LeoÅ; ValÃ;Å;ek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1496685/publications.pdf

Version: 2024-02-01

101496 3,757 62 36 citations h-index papers

g-index 67 67 67 2753 docs citations times ranked citing authors all docs

138417

58

#	Article	IF	CITATIONS
1	Increased expression of tryptophan and tyrosine tRNAs elevates stop codon readthrough of reporter systems in human cell lines. Nucleic Acids Research, 2021, 49, 5202-5215.	6.5	17
2	elF4G is retained on ribosomes elongating and terminating on short upstream ORFs to control reinitiation in yeast. Nucleic Acids Research, 2021, 49, 8743-8756.	6.5	7
3	Adapted formaldehyde gradient cross-linking protocol implicates human eIF3d and eIF3c, k and l subunits in the 43S and 48S pre-initiation complex assembly, respectively. Nucleic Acids Research, 2020, 48, 1969-1984.	6.5	27
4	Selective Translation Complex Profiling Reveals Staged Initiation and Co-translational Assembly of Initiation Factor Complexes. Molecular Cell, 2020, 79, 546-560.e7.	4.5	92
5	Structural Differences in Translation Initiation between Pathogenic Trypanosomatids and Their Mammalian Hosts. Cell Reports, 2020, 33, 108534.	2.9	14
6	uS3/Rps3 controls fidelity of translation termination and programmed stop codon readthrough in co-operation with eIF3. Nucleic Acids Research, 2019, 47, 11326-11343.	6.5	6
7	Yeast applied readthrough inducing system (YARIS): an invivo assay for the comprehensive study of translational readthrough. Nucleic Acids Research, 2019, 47, 6339-6350.	6.5	13
8	Please do not recycle! Translation reinitiation in microbes and higher eukaryotes. FEMS Microbiology Reviews, 2018, 42, 165-192.	3.9	85
9	Dynamics of the Pollen Sequestrome Defined by Subcellular Coupled Omics. Plant Physiology, 2018, 178, 258-282.	2.3	23
10	ABCE1: A special factor that orchestrates translation at the crossroad between recycling and initiation. RNA Biology, 2017, 14, 1279-1285.	1.5	55
11	A Unique ISR Program Determines Cellular Responses to Chronic Stress. Molecular Cell, 2017, 68, 885-900.e6.	4.5	135
12	<i>In vivo</i> evidence that eIF3 stays bound to ribosomes elongating and terminating on short upstream ORFs to promote reinitiation. Nucleic Acids Research, 2017, 45, gkx049.	6.5	64
13	Embraced by eIF3: structural and functional insights into the roles of eIF3 across the translation cycle. Nucleic Acids Research, 2017, 45, 10948-10968.	6.5	102
14	An emergency brake for protein synthesis. ELife, 2017, 6, .	2.8	5
15	Does elF3 promote reinitiation after translation of short upstream ORFs also in mammalian cells?. RNA Biology, 2017, 14, 1660-1667.	1.5	37
16	Human elF3b and elF3a serve as the nucleation core for the assembly of elF3 into two interconnected modules: the yeast-like core and the octamer. Nucleic Acids Research, 2016, 44, 10772-10788.	6.5	58
17	Rules of UGA-N decoding by near-cognate tRNAs and analysis of readthrough on short uORFs in yeast. Rna, 2016, 22, 456-466.	1.6	68
18	A systematic computational analysis of the rRNA \hat{a} \in UTR sequence complementarity suggests a regulatory mechanism influencing post-termination events in metazoan translation. Rna, 2016, 22, 957-967.	1.6	7

