Yuxiong Huang

List of Publications by Citations

Source: https://exaly.com/author-pdf/1497074/yuxiong-huang-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

70 2,867 30 53 g-index

77 3,597 8.4 5.72 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
70	Engineered nanomaterials for water treatment and remediation: Costs, benefits, and applicability. <i>Chemical Engineering Journal</i> , 2016 , 286, 640-662	14.7	456
69	Magnetic sulfide-modified nanoscale zerovalent iron (S-nZVI) for dissolved metal ion removal. Water Research, 2015 , 74, 47-57	12.5	189
68	(1)H NMR and GC-MS Based Metabolomics Reveal Defense and Detoxification Mechanism of Cucumber Plant under Nano-Cu Stress. <i>Environmental Science & Environmental Science & Env</i>	10.3	158
67	Simultaneous removal of cadmium and nitrate in aqueous media by nanoscale zerovalent iron (nZVI) and Au doped nZVI particles. <i>Water Research</i> , 2014 , 63, 102-11	12.5	134
66	EDTA functionalized magnetic nanoparticle sorbents for cadmium and lead contaminated water treatment. <i>Water Research</i> , 2015 , 80, 159-68	12.5	129
65	Metabolomics to Detect Response of Lettuce (Lactuca sativa) to Cu(OH)2 Nanopesticides: Oxidative Stress Response and Detoxification Mechanisms. <i>Environmental Science & amp; Technology</i> , 2016 , 50, 9697-707	10.3	119
64	Heteroaggregation of nanoparticles with biocolloids and geocolloids. <i>Advances in Colloid and Interface Science</i> , 2015 , 226, 24-36	14.3	116
63	Plant-based green synthesis of metallic nanoparticles: scientific curiosity or a realistic alternative to chemical synthesis?. <i>Nanotechnology for Environmental Engineering</i> , 2016 , 1, 1	5.1	112
62	The Accuracy of Citizen Science Data: A Quantitative Review. <i>Bulletin of the Ecological Society of America</i> , 2017 , 98, 278-290	0.7	95
61	Citizen Science as an Approach for Overcoming Insufficient Monitoring and Inadequate Stakeholder Buy-in in Adaptive Management: Criteria and Evidence. <i>Ecosystems</i> , 2015 , 18, 493-506	3.9	79
60	Metabolomics Reveals Cu(OH) Nanopesticide-Activated Anti-oxidative Pathways and Decreased Beneficial Antioxidants in Spinach Leaves. <i>Environmental Science & Environmental Sc</i>	1 ⁵ 4 ^{.3}	76
59	Magnetic Nanoparticle Adsorbents for Emerging Organic Contaminants. <i>ACS Sustainable Chemistry and Engineering</i> , 2013 , 1, 731-736	8.3	65
58	Interactions, Transformations, and Bioavailability of Nano-Copper Exposed to Root Exudates. <i>Environmental Science & Environmental Science & Environme</i>	10.3	63
57	Detection of nanoparticles in edible plant tissues exposed to nano-copper using single-particle ICP-MS. <i>Journal of Nanoparticle Research</i> , 2018 , 20, 1	2.3	60
56	Competitive removal of Pb and malachite green from water by magnetic phosphate nanocomposites. <i>Water Research</i> , 2019 , 150, 442-451	12.5	58
55	H NMR and GC-MS based metabolomics reveal nano-Cu altered cucumber (Cucumis sativus) fruit nutritional supply. <i>Plant Physiology and Biochemistry</i> , 2017 , 110, 138-146	5.4	55
54	Comparative Metabolic Response between Cucumber (Cucumis sativus) and Corn (Zea mays) to a Cu(OH) Nanopesticide. <i>Journal of Agricultural and Food Chemistry</i> , 2018 , 66, 6628-6636	5.7	55

