Ferdinand Marlétaz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1496967/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<i>De novo</i> genome assembly and <i>in natura</i> epigenomics reveal salinityâ€induced DNA methylation in the mangrove tree <i>Bruguiera gymnorhiza</i> . New Phytologist, 2022, 233, 2094-2110.	3.5	25
2	Deeply conserved synteny and the evolution of metazoan chromosomes. Science Advances, 2022, 8, eabi5884.	4.7	81
3	Conservative route to genome compaction in a miniature annelid. Nature Ecology and Evolution, 2021, 5, 231-242.	3.4	51
4	Evidence from oyster suggests an ancient role for Pdx in regulating insulin gene expression in animals. Nature Communications, 2021, 12, 3117.	5.8	10
5	Phylogenomics illuminates the evolution of bobtail and bottletail squid (order Sepiolida). Communications Biology, 2021, 4, 819.	2.0	24
6	DrosoPhyla: Resources for Drosophilid Phylogeny and Systematics. Genome Biology and Evolution, 2021, 13, .	1.1	45
7	Evolution and biomineralization of pteropod shells. Journal of Structural Biology, 2021, 213, 107779.	1.3	11
8	Novel genomic resources for shelled pteropods: a draft genome and target capture probes for Limacina bulimoides, tested for cross-species relevance. BMC Genomics, 2020, 21, 11.	1.2	13
9	The origin and diversification of pteropods precede past perturbations in the Earth's carbon cycle. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25609-25617.	3.3	25
10	Unravelling spiral cleavage. Development (Cambridge), 2020, 147, .	1.2	31
11	Genomic adaptations to aquatic and aerial life in mayflies and the origin of insect wings. Nature Communications, 2020, 11, 2631.	5.8	57
12	Deeply conserved synteny resolves early events in vertebrate evolution. Nature Ecology and Evolution, 2020, 4, 820-830.	3.4	250
13	Zoology: Worming into the Origin of Bilaterians. Current Biology, 2019, 29, R577-R579.	1.8	3
14	New bobtail squid (Sepiolidae: Sepiolinae) from the Ryukyu islands revealed by molecular and morphological analysis. Communications Biology, 2019, 2, 465.	2.0	9
15	A New Spiralian Phylogeny Places the Enigmatic Arrow Worms among Gnathiferans. Current Biology, 2019, 29, 312-318.e3.	1.8	201
16	Amphioxus functional genomics and the origins of vertebrate gene regulation. Nature, 2018, 564, 64-70.	13.7	224
17	Extreme Mitogenomic Variation in Natural Populations of Chaetognaths. Genome Biology and Evolution, 2017, 9, 1374-1384.	1.1	21
18	New genes from old: asymmetric divergence of gene duplicates and the evolution of development. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20150480.	1.8	90

#	Article	IF	CITATIONS
19	Genome sequence of a diabetes-prone rodent reveals a mutation hotspot around the ParaHox gene cluster. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7677-7682.	3.3	30
20	Time-calibrated molecular phylogeny of pteropods. PLoS ONE, 2017, 12, e0177325.	1.1	24
21	Evolutionary origin and functional divergence of totipotent cell homeobox genes in eutherian mammals. BMC Biology, 2016, 14, 45.	1.7	37
22	Conservation, Duplication, and Divergence of Five Opsin Genes in Insect Evolution. Genome Biology and Evolution, 2016, 8, 579-587.	1.1	77
23	A single three-dimensional chromatin compartment in amphioxus indicates a stepwise evolution of vertebrate Hox bimodal regulation. Nature Genetics, 2016, 48, 336-341.	9.4	113
24	Draft genome assemblies and predicted microRNA complements of the intertidal lophotrochozoans Patella vulgata (Mollusca, Patellogastropoda) and Spirobranchus (Pomatoceros) lamarcki (Annelida,) Tj ETQq(0 0 00rg/BT /	Ov ert ock 10 ⁻
25	Hemichordate genomes and deuterostome origins. Nature, 2015, 527, 459-465.	13.7	217
26	Cdx ParaHox genes acquired distinct developmental roles after gene duplication in vertebrate evolution. BMC Biology, 2015, 13, 56.	1.7	12
27	Ancient Expansion of the Hox Cluster in Lepidoptera Generated Four Homeobox Genes Implicated in Extra-Embryonic Tissue Formation. PLoS Genetics, 2014, 10, e1004698.	1.5	58
28	Discovery and Classification of Homeobox Genes in Animal Genomes. Methods in Molecular Biology, 2014, 1196, 3-18.	0.4	4
29	Insights into bilaterian evolution from three spiralian genomes. Nature, 2013, 493, 526-531.	13.7	564
30	Evolution of the ARF Gene Family in Land Plants: Old Domains, New Tricks. Molecular Biology and Evolution, 2013, 30, 45-56.	3.5	196
31	Structural shifts of aldehyde dehydrogenase enzymes were instrumental for the early evolution of retinoid-dependent axial patterning in metazoans. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 226-231.	3.3	57
32	High Level of Structural Polymorphism Driven by Mobile Elements in the Hox Genomic Region of the Chaetognath Spadella cephaloptera. Genome Biology and Evolution, 2010, 2, 665-667.	1.1	3
33	Multigene Phylogeny of the Green Lineage Reveals the Origin and Diversification of Land Plants. Current Biology, 2010, 20, 2217-2222.	1.8	178
34	Phylogeny of Animals: Genomes Have a Lot to Say. , 2010, , 119-141.		0
35	Retinoic acid signaling in development: Tissueâ€specific functions and evolutionary origins. Genesis, 2008, 46, 640-656	0.8	112
36	Careful with understudied phyla: The case of chaetognath. BMC Evolutionary Biology, 2008, 8, 251.	3.2	13

#	Article	IF	CITATIONS
37	Chætognath transcriptome reveals ancestral and unique features among bilaterians. Genome Biology, 2008, 9, R94.	13.9	67
38	Retinoic acid signaling and the evolution of chordates. International Journal of Biological Sciences, 2006, 2, 38-47.	2.6	136
39	Chaetognath phylogenomics: a protostome with deuterostome-like development. Current Biology, 2006, 16, R577-R578.	1.8	129