#	Article	IF	CITATIONS
19	In-depth analysis of <i>cis</i> determinants that either promote or inhibit reinitiation on <i>GCN4</i> mRNA after translation of its four short uORFs. Rna, 2016, 22, 542-558.	1.6	41
20	Eukaryotic translation initiation factor 3 plays distinct roles at the mRNA entry and exit channels of the ribosomal preinitiation complex. ELife, 2016 , 5 , .	2.8	54
21	Translation initiation factor elF3 promotes programmed stop codon readthrough. Nucleic Acids Research, 2015, 43, 5099-5111.	6.5	89
22	Functional and Biochemical Characterization of Human Eukaryotic Translation Initiation Factor 3 in Living Cells. Molecular and Cellular Biology, 2014, 34, 3041-3052.	1.1	69
23	Fail-safe mechanism of GCN4 translational controlâ€"uORF2 promotes reinitiation by analogous mechanism to uORF1 and thus secures its key role in GCN4 expression. Nucleic Acids Research, 2014, 42, 5880-5893.	6.5	42
24	Structural integrity of the PCI domain of eIF3a/TIF32 is required for mRNA recruitment to the 43S pre-initiation complexes. Nucleic Acids Research, 2014, 42, 4123-4139.	6.5	35
25	mRNA Translation: Fungal Variations on a Eukaryotic Theme. , 2014, , 113-134.		2
26	Yeast eIF4B binds to the head of the 40S ribosomal subunit and promotes mRNA recruitment through its N-terminal and internal repeat domains. Rna, 2013, 19, 191-207.	1.6	66
27	Polysome Profile Analysis – Yeast. Methods in Enzymology, 2013, 530, 173-181.	0.4	29
28	Translation Initiation Factors eIF3 and HCR1 Control Translation Termination and Stop Codon Read-Through in Yeast Cells. PLoS Genetics, 2013, 9, e1003962.	1.5	91
29	An evolutionary conserved pattern of 18S rRNA sequence complementarity to mRNA 5′ UTRs and its implications for eukaryotic gene translation regulation. Nucleic Acids Research, 2013, 41, 7625-7634.	6.5	32
30	Translation Initiation in Eukaryotes, Reinitiation., 2013,, 2267-2271.		0
31	Structural analysis of an eIF3 subcomplex reveals conserved interactions required for a stable and proper translation pre-initiation complex assembly. Nucleic Acids Research, 2012, 40, 2294-2311.	6.5	64
32	Nuclear LSm8 affects number of cytoplasmic processing bodies via controlling cellular distribution of Like-Sm proteins. Molecular Biology of the Cell, 2012, 23, 3776-3785.	0.9	14
33	The eIF3c/NIP1 PCI domain interacts with RNA and RACK1/ASC1 and promotes assembly of translation preinitiation complexes. Nucleic Acids Research, 2012, 40, 2683-2699.	6.5	62
34	â€~Ribozoomin' – Translation Initiation from the Perspective of the Ribosome-bound Eukaryotic Initiation Factors (eIFs). Current Protein and Peptide Science, 2012, 13, 305-330.	0.7	110
35	Functional Characterization of the Role of the N-terminal Domain of the c/Nip1 Subunit of Eukaryotic Initiation Factor 3 (eIF3) in AUG Recognition. Journal of Biological Chemistry, 2012, 287, 28420-28434.	1.6	33
36	Small Ribosomal Protein RPSO Stimulates Translation Initiation by Mediating 40S-Binding of eIF3 via Its Direct Contact with the eIF3a/TIF32 Subunit. PLoS ONE, 2012, 7, e40464.	1.1	31