53	Simultaneous removal of PAHs and metal contaminants from water using magnetic nanoparticle adsorbents. <i>Science of the Total Environment</i> , 2016 , 571, 1029-36	10.2	54	
52	Removal of Arsenic and Phosphate from Aqueous Solution by Metal (Hydr-)oxide Coated Sand. <i>ACS Sustainable Chemistry and Engineering</i> , 2014 , 2, 1128-1138	8.3	53	
51	GC-TOF-MS based metabolomics and ICP-MS based metallomics of cucumber (Cucumis sativus) fruits reveal alteration of metabolites profile and biological pathway disruption induced by nano copper. <i>Environmental Science: Nano</i> , 2016 , 3, 1114-1123	7.1	47	
50	Response at Genetic, Metabolic, and Physiological Levels of Maize (Zea mays) Exposed to a Cu(OH)2 Nanopesticide. <i>ACS Sustainable Chemistry and Engineering</i> , 2017 , 5, 8294-8301	8.3	45	
49	Heteroaggregation of CeO2 and TiO2 engineered nanoparticles in the aqueous phase: Application of turbiscan stability index and fluorescence excitation-emission matrix (EEM) spectra. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2017 , 533, 9-19	5.1	43	
48	Metabolomics Reveals the Molecular Mechanisms of Copper Induced Cucumber Leaf (Cucumis sativus) Senescence. <i>Environmental Science & Environmental Sci</i>	10.3	43	
47	Direct Synthesis of Novel and Reactive Sulfide-modified Nano Iron through Nanoparticle Seeding for Improved Cadmium-Contaminated Water Treatment. <i>Scientific Reports</i> , 2016 , 6, 24358	4.9	40	
46	Properties of different natural organic matter influence the adsorption and aggregation behavior of TiO2 nanoparticles. <i>Journal of Saudi Chemical Society</i> , 2018 , 22, 146-154	4.3	38	
45	Activation of antioxidant and detoxification gene expression in cucumber plants exposed to a Cu(OH)2 nanopesticide. <i>Environmental Science: Nano</i> , 2017 , 4, 1750-1760	7.1	37	
44	Antioxidant response of cucumber (Cucumis sativus) exposed to nano copper pesticide: Quantitative determination via LC-MS/MS. <i>Food Chemistry</i> , 2019 , 270, 47-52	8.5	36	
43	Application of metabolomics to assess the impact of Cu(OH)2 nanopesticide on the nutritional value of lettuce (Lactuca sativa): Enhanced Cu intake and reduced antioxidants. <i>NanoImpact</i> , 2016 , 3-4, 58-66	5.6	36	
42	C60 Fullerols Enhance Copper Toxicity and Alter the Leaf Metabolite and Protein Profile in Cucumber. <i>Environmental Science & Environmental Science & </i>	10.3	33	
41	Incidence and persistence of silver nanoparticles throughout the wastewater treatment process. <i>Water Research</i> , 2019 , 156, 188-198	12.5	30	
40	Mn3O4 nanozymes boost endogenous antioxidant metabolites in cucumber (Cucumis sativus) plant and enhance resistance to salinity stress. <i>Environmental Science: Nano</i> , 2020 , 7, 1692-1703	7.1	30	
39	Comparation of the phytotoxicity between chemically and green synthesized silver nanoparticles. <i>Science of the Total Environment</i> , 2021 , 752, 142264	10.2	28	
38	Quantitative analysis of changes in amino acids levels for cucumber (Cucumis sativus) exposed to nano copper. <i>NanoImpact</i> , 2018 , 12, 9-17	5.6	23	
37	Surface coating determines the response of soybean plants to cadmium sulfide quantum dots. <i>NanoImpact</i> , 2019 , 14, 100151	5.6	21	
36	Highly efficient bacterial removal and disinfection by magnetic barium phosphate nanoflakes with embedded iron oxide nanoparticles. <i>Environmental Science: Nano</i> , 2018 , 5, 1341-1349	7.1	16	

