
Ana Osorio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1496950/publications.pdf Version: 2024-02-01

ANA OSODIO

#	Article	IF	CITATIONS
1	Risks of Breast, Ovarian, and Contralateral Breast Cancer for <i>BRCA1</i> and <i>BRCA2</i> Mutation Carriers. JAMA - Journal of the American Medical Association, 2017, 317, 2402.	3.8	1,898
2	Breast Cancer Risk Genes — Association Analysis in More than 113,000 Women. New England Journal of Medicine, 2021, 384, 428-439.	13.9	532
3	Pathology of Breast and Ovarian Cancers among <i>BRCA1</i> and <i>BRCA2</i> Mutation Carriers: Results from the Consortium of Investigators of Modifiers of <i>BRCA1</i> / <i>2</i> (CIMBA). Cancer Epidemiology Biomarkers and Prevention, 2012, 21, 134-147.	1.1	513
4	Association of Type and Location of <i>BRCA1</i> and <i>BRCA2</i> Mutations With Risk of Breast and Ovarian Cancer. JAMA - Journal of the American Medical Association, 2015, 313, 1347.	3.8	390
5	Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer. Nature Genetics, 2017, 49, 680-691.	9.4	356
6	A locus on 19p13 modifies risk of breast cancer in BRCA1 mutation carriers and is associated with hormone receptor–negative breast cancer in the general population. Nature Genetics, 2010, 42, 885-892.	9.4	309
7	ldentification of ten variants associated with risk of estrogen-receptor-negative breast cancer. Nature Genetics, 2017, 49, 1767-1778.	9.4	289
8	Dose-Response Association of CD8 ⁺ Tumor-Infiltrating Lymphocytes and Survival Time in High-Grade Serous Ovarian Cancer. JAMA Oncology, 2017, 3, e173290.	3.4	260
9	Common Breast Cancer-Predisposition Alleles Are Associated with Breast Cancer Risk in BRCA1 and BRCA2 Mutation Carriers. American Journal of Human Genetics, 2008, 82, 937-948.	2.6	257
10	Genome-Wide Association Study in BRCA1 Mutation Carriers Identifies Novel Loci Associated with Breast and Ovarian Cancer Risk. PLoS Genetics, 2013, 9, e1003212.	1.5	244
11	Mutational spectrum in a worldwide study of 29,700 families with <i>BRCA1</i> or <i>BRCA2</i> mutations. Human Mutation, 2018, 39, 593-620.	1.1	224
12	Identification of six new susceptibility loci for invasive epithelial ovarian cancer. Nature Genetics, 2015, 47, 164-171.	9.4	221
13	RAD51 135G→C Modifies Breast Cancer Risk among BRCA2 Mutation Carriers: Results from a Combined Analysis of 19 Studies. American Journal of Human Genetics, 2007, 81, 1186-1200.	2.6	217
14	Rare Mutations in XRCC2 Increase the Risk of Breast Cancer. American Journal of Human Genetics, 2012, 90, 734-739.	2.6	172
15	Common Breast Cancer Susceptibility Alleles and the Risk of Breast Cancer for <i>BRCA1</i> and <i>BRCA2</i> Mutation Carriers: Implications for Risk Prediction. Cancer Research, 2010, 70, 9742-9754.	0.4	169
16	Analysis ofBRCA1andBRCA2genes in Spanish breast/ovarian cancer patients: A high proportion of mutations unique to Spain and evidence of founder effects. Human Mutation, 2003, 22, 301-312.	1.1	154
17	<i>BRCA1</i> CpG Island Hypermethylation Predicts Sensitivity to Poly(Adenosine Diphosphate)- Ribose Polymerase Inhibitors. Journal of Clinical Oncology, 2010, 28, e563-e564.	0.8	152
18	Prediction of Breast and Prostate Cancer Risks in Male <i>BRCA1</i> and <i>BRCA2</i> Mutation Carriers Using Polygenic Risk Scores. Journal of Clinical Oncology, 2017, 35, 2240-2250.	0.8	152

#	Article	IF	CITATIONS
19	Haplotype and Phenotype Analysis of Nine Recurrent BRCA2 Mutations in 111 Families: Results of an International Study. American Journal of Human Genetics, 1998, 62, 1381-1388.	2.6	150
20	Phenotypic characterization of BRCA1 and BRCA2 tumors based in a tissue microarray study with 37 immunohistochemical markers. Breast Cancer Research and Treatment, 2005, 90, 5-14.	1.1	147