#	Article	IF	Citations
37	Polysome Analysis and RNA Purification from Sucrose Gradients. Methods in Molecular Biology, 2011, 703, 293-309.	0.4	69
38	Translation Reinitiation Relies on the Interaction between eIF3a/TIF32 and Progressively Folded cis-Acting mRNA Elements Preceding Short uORFs. PLoS Genetics, 2011, 7, e1002137.	1.5	78
39	The C-Terminal Region of Eukaryotic Translation Initiation Factor 3a (eIF3a) Promotes mRNA Recruitment, Scanning, and, Together with eIF3j and the eIF3b RNA Recognition Motif, Selection of AUG Start Codons. Molecular and Cellular Biology, 2010, 30, 4415-4434.	1.1	86
40	Yeast 18 S rRNA Is Directly Involved in the Ribosomal Response to Stringent AUG Selection during Translation Initiation. Journal of Biological Chemistry, 2010, 285, 32200-32212.	1.6	22
41	The RNA Recognition Motif of Eukaryotic Translation Initiation Factor 3g (eIF3g) Is Required for Resumption of Scanning of Posttermination Ribosomes for Reinitiation on <i>GCN4</i> and Together with eIF3i Stimulates Linear Scanning. Molecular and Cellular Biology, 2010, 30, 4671-4686.	1.1	99
42	The Indispensable N-Terminal Half of eIF3j/HCR1 Cooperates with its Structurally Conserved Binding Partner eIF3b/PRT1-RRM and with eIF1A in Stringent AUG Selection. Journal of Molecular Biology, 2010, 396, 1097-1116.	2.0	77
43	Robust heat shock induces eIF2α-phosphorylation-independent assembly of stress granules containing eIF3 and 40S ribosomal subunits in budding yeast, <i>Saccharomyces cerevisiae</i> , Journal of Cell Science, 2009, 122, 2078-2088.	1.2	204
44	eIF3a cooperates with sequences 5′ of uORF1 to promote resumption of scanning by post-termination ribosomes for reinitiation on <i>GCN4</i> mRNA. Genes and Development, 2008, 22, 2414-2425.	2.7	125
45	In Vivo Deletion Analysis of the Architecture of a Multiprotein Complex of Translation Initiation Factors. Methods in Enzymology, 2007, 431, 15-32.	0.4	16
46	In Vivo Stabilization of Preinitiation Complexes by Formaldehyde Cross-Linking. Methods in Enzymology, 2007, 429, 163-183.	0.4	63
47	Eukaryotic Translation Initiation Factor 3 (eIF3) and eIF2 Can Promote mRNA Binding to 40S Subunits Independently of eIF4G in Yeast. Molecular and Cellular Biology, 2006, 26, 1355-1372.	1.1	111
48	Interaction of the RNP1 Motif in PRT1 with HCR1 Promotes 40S Binding of Eukaryotic Initiation Factor 3 in Yeast. Molecular and Cellular Biology, 2006, 26, 2984-2998.	1.1	58
49	Interactions of Eukaryotic Translation Initiation Factor 3 (eIF3) Subunit NIP1/c with eIF1 and eIF5 Promote Preinitiation Complex Assembly and Regulate Start Codon Selection. Molecular and Cellular Biology, 2004, 24, 9437-9455.	1.1	152
50	Functions of eIF3 downstream of 48S assembly impact AUG recognition and GCN4 translational control. EMBO Journal, 2004, 23, 1166-1177.	3.5	95
51	Study of Translational Control of Eukaryotic Gene Expression Using Yeast. Annals of the New York Academy of Sciences, 2004, 1038, 60-74.	1.8	24
52	The yeast eIF3 subunits TIF32/a, NIP1/c, and eIF5 make critical connections with the 40S ribosome in vivo. Genes and Development, 2003, 17, 786-799.	2.7	133
53	Direct elF2-elF3 contact in the multifactor complex is important for translation initiation in vivo. EMBO Journal, 2002, 21, 5886-5898.	3 . 5	119
54	A subcomplex of three eIF3 subunits binds eIF1 and eIF5 and stimulates ribosome binding of mRNA and tRNAiMet. EMBO Journal, 2001, 20, 2954-2965.	3.5	98

#	Article	IF	CITATIONS
55	Related eIF3 subunits TIF32 and HCR1 interact with an RNA recognition motif in PRT1 required for eIF3 integrity and ribosome binding. EMBO Journal, 2001, 20, 891-904.	3.5	94
56	Multiple roles for the C-terminal domain of eIF5 in translation initiation complex assembly and GTPase activation. EMBO Journal, 2001, 20, 2326-2337.	3.5	103
57	Saccharomyces cerevisiae Protein Pci8p and Human Protein elF3e/Int-6 Interact with the elF3 Core Complex by Binding to Cognate elF3b Subunits. Journal of Biological Chemistry, 2001, 276, 34948-34957.	1.6	36
58	Dual Function of eIF3j/Hcr1p in Processing 20 S Pre-rRNA and Translation Initiation. Journal of Biological Chemistry, 2001, 276, 43351-43360.	1.6	60
59	A Multifactor Complex of eIF1, eIF2, eIF3, eIF5, and tRNAiMet Promotes Initiation Complex Assembly and Couples GTP Hydrolysis to AUG Recognition. Cold Spring Harbor Symposia on Quantitative Biology, 2001, 66, 403-416.	2.0	39
60	The Saccharomyces cerevisiae HCR1 Gene Encoding a Homologue of the p35 Subunit of Human Translation Initiation Factor 3 (eIF3) Is a High Copy Suppressor of a Temperature-sensitive Mutation in the Rpg1p Subunit of Yeast eIF3. Journal of Biological Chemistry, 1999, 274, 27567-27572.	1.6	41
61	RPG1: an essential gene of Saccharomyces cerevisiae encoding a 110-kDa protein required for passage through the G 1 phase. Current Genetics, 1998, 33, 100-109.	0.8	29
62	Rpg1, the Saccharomyces cerevisiae Homologue of the Largest Subunit of Mammalian Translation Initiation Factor 3, Is Required for Translational Activity. Journal of Biological Chemistry, 1998, 273, 21253-21260.	1.6	41