35	Fast Multielement Quantification of Nanoparticles in Wastewater and Sludge Using Single-Particle ICP-MS. <i>ACS ES&T Water</i> , 2021 , 1, 205-213		16
34	Isothermal titration microcalorimetry to determine the thermodynamics of metal ion removal by magnetic nanoparticle sorbents. <i>Environmental Science: Nano</i> , 2016 , 3, 1206-1214	7.1	14
33	Simultaneous molybdate (Mo(VI)) recovery and hazardous ions immobilization via nanoscale zerovalent iron. <i>Journal of Hazardous Materials</i> , 2018 , 344, 698-706	12.8	11
32	Successive removal of Pb and Congo red by magnetic phosphate nanocomposites from aqueous solution. <i>Science of the Total Environment</i> , 2019 , 658, 1139-1149	10.2	11
31	Multi-technique approach to study the stability of silver nanoparticles at predicted environmental concentrations in wastewater. <i>Water Research</i> , 2019 , 166, 115072	12.5	10
30	Single particle ICP-MS and GC-MS provide a new insight into the formation mechanisms during the green synthesis of AgNPs. <i>New Journal of Chemistry</i> , 2019 , 43, 3946-3955	3.6	10
29	Optimization of porous structure of superparamagnetic nanoparticle adsorbents for higher and faster removal of emerging organic contaminants and PAHs. <i>Environmental Science: Water Research and Technology</i> , 2016 , 2, 521-528	4.2	10
28	TiO Nanoparticles in the Marine Environment: Enhancing Bioconcentration, While Limiting Biotransformation of Arsenic in the Mussel. <i>Environmental Science & Environmental Sci</i>	2 ¹ 263	7
27	Thorough utilization of rice husk: metabolite extracts for silver nanocomposite biosynthesis and residues for silica nanomaterials fabrication. <i>New Journal of Chemistry</i> , 2019 , 43, 9201-9209	3.6	6
26	Effective water disinfection using magnetic barium phosphate nanoflakes loaded with Ag nanoparticles. <i>Journal of Cleaner Production</i> , 2019 , 218, 173-182	10.3	6
25	Indium-modified Ga2O3 hierarchical nanosheets as efficient photocatalysts for the degradation of perfluorooctanoic acid. <i>Environmental Science: Nano</i> , 2020 , 7, 2229-2239	7.1	6
24	Coagulation and Dissolution of Zinc Oxide Nanoparticles in the Presence of Humic Acid Under Different pH Values. <i>Environmental Engineering Science</i> , 2016 , 33, 347-353	2	6
23	TiO nanoparticles enhanced bioaccumulation and toxic performance of PAHs via trophic transfer. Journal of Hazardous Materials, 2021 , 407, 124834	12.8	6
22	Alleviative Effects of C on the Trophic Transfer of Cadmium along the Food Chain in Aquatic Environment. <i>Environmental Science & Environmental Scienc</i>	10.3	5
21	Piezoelectric effect enhanced photocatalysis in environmental remediation: State-of-the-art techniques and future scenarios. <i>Science of the Total Environment</i> , 2022 , 806, 150924	10.2	5
20	Magnesium Oxide Nanomaterial, an Alternative for Commercial Copper Bactericides: Field-Scale Tomato Bacterial Spot Disease Management and Total and Bioavailable Metal Accumulation in Soil. <i>Environmental Science & Disease Management</i> 2021, 55, 13561-13570	10.3	5
19	Graphene dispersed and surface plasmon resonance-enhanced Ag3PO4 (DSPR-Ag3PO4) for visible light driven high-rate photodegradation of carbamazepine. <i>Chemical Engineering Journal</i> , 2021 , 405, 126850	14.7	5
18	Combined toxicity of nano-TiO and Cd to Scenedesmus obliquus: Effects at different concentration ratios. <i>Journal of Hazardous Materials</i> , 2021 , 418, 126354	12.8	5

LIST OF PUBLICATIONS

17	Quantifying the Dynamics of Polystyrene Microplastics UV-Aging Process. <i>Environmental Science and Technology Letters</i> , 2022 , 9, 50-56	11	5
16	Successive removal of E. coli and a mixture of Pb2+ and malachite green from water via magnetic iron oxide/phosphate nanocomposites. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2019 , 578, 123598	5.1	4
15	Smartphone-powered efficient water disinfection at the point of use. Npj Clean Water, 2020, 3,	11.2	3
14	MoS Nanosheets-Cyanobacteria Interaction: Reprogrammed Carbon and Nitrogen Metabolism. <i>ACS Nano</i> , 2021 , 15, 16344-16356	16.7	3
13	Ecotoxicological effects of DBPs on freshwater phytoplankton communities in co-culture systems. Journal of Hazardous Materials, 2022 , 421, 126679	12.8	3
12	Environmental Fate and Toxicity of Sunscreen-Derived Inorganic Ultraviolet Filters in Aquatic Environments: A Review <i>Nanomaterials</i> , 2022 , 12,	5.4	3
11	Effects of manufactured nanomaterials on algae: Implications and applications. <i>Frontiers of Environmental Science and Engineering</i> , 2022 , 16, 1	5.8	3
10	Environmental risks of disposable face masks during the pandemic of COVID-19: Challenges and management <i>Science of the Total Environment</i> , 2022 , 825, 153880	10.2	3
9	Environmental implications of MoS nanosheets on rice and associated soil microbial communities. <i>Chemosphere</i> , 2021 , 291, 133004	8.4	2
8	Rational Design of Next-generation Nanomaterials and Nanodevices for Water Applications 2016 ,		2
7	Molecular-Level Insights on the Facet-Dependent Degradation of Perfluorooctanoic Acid. <i>ACS Applied Materials & Degradation of Perfluorooctanoic Acid. ACS Acid. Acid</i>	9.5	2
6	Reinventing MoS2 Co-catalytic Fenton reaction: Oxygen-incorporation mediating surface superoxide radical generation. <i>Nano Research</i> ,1	10	2
5	Public Perceptions and Willingness-to-Pay for Nanopesticides Nanomaterials, 2022, 12,	5.4	2
4	Remediation of heavy metal contamination of sediments and soils using ligand-coated dense nanoparticles. <i>PLoS ONE</i> , 2020 , 15, e0239137	3.7	1
3	Shifting entrepreneurial landscape and development performance of water startups in emerging water markets. <i>PLoS ONE</i> , 2021 , 16, e0246282	3.7	1
2	Application of Metabolomics to Discover the Implications of Nanomaterials for Crop Plants 2019 , 106-	123	

Quantification and Imaging of Nanomaterials in Biological Samples **2022**, 3-19