21	Immunohistochemical characteristics defined by tissue microarray of hereditary breast cancer not attributable to BRCA1 or BRCA2 mutations: differences from breast carcinomas arising in BRCA1 and BRCA2 mutation carriers. Clinical Cancer Research, 2003, 9, 3606-14.	3.2	136
22	Reproductive and Hormonal Factors, and Ovarian Cancer Risk for <i>BRCA1</i> and <i>BRCA2</i> Mutation Carriers: Results from the International <i>BRCA1/2</i> Carrier Cohort Study. Cancer Epidemiology Biomarkers and Prevention, 2009, 18, 601-610.	1.1	130
23	Breast cancer risk variants at 6q25 display different phenotype associations and regulate ESR1, RMND1 and CCDC170. Nature Genetics, 2016, 48, 374-386.	9.4	125
24	Fine-mapping of 150 breast cancer risk regions identifies 191 likely target genes. Nature Genetics, 2020, 52, 56-73.	9.4	120
25	Ovarian and Breast Cancer Risks Associated With Pathogenic Variants in <i>RAD51C</i> and <i>RAD51D</i> . Journal of the National Cancer Institute, 2020, 112, 1242-1250.	3.0	106
26	Loss of heterozygosity analysis at theBRCAloci in tumor samples from patients with familial breast cancer. International Journal of Cancer, 2002, 99, 305-309.	2.3	105
27	Identification of a BRCA2-Specific Modifier Locus at 6p24 Related to Breast Cancer Risk. PLoS Genetics, 2013, 9, e1003173.	1.5	105
28	Common variants in LSP1, 2q35 and 8q24 and breast cancer risk for BRCA1 and BRCA2 mutation carriers. Human Molecular Genetics, 2009, 18, 4442-4456.	1.4	99
29	Refined histopathological predictors of BRCA1 and BRCA2mutation status: a large-scale analysis of breast cancer characteristics from the BCAC, CIMBA, and ENIGMA consortia. Breast Cancer Research, 2014, 16, 3419.	2.2	97
30	Pathology and gene expression of hereditary breast tumors associated with BRCA1, BRCA2 and CHEK2 gene mutations. Oncogene, 2006, 25, 5837-5845.	2.6	95
31	Whole Exome Sequencing Suggests Much of Non-BRCA1/BRCA2 Familial Breast Cancer Is Due to Moderate and Low Penetrance Susceptibility Alleles. PLoS ONE, 2013, 8, e55681.	1.1	95
32	Identification of four novel susceptibility loci for oestrogen receptor negative breast cancer. Nature Communications, 2016, 7, 11375.	5.8	93
33	Interplay between BRCA1 and RHAMM Regulates Epithelial Apicobasal Polarization and May Influence Risk of Breast Cancer. PLoS Biology, 2011, 9, e1001199.	2.6	91
34	<i>FANCM</i> c.5791C>T nonsense mutation (rs144567652) induces exon skipping, affects DNA repair activity and is a familial breast cancer risk factor. Human Molecular Genetics, 2015, 24, 5345-5355.	1.4	91
35	The Average Cumulative Risks of Breast and Ovarian Cancer for Carriers of Mutations in <i>BRCA1</i> and <i>BRCA2</i> Attending Genetic Counseling Units in Spain. Clinical Cancer Research, 2008, 14, 2861-2869.	3.2	90
36	Genome-wide association and transcriptome studies identify target genes and risk loci for breast cancer. Nature Communications, 2019, 10, 1741.	5.8	90

#	Article	IF	CITATIONS
37	Male breast cancer in BRCA1 and BRCA2 mutation carriers: pathology data from the Consortium of Investigators of Modifiers of BRCA1/2. Breast Cancer Research, 2016, 18, 15.	2.2	88
38	Shared heritability and functional enrichment across six solid cancers. Nature Communications, 2019, 10, 431.	5.8	88
39	Common Genetic Variants and Modification of Penetrance of BRCA2-Associated Breast Cancer. PLoS Genetics, 2010, 6, e1001183.	1.5	85
40	Predominance of pathogenic missense variants in the RAD51C gene occurring in breast and ovarian cancer families. Human Molecular Genetics, 2012, 21, 2889-2898.	1.4	84
41	Analysis of FANCB and FANCN/PALB2 Fanconi Anemia genes in BRCA1/2-negative Spanish breast cancer families. Breast Cancer Research and Treatment, 2009, 113, 545-551.	1.1	83
