <i>International Journal of Hydrogen Energy</i> , 2009 , 34, 5574-5584	6.7	102
30	Experimental and numerical study on lean premixed methaneflydrogenEir flames at elevated pressures and temperatures. <i>International Journal of Hydrogen Energy</i> , 2009 , 34, 6951-6960	6.7	81

(2008-2009)

29	Experimental and numerical study on laminar burning velocities and flame instabilities of hydrogen Bir mixtures at elevated pressures and temperatures. <i>International Journal of Hydrogen Energy</i> , 2009 , 34, 8741-8755	6.7	125
28	Effect of partially premixed and hydrogen addition on natural gas direct-injection lean combustion. <i>International Journal of Hydrogen Energy</i> , 2009 , 34, 9239-9247	6.7	59
27	Combustion characteristics of methanolBir and methanolBir diluent premixed mixtures at elevated temperatures and pressures. <i>Applied Thermal Engineering</i> , 2009 , 29, 2680-2688	5.8	38
26	Premixed Combustion of Diluted HydrogenAir Mixtures in a Constant Volume Bomb. <i>Energy & Energy Fuels</i> , 2009 , 23, 1431-1436	4.1	3
25	Performance and Emission Characteristics of Diesel Engines Fueled with Diesel Dimethoxymethane (DMM) Blends. <i>Energy & Diesel Dimethoxymethane</i> (DMM) Blends. <i>Energy & Diesel Dimethoxy</i>	4.1	43
24	Effects of N2 Dilution on Laminar Burning Characteristics of PropaneAir Premixed Flames. <i>Energy & Energy Fuels</i> , 2009 , 23, 151-156	4.1	37
23	Flame Propagation Speed of CO2 Diluted Hydrogen-Enriched Natural Gas and Air Mixtures. <i>Energy & Energy</i> 8, 2009, 23, 4957-4965	4.1	12
22	Measurement of Laminar Burning Velocities of Dimethyl Ether A ir Premixed Mixtures with N2 and CO2 Dilution. <i>Energy & Co2 Signal Science (Co2 Dilution Science)</i> 8 (2009) 123, 735-739	4.1	41
21	Experimental Study on Emissions of a Spark-Ignition Engine Fueled with Natural Gas Hydrogen Blends. <i>Energy & Double Study on Emissions of a Spark-Ignition Engine Fueled with Natural Gas Hydrogen Blends. Energy & Double Study on Emissions of a Spark-Ignition Engine Fueled with Natural Gas Hydrogen Blends. Energy & Double Study on Emissions of a Spark-Ignition Engine Fueled with Natural Gas Hydrogen Blends. Energy & Double Study on Emissions of a Spark-Ignition Engine Fueled with Natural Gas Hydrogen Blends. Energy & Double Study on Emissions of a Spark-Ignition Engine Fueled with Natural Gas Hydrogen Blends. Energy & Double Study on Emissions of a Spark-Ignition Engine Fueled with Natural Gas Hydrogen Blends. Energy & Double Study </i>	4.1	52
20	Experimental Study on Premixed Combustion of Dimethyl Ether Hydrogen Air Mixtures. <i>Energy & Energy Fuels</i> , 2008 , 22, 967-971	4.1	15
19	Measurements of laminar burning velocities and Markstein lengths for methanolBirBitrogen mixtures at elevated pressures and temperatures. <i>Combustion and Flame</i> , 2008 , 155, 358-368	5.3	84
18	Characteristics of direct injection combustion fuelled by natural gasflydrogen mixtures using a constant volume vessel. <i>International Journal of Hydrogen Energy</i> , 2008 , 33, 1947-1956	6.7	34
17	Combustion and emission characteristics of a diesel engine fuelled with dieselpropane blends. <i>Fuel</i> , 2008 , 87, 1711-1717	7.1	10
16	Combustion and emissions of a DI diesel engine fuelled with diesel-oxygenate blends. <i>Fuel</i> , 2008 , 87, 2691-2697	7.1	256
15	Effect of initial pressure on laminar combustion characteristics of hydrogen enriched natural gas. <i>International Journal of Hydrogen Energy</i> , 2008 , 33, 3876-3885	6.7	44
14	Laminar burning velocities and combustion characteristics of propanellydrogenllir premixed flames. <i>International Journal of Hydrogen Energy</i> , 2008 , 33, 4906-4914	6.7	130
13	Measurements of laminar burning velocities and Markstein lengths of propaneBydrogenBir mixtures at elevated pressures and temperatures. <i>International Journal of Hydrogen Energy</i> , 2008 , 33, 7274-7285	6.7	68
12	CT2-4: Experimental Study on Premixed Combustion of Dimethyl Ether-Hydrogen-Air Mixtures(CT: Combustion, Thermal and Fluid Science,General Session Papers). <i>The Proceedings of the International Symposium on Diagnostics and Modeling of Combustion in Internal Combustion Engines</i> ,		

11	Study on Dimethyl Ether Air Premixed Mixture Combustion with a Constant Volume Vessel. <i>Energy & Emp; Fuels</i> , 2007 , 21, 2013-2017	4.1	10
10	Effect of the Addition of Diglyme in Diesel Fuel on Combustion and Emissions in a Compressionly in Engine. <i>Energy & Energy & 2007</i> , 21, 2573-2583	4.1	27
9	Combustion Characteristics and Heat Release Analysis of a Spark-Ignited Engine Fueled with Natural Gas Hydrogen Blends. <i>Energy & Documents</i> , 2007, 21, 2594-2599	4.1	38
8	Measurement of laminar burning velocity of dimethyl ether∃ir premixed mixtures. Fuel, 2007, 86, 2360-	-2 3 . 6 6	76
7	Combustion behaviors of a direct-injection engine operating on various fractions of natural gasBydrogen blends. <i>International Journal of Hydrogen Energy</i> , 2007 , 32, 3555-3564	6.7	171
6	Combustion and Emission Characteristics of a Direct-Injection Diesel Engine Fueled with DieselDiethyl Adipate Blends. <i>Energy & Energy & 2007</i> , 21, 1474-1482	4.1	16
5	Effects of Fuel Injection Timing on Combustion and Emission Characteristics of a Diesel Engine Fueled with Diesel Propane Blends. <i>Energy & Energy </i>	4.1	17
4	Study on Flame Propagation Characteristics of Natural Gas⊞ydrogenAir Mixtures. <i>Energy & amp; Fuels</i> , 2006 , 20, 2385-2390	4.1	20
3	Experimental Study on Engine Performance and Emissions for an Engine Fueled with Natural Gas Hydrogen Mixtures. <i>Energy & Company Study</i> , 2006, 20, 2131-2136	4.1	87
2	NUMERICAL SIMULATION OF THE GAS/DIESEL DUAL-FUEL ENGINE IN-CYLINDER COMBUSTION PROCESS. <i>Numerical Heat Transfer; Part A: Applications</i> , 2005 , 47, 523-547	2.3	10
1	Genetic Algorithms Optimization of Diesel Engine Emissions and Fuel Efficiency with Air Swirl, EGR,Injection Timing and Multiple Injections 2003 ,		18