42	Polygenic risk scores and breast and epithelial ovarian cancer risks for carriers of BRCA1 and BRCA2 pathogenic variants. Genetics in Medicine, 2020, 22, 1653-1666.	1.1	82
43	Molecular analysis of the BRCA1 and BRCA2 genes in 32 breast and/or ovarian cancer Spanish families. British Journal of Cancer, 2000, 82, 1266-1270.	2.9	78
44	Common variants at 12p11, 12q24, 9p21, 9q31.2 and in ZNF365 are associated with breast cancer risk for BRCA1 and/or BRCA2mutation carriers. Breast Cancer Research, 2012, 14, R33.	2.2	78
45	Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast–ovarian cancer susceptibility locus. Nature Communications, 2016, 7, 12675.	5.8	78
46	BRCA2 Polymorphic Stop Codon K3326X and the Risk of Breast, Prostate, and Ovarian Cancers. Journal of the National Cancer Institute, 2016, 108, djv315.	3.0	77
47	Genetic Anticipation Is Associated with Telomere Shortening in Hereditary Breast Cancer. PLoS Genetics, 2011, 7, e1002182.	1.5	76
48	<i>BRCA2</i> Hypomorphic Missense Variants Confer Moderate Risks of Breast Cancer. Cancer Research, 2017, 77, 2789-2799.	0.4	75
49	Distinct genomic aberration patterns are found in familial breast cancer associated with different immunohistochemical subtypes. Oncogene, 2008, 27, 3165-3175.	2.6	74
50	Evaluation of linkage of breast cancer to the putative BRCA3 locus on chromosome 13q21 in 128 multiple case families from the Breast Cancer Linkage Consortium. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 827-831.	3.3	73
51	The breast cancer low-penetrance allele 1100delC in the CHEK2 gene is not present in Spanish familial breast cancer population. International Journal of Cancer, 2004, 108, 54-56.	2.3	72
52	Common breast cancer susceptibility alleles are associated with tumour subtypes in BRCA1 and BRCA2 mutation carriers: results from the Consortium of Investigators of Modifiers of BRCA1/2. Breast Cancer Research, 2011, 13, R110.	2.2	71
53	Deregulated miRNAs in Hereditary Breast Cancer Revealed a Role for miR-30c in Regulating KRAS Oncogene. PLoS ONE, 2012, 7, e38847.	1.1	71
54	Immunohistochemical Expression of DNA Repair Proteins in Familial Breast Cancer Differentiate BRCA2-Associated Tumors. Journal of Clinical Oncology, 2005, 23, 7503-7511.	0.8	70

#	Article	IF	CITATIONS
55	Common alleles at 6q25.1 and 1p11.2 are associated with breast cancer risk for BRCA1 and BRCA2 mutation carriers. Human Molecular Genetics, 2011, 20, 3304-3321.	1.4	68
56	Age at Menarche and Menopause and Breast Cancer Risk in the International BRCA1/2 Carrier Cohort Study. Cancer Epidemiology Biomarkers and Prevention, 2007, 16, 740-746.	1.1	63
57	Association betweenBRCA1andBRCA2mutations and cancer phenotype in Spanish breast/ovarian cancer families: Implications for genetic testing. International Journal of Cancer, 2002, 97, 466-471.	2.3	61
58	Genomic Rearrangements at the BRCA1 Locus in Spanish Families with Breast/Ovarian Cancer. Clinical Chemistry, 2006, 52, 1480-1485.	1.5	60
59	Individuals with FANCM biallelic mutations do not develop Fanconi anemia, but show risk for breast cancer, chemotherapy toxicity and may display chromosome fragility. Genetics in Medicine, 2018, 20, 452-457.	1.1	59
60	Associations of common breast cancer susceptibility alleles with risk of breast cancer subtypes in BRCA1 and BRCA2 mutation carriers. Breast Cancer Research, 2014, 16, 3416.	2.2	57
61	Parity and the risk of breast and ovarian cancer in BRCA1 and BRCA2 mutation carriers. Breast Cancer Research and Treatment, 2010, 119, 221-232.	1.1	56
62	A Transcriptome-Wide Association Study Among 97,898 Women to Identify Candidate Susceptibility Genes for Epithelial Ovarian Cancer Risk. Cancer Research, 2018, 78, 5419-5430.	0.4	54
63	Pathology of Tumors Associated With Pathogenic Germline Variants in 9 Breast Cancer Susceptibility Genes. JAMA Oncology, 2022, 8, e216744.	3.4	51
64	A predictor based on the somatic genomic changes of the BRCA1/BRCA2 breast cancer tumors identifies the non-BRCA1/BRCA2 tumors with BRCA1 promoter hypermethylation. Clinical Cancer Research, 2005, 11, 1146-53.	3.2	51
65	Detection of a large rearrangement in PALB2 in Spanish breast cancer families with male breast cancer. Breast Cancer Research and Treatment, 2012, 132, 307-315.	1.1	50
66	Immunohistochemical classification of non-BRCA1/2 tumors identifies different groups that demonstrate the heterogeneity of BRCAX families. Modern Pathology, 2007, 20, 1298-1306.	2.9	48
67	Characterization of the Cancer Spectrum in Men With Germline <i>BRCA1</i> and <i>BRCA2</i> Pathogenic Variants. JAMA Oncology, 2020, 6, 1218.	3.4	48
68	The Role of KRAS rs61764370 in Invasive Epithelial Ovarian Cancer: Implications for Clinical Testing. Clinical Cancer Research, 2011, 17, 3742-3750.	3.2	47
69	Common Variants at the 19p13.1 and <i>ZNF365</i> Loci Are Associated with ER Subtypes of Breast Cancer and Ovarian Cancer Risk in <i>BRCA1</i> and <i>BRCA2</i> Mutation Carriers. Cancer Epidemiology Biomarkers and Prevention, 2012, 21, 645-657.	1.1	47
70	DNA Glycosylases Involved in Base Excision Repair May Be Associated with Cancer Risk in BRCA1 and BRCA2 Mutation Carriers. PLoS Genetics, 2014, 10, e1004256.	1.5	47
71	Analysis of PALB2 Gene in BRCA1/BRCA2 Negative Spanish Hereditary Breast/Ovarian Cancer Families with Pancreatic Cancer Cases. PLoS ONE, 2013, 8, e67538.	1.1	44
72	Prevalence of BRCA1 and BRCA2 Jewish mutations in Spanish breast cancer patients. British Journal of Cancer, 1999, 79, 1302-1303.	2.9	43

#	Article	IF	CITATIONS
73	MicroRNA expression signatures for the prediction of BRCA1/2 mutationâ€associated hereditary breast cancer in paraffinâ€embedded formalinâ€fixed breast tumors. International Journal of Cancer, 2015, 136, 593-602.	2.3	43
74	Development and Validation of the Gene Expression Predictor of High-grade Serous Ovarian Carcinoma Molecular SubTYPE (PrOTYPE). Clinical Cancer Research, 2020, 26, 5411-5423.	3.2	43
75	Classification of missense variants of unknown significance inBRCA1based on clinical and tumor information. Human Mutation, 2007, 28, 477-485.	1.1	42
76	Loss of the actin regulator HSPC300 results in clear cell renal cell carcinoma protection in Von Hippel-Lindau patients. Human Mutation, 2007, 28, 613-621.	1.1	41
77	Genetic Variation at 9p22.2 and Ovarian Cancer Risk for BRCA1 and BRCA2 Mutation Carriers. Journal of the National Cancer Institute, 2011, 103, 105-116.	3.0	40
78	Association of Genomic Domains in <i>BRCA1</i> and <i>BRCA2</i> with Prostate Cancer Risk and Aggressiveness. Cancer Research, 2020, 80, 624-638.	0.4	39
79	Hypermethylation of p15/ink4b/MTS2 gene is differentially implicated among non-Hodgkin's lymphomas. Leukemia, 1998, 12, 937-941.	3.3	37
80	Association of the Variants <i>CASP8</i> D302H and <i>CASP10</i> V410I with Breast and Ovarian Cancer Risk in <i>BRCA1</i> and <i>BRCA2</i> Mutation Carriers. Cancer Epidemiology Biomarkers and Prevention, 2010, 19, 2859-2868.	1.1	37
81	A haplotype containing thep53polymorphisms Ins16bp and Arg72Pro modifies cancer risk inBRCA2mutation carriers. Human Mutation, 2006, 27, 242-248.	1.1	35
82	Clinical and pathological associations of PTEN expression in ovarian cancer: a multicentre study from the Ovarian Tumour Tissue Analysis Consortium. British Journal of Cancer, 2020, 123, 793-802.	2.9	35
83	Loss of heterozygosity at 11q23.1 and survival in breast cancer: Results of a large European study. Genes Chromosomes and Cancer, 1999, 25, 212-221.	1.5	34
84	Accurate Prediction of BRCA1 and BRCA2 Heterozygous Genotype Using Expression Profiling after Induced DNA Damage. Clinical Cancer Research, 2006, 12, 3896-3901.	3.2	34
85	Ovarian cancer susceptibility alleles and risk of ovarian cancer in <i>BRCA1</i> and <i>BRCA2</i> mutation carriers. Human Mutation, 2012, 33, 690-702.	1.1	34
86	Assessing Associations between the AURKA-HMMR-TPX2-TUBG1 Functional Module and Breast Cancer Risk in BRCA1/2 Mutation Carriers. PLoS ONE, 2015, 10, e0120020.	1.1	34
87	Oral contraceptive use and ovarian cancer risk for BRCA1/2 mutation carriers: an international cohort study. American Journal of Obstetrics and Gynecology, 2021, 225, 51.e1-51.e17.	0.7	34
88	Oral Contraceptive Use and Breast Cancer Risk: Retrospective and Prospective Analyses From a BRCA1 and BRCA2 Mutation Carrier Cohort Study. JNCI Cancer Spectrum, 2018, 2, pky023.	1.4	33
89	Transcriptomeâ€wide association study of breast cancer risk by estrogenâ€receptor status. Genetic Epidemiology, 2020, 44, 442-468.	0.6	32
90	Estrogen Receptor Status Could Modulate the Genomic Pattern in Familial and Sporadic Breast Cancer. Clinical Cancer Research, 2007, 13, 7305-7313.	3.2	31

#	Article	IF	CITATIONS
91	Identification of independent association signals and putative functional variants for breast cancer risk through fine-scale mapping of the 12p11 locus. Breast Cancer Research, 2016, 18, 64.	2.2	31
92	Re: Germline BRCA1 Mutations and a Basal Epithelial Phenotype in Breast Cancer. Journal of the National Cancer Institute, 2004, 96, 712-714.	3.0	29
93	Mutational analysis of FANCL , FANCM and the recently identified FANCI suggests that among the 13 known Fanconi Anemia genes, only FANCD1/BRCA2 plays a major role in high-risk breast cancer predisposition. Carcinogenesis, 2009, 30, 1898-1902.	1.3	29
94	Evaluation of Rare Variants in the New Fanconi Anemia Gene <i>ERCC4</i> (<i>FANCQ</i>) as Familial Breast/Ovarian Cancer Susceptibility Alleles. Human Mutation, 2013, 34, 1615-1618.	1.1	28
95	The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer. Npj Breast Cancer, 2019, 5, 38.	2.3	28
96	Association of PHB 1630 C>T and MTHFR 677 C>T polymorphisms with breast and ovarian cancer risk in BRCA1/2 mutation carriers: results from a multicenter study. British Journal of Cancer, 2012, 106, 2016-2024.	2.9	27
97	Impact of chemotherapy on telomere length in sporadic and familial breast cancer patients. Breast Cancer Research and Treatment, 2015, 149, 385-394.	1.1	27
98	The variant E233G of theRAD51Dgene could be a low-penetrance allele in high-risk breast cancer families withoutBRCA1/2mutations. International Journal of Cancer, 2004, 110, 845-849.	2.3	26
99	Genomewide high-density SNP linkage analysis of non-BRCA1/2 breast cancer families identifies various candidate regions and has greater power than microsatellite studies. BMC Genomics, 2007, 8, 299.	1.2	26
100	An original phylogenetic approach identified mitochondrial haplogroup T1a1 as inversely associated with breast cancer risk in BRCA2 mutation carriers. Breast Cancer Research, 2015, 17, 61.	2.2	26
101	DNA repair capacity is impaired in healthy BRCA1 heterozygous mutation carriers. Breast Cancer Research and Treatment, 2015, 152, 271-282.	1.1	26
102	Almost 2% of Spanish breast cancer families are associated to germline pathogenic mutations in the ATM gene. Breast Cancer Research and Treatment, 2017, 161, 597-604.	1.1	25
103	About 1% of the breast and ovarian Spanish families testing negative for <i>BRCA1</i> and <i>BRCA2</i> are carriers of <i>RAD51D</i> pathogenic variants. International Journal of Cancer, 2014, 134, 2088-2097.	2.3	24
104	Alcohol Consumption, Cigarette Smoking, and Risk of Breast Cancer for <i>BRCA1</i> and <i>BRCA2</i> Mutation Carriers: Results from The BRCA1 and BRCA2 Cohort Consortium. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 368-378.	1.1	24
105	Exploring the link between MORF4L1 and risk of breast cancer. Breast Cancer Research, 2011, 13, R40.	2.2	23
106	A Nonsynonymous Polymorphism in <i>IRS1</i> Modifies Risk of Developing Breast and Ovarian Cancers in <i>BRCA1</i> and Ovarian Cancer in <i>BRCA2</i> Mutation Carriers. Cancer Epidemiology Biomarkers and Prevention, 2012, 21, 1362-1370.	1.1	23
107	MicroRNA-based molecular classification of non-BRCA1/2 hereditary breast tumours. British Journal of Cancer, 2013, 109, 2724-2734.	2.9	23
108	Polygenic risk modeling for prediction of epithelial ovarian cancer risk. European Journal of Human Genetics, 2022, 30, 349-362.	1.4	23

#	Article	IF	CITATIONS
109	Candidate Genetic Modifiers for Breast and Ovarian Cancer Risk in <i>BRCA1</i> and <i>BRCA2</i> Mutation Carriers. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 308-316.	1.1	22
110	Population distribution and ancestry of the cancer protective MDM2 SNP285 (rs117039649). Oncotarget, 2014, 5, 8223-8234.	0.8	22
111	Molecular analysis of the six most recurrent mutations in the BRCA1 gene in 87 Spanish breast/ovarian cancer families. Cancer Letters, 1998, 123, 153-158.	3.2	21
112	The Influence of Number and Timing of Pregnancies on Breast Cancer Risk for Women With BRCA1 or BRCA2 Mutations. JNCI Cancer Spectrum, 2018, 2, pky078.	1.4	21
113	Small molecule inhibitor of OGG1 blocks oxidative DNA damage repair at telomeres and potentiates methotrexate anticancer effects. Scientific Reports, 2021, 11, 3490.	1.6	21
114	Evaluation of the BRCA1 interacting genes RAP80 and CCDC98 in familial breast cancer susceptibility. Breast Cancer Research and Treatment, 2009, 113, 371-376.	1.1	20
115	Assessing the RNA effect of 26 DNA variants in the BRCA1 and BRCA2 genes. Breast Cancer Research and Treatment, 2012, 132, 979-992.	1.1	20
116	Small-molecule activation of OGG1 increases oxidative DNA damage repair by gaining a new function. Science, 2022, 376, 1471-1476.	6.0	20
117	The TP53 Arg72Pro and MDM2 309G>T polymorphisms are not associated with breast cancer risk in BRCA1 and BRCA2 mutation carriers. British Journal of Cancer, 2009, 101, 1456-1460.	2.9	19
118	A case-only study to identify genetic modifiers of breast cancer risk for BRCA1/BRCA2 mutation carriers. Nature Communications, 2021, 12, 1078.	5.8	19
119	Genetic variation in the <i>NEIL2</i> DNA glycosylase gene is associated with oxidative DNA damage in <i>BRCA2</i> mutation carriers. Oncotarget, 2017, 8, 114626-114636.	0.8	19
120	Haplotype analysis of theBRCA29254delATCAT recurrent mutation in breast/ovarian cancer families from Spain. Human Mutation, 2003, 21, 452-452.	1.1	18
121	Haplotype structure in Ashkenazi Jewish BRCA1 and BRCA2 mutation carriers. Human Genetics, 2011, 130, 685-699.	1.8	18
122	No clinical utility of KRAS variant rs61764370 for ovarian or breast cancer. Gynecologic Oncology, 2016, 141, 386-401.	0.6	18
123	Association of breast cancer risk in BRCA1 and BRCA2 mutation carriers with genetic variants showing differential allelic expression: identification of a modifier of breast cancer risk at locus 11q22.3. Breast Cancer Research and Treatment, 2017, 161, 117-134.	1.1	18
124	Deletion at 6q24.2–26 predicts longer survival of highâ€grade serous epithelial ovarian cancer patients. Molecular Oncology, 2015, 9, 422-436.	2.1	17
125	Over-representation of two specific haplotypes among chromosomes harbouring BRCA1 mutations. European Journal of Human Genetics, 2003, 11, 489-492.	1.4	16
126	The Accumulation of Specific Amplifications Characterizes Two Different Genomic Pathways of Evolution of Familial Breast Tumors. Clinical Cancer Research, 2005, 11, 8577-8584.	3.2	16

#	Article	IF	CITATIONS
127	The highly prevalent BRCA2 mutation c.2808_2811del (3036delACAA) is located in a mutational hotspot and has multiple origins. Carcinogenesis, 2013, 34, 2505-2511.	1.3	16
128	<i>RECQL5</i> : Another DNA helicase potentially involved in hereditary breast cancer susceptibility. Human Mutation, 2019, 40, 566-577.	1.1	16
129	Molecular insights into the <i>OGG1</i> gene, a cancer risk modifier in <i>BRCA1</i> and <i>BRCA2</i> mutations carriers. Oncotarget, 2016, 7, 25815-25825.	0.8	16
130	Ï,54 Promoters Control Expression of Genes Encoding the Hook and Basal Body Complex in Rhodobacter sphaeroides. Journal of Bacteriology, 2000, 182, 5787-5792.	1.0	15
131	Evaluation of a candidate breast cancer associated SNP in ERCC4 as a risk modifier in BRCA1 and BRCA2 mutation carriers. Results from the Consortium of Investigators of Modifiers of BRCA1/BRCA2 (CIMBA). British Journal of Cancer, 2009, 101, 2048-2054.	2.9	15
132	DNA copy number profiling reveals extensive genomic loss in hereditary BRCA1 and BRCA2 ovarian carcinomas. British Journal of Cancer, 2013, 108, 1732-1742.	2.9	15
133	BRCA1 and BRCA2 mutations in males with familial breast and ovarian cancer syndrome. Results of a Spanish multicenter study. Familial Cancer, 2015, 14, 505-513.	0.9	15
134	Genetic and clinical analysis in 10 Spanish patients with multiple endocrine neoplasia type 1. European Journal of Human Genetics, 1999, 7, 585-589.	1.4	14
135	European multicenter study on LOH of APOC3 at 11q23 in 766 breast cancer patients: relation to clinical variables. British Journal of Cancer, 1999, 80, 879-882.	2.9	14
136	An evaluation of the polymorphisms Ins16bp and Arg72Pro in p53 as breast cancer risk modifiers in BRCA1 and BRCA2 mutation carriers. British Journal of Cancer, 2008, 99, 974-977.	2.9	14
137	Pathological features of breast and ovarian cancers in RAD51C germline mutation carriers. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2014, 465, 365-369.	1.4	14
138	A Collaborative Effort to Define Classification Criteria for <i>ATM</i> Variants in Hereditary Cancer Patients. Clinical Chemistry, 2021, 67, 518-533.	1.5	14
139	Gene expression profiling integrated into network modelling reveals heterogeneity in the mechanisms of BRCA1 tumorigenesis. British Journal of Cancer, 2009, 101, 1469-1480.	2.9	13
140	The rs12975333 variant in the miR-125a and breast cancer risk in Germany, Italy, Australia and Spain. Journal of Medical Genetics, 2011, 48, 703-704.	1.5	13
141	Evidence for a link between TNFRSF11A and risk of breast cancer. Breast Cancer Research and Treatment, 2011, 129, 947-954.	1.1	12
142	Characterisation of the novel deleterious RAD51C p.Arg312Trp variant and prioritisation criteria for functional analysis of RAD51C missense changes. British Journal of Cancer, 2017, 117, 1048-1062.	2.9	12
143	Mutational Screening of BRCA1/2 Genes as a Predictive Factor for Therapeutic Response in Epithelial Ovarian Cancer: A Consensus Guide from the Spanish Society of Pathology (SEAP-IAP) and the Spanish Society of Human Genetics (AEGH). Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2020, 476, 195-207.	1.4	12
144	Cross-Cancer Genome-Wide Association Study of Endometrial Cancer and Epithelial Ovarian Cancer Identifies Genetic Risk Regions Associated with Risk of Both Cancers. Cancer Epidemiology Biomarkers and Prevention, 2021, 30, 217-228.	1.1	12

Ana Osorio

#	Article	IF	CITATIONS
145	Transcriptional characteristics of familial nonâ€ <i>BRCA1/BRCA2</i> breast tumors. International Journal of Cancer, 2011, 128, 2635-2644.	2.3	11
146	The Spectrum of FANCM Protein Truncating Variants in European Breast Cancer Cases. Cancers, 2020, 12, 292.	1.7	11
147	Fine-Scale Mapping at 9p22.2 Identifies Candidate Causal Variants That Modify Ovarian Cancer Risk in BRCA1 and BRCA2 Mutation Carriers. PLoS ONE, 2016, 11, e0158801.	1.1	10
148	First international workshop of the ATM and cancer risk group (4-5 December 2019). Familial Cancer, 2022, 21, 211-227.	0.9	10
149	Hypermethylation of P16ink4a and P15ink4b genes as a marker of disease in the follow-up of non-Hodgkin's lymphomas. British Journal of Haematology, 2000, 109, 97-103.	1.2	9
150	A rapid and easy method for multiple endocrine neoplasia type 1 mutation detection using conformation-sensitive gel electrophoresis. Journal of Human Genetics, 2002, 47, 190-195.	1.1	9
151	The 12 base pair duplication/insertion alteration could be a regulatory mutation Journal of Medical Genetics, 1997, 34, 592-593.	1.5	7
152	Mutation analysis of the BRCA2 gene in breast/ovarian cancer Spanish families: identification of two new mutations. Cancer Letters, 1997, 121, 115-118.	3.2	7
153	No mutations in theXRCC2gene inBRCA1/2-negative high-risk breast cancer families. International Journal of Cancer, 2003, 103, 136-137.	2.3	7
154	Evaluation of the XRCC1 gene as a phenotypic modifier in BRCA1/2 mutation carriers. Results from the consortium of investigators of modifiers of BRCA1/BRCA2. British Journal of Cancer, 2011, 104, 1356-1361.	2.9	7
155	Clustering of cancer-related mutations in a subset ofBRCA1alleles: A study in the Spanish population. International Journal of Cancer, 2002, 100, 618-619.	2.3	6
156	Mutational analysis of telomere genes in BRCA1/2-negative breast cancer families with very short telomeres. Breast Cancer Research and Treatment, 2012, 134, 1337-1343.	1.1	5
157	Mutant BRCA1 alleles transmission: Different approaches and different biases. International Journal of Cancer, 2005, 113, 166-167.	2.3	4
158	Molecular analysis of the BRCA2 gene in 16 breast/ovarian cancer Spanish families. Clinical Genetics, 1998, 54, 142-147.	1.0	4
159	Evaluation of chromosome 6p22 as a breast cancer risk modifier locus in a follow-up study of BRCA2 mutation carriers. Breast Cancer Research and Treatment, 2012, 136, 295-302.	1.1	4
160	Germline missense pathogenic variants in the BRCA1 BRCT domain, p.Gly1706Glu and p.Ala1708Glu, increase cellular sensitivity to PARP inhibitor olaparib by a dominant negative effect. Human Molecular Genetics, 2016, 25, ddw343.	1.4	4
161	OGG1 Inhibition Triggers Synthetic Lethality and Enhances The Effect of PARP Inhibitor Olaparib in BRCA1-Deficient TNBC Cells. Frontiers in Oncology, 2022, 12, .	1.3	4
162	Identification by Comparative Genomic Hybridization of Genetic Changes Involved in Tumoral Progression of a T-Cell Non-Hodgkin Lymphoma. Cancer Genetics and Cytogenetics, 2000, 117, 41-44.	1.0	3

#	ARTICLE	IF	CITATIONS
163	A common SNP in the UNG gene decreases ovarian cancer risk in BRCA 2 mutation carriers. Molecular Oncology, 2019, 13, 1110-1120.	2.1	2
164	Apparent regional differences in the spectrum of BARD1 pathogenic variants in Spanish population and importance of copy number variants. Scientific Reports, 2022, 12, .	1.6	2
165	Abstract 5483: Implications of the type ofBRCA1germline mutation in the treatment of patients with hereditary breast cancer. , 2014, , .		0
166	Abstract 2547: Molecular insights into OGG1 gene, a modifier of cancer risk in BRCA1 and BRCA2 mutations carriers. , 2016, , .		0