Torsten Schäfneberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/149659/publications.pdf

Version: 2024-02-01

97 papers 5,766 citations

39 h-index 69 g-index

99 all docs 99 docs citations 99 times ranked 6797 citing authors

#	Article	IF	CITATIONS
1	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: G proteinâ€coupled receptors. British Journal of Pharmacology, 2019, 176, S21-S141.	5.4	519
2	International Union of Basic and Clinical Pharmacology. XCIV. Adhesion G Protein–Coupled Receptors. Pharmacological Reviews, 2015, 67, 338-367.	16.0	392
3	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: G proteinâ€coupled receptors. British Journal of Pharmacology, 2021, 178, S27-S156.	5.4	337
4	Mutant G-protein-coupled receptors as a cause of human diseases. , 2004, 104, 173-206.		281
5	FUNCTIONAL AND STRUCTURAL COMPLEXITY OF SIGNAL TRANSDUCTION VIA G-PROTEIN-COUPLED RECEPTORS. Annual Review of Neuroscience, 1997, 20, 399-427.	10.7	279
6	A Tethered Agonist within the Ectodomain Activates the Adhesion G Protein-Coupled Receptors GPR126 and GPR133. Cell Reports, 2014, 9, 2018-2026.	6.4	246
7	The Adhesion GPCR GPR126 Has Distinct, Domain-Dependent Functions in Schwann Cell Development Mediated by Interaction with Laminin-211. Neuron, 2015, 85, 755-769.	8.1	224
8	Gpr126 Functions in Schwann Cells to Control Differentiation and Myelination via G-Protein Activation. Journal of Neuroscience, 2013, 33, 17976-17985.	3.6	159
9	Update of P2Y receptor pharmacology: IUPHAR Review 27. British Journal of Pharmacology, 2020, 177, 2413-2433.	5.4	151
10	The GPS Motif Is a Molecular Switch for Bimodal Activities of Adhesion Class G Protein-Coupled Receptors. Cell Reports, 2012, 2, 321-331.	6.4	123
11	Generation and phenotype of mice harboring a nonsense mutation in the V2 vasopressin receptor gene. Journal of Clinical Investigation, 2000, 106, 1361-1371.	8.2	106
12	The constitutive activity of the adhesion GPCR GPR114/ADGRG5 is mediated by its tethered agonist. FASEB Journal, 2016, 30, 666-673.	0.5	105
13	Identification of the tethered peptide agonist of the adhesion G protein-coupled receptor GPR64/ADGRG2. Biochemical and Biophysical Research Communications, 2015, 464, 743-747.	2.1	101
14	Cell Adhesion Receptor GPR133 Couples to Gs Protein. Journal of Biological Chemistry, 2011, 286, 41912-41916.	3.4	94
15	Severe Congenital Hyperthyroidism Caused by a Germ-LineneoMutation in the Extracellular Portion of the Thyrotropin Receptor 1. Journal of Clinical Endocrinology and Metabolism, 1998, 83, 1431-1436.	3.6	92
16	Aminoglycoside-mediated rescue of a disease-causing nonsense mutation in the V2 vasopressin receptor gene in vitro and in vivo. Human Molecular Genetics, 2004, 13, 893-903.	2.9	91
17	Activation of Adhesion G Protein-coupled Receptors. Journal of Biological Chemistry, 2017, 292, 4383-4394.	3.4	87
18	Metabolites of lactic acid bacteria present in fermented foods are highly potent agonists of human hydroxycarboxylic acid receptor 3. PLoS Genetics, 2019, 15, e1008145.	3.5	85

#	Article	IF	CITATIONS
19	A conserved tyrosine residue (Y601) in transmembrane domain 5 of the human thyrotropin receptor serves as a molecular switch to determine Gâ€protein coupling. FASEB Journal, 1998, 12, 1461-1471.	0.5	81
20	Oriented Cell Division in the C. elegans Embryo Is Coordinated by G-Protein Signaling Dependent on the Adhesion GPCR LAT-1. PLoS Genetics, 2015, 11, e1005624.	3. 5	80
21	Calcium-sensing receptor-mediated NLRP3 inflammasome response to calciprotein particles drives inflammation in rheumatoid arthritis. Nature Communications, 2020, 11 , 4243.	12.8	79
22	V2 vasopressin receptor dysfunction in nephrogenic diabetes insipidus caused by different molecular mechanisms. Human Mutation, 1998, 12, 196-205.	2.5	78
23	Genetic Influences on Brain Gene Expression in Rats Selected for Tameness and Aggression. Genetics, 2014, 198, 1277-1290.	2.9	78
24	Maternal paraben exposure triggers childhood overweight development. Nature Communications, 2020, 11, 561.	12.8	77
25	Deletions in the Third Intracellular Loop of the Thyrotropin Receptor. Journal of Biological Chemistry, 1998, 273, 7900-7905.	3.4	68
26	Kiwi genome provides insights into evolution of a nocturnal lifestyle. Genome Biology, 2015, 16, 147.	8.8	68
27	Mutationally Induced Disulfide Bond Formation within the Third Extracellular Loop Causes Melanocortin 4 Receptor Inactivation in Patients with Obesity. Journal of Biological Chemistry, 2003, 278, 48666-48673.	3.4	67
28	The Activation Mechanism of Glycoprotein Hormone Receptors with Implications in the Cause and Therapy of Endocrine Diseases. Journal of Biological Chemistry, 2016, 291, 508-520.	3.4	63
29	Mutations in G Protein–Coupled Receptors: Mechanisms, Pathophysiology and Potential Therapeutic Approaches. Pharmacological Reviews, 2021, 73, 89-119.	16.0	60
30	Adhesion GPCRs in Regulating Immune Responses and Inflammation. Advances in Immunology, 2017, 136, 163-201.	2.2	59
31	Structure and allosteric regulation of eukaryotic 6-phosphofructokinases. Biological Chemistry, 2013, 394, 977-993.	2.5	58
32	Structural basis for the tethered peptide activation of adhesion GPCRs. Nature, 2022, 604, 763-770.	27.8	58
33	Aminoglycoside Pretreatment Partially Restores the Function of Truncated V2Vasopressin Receptors Found in Patients with Nephrogenic Diabetes Insipidus. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 5247-5257.	3.6	57
34	Characterization and functional study of a cluster of four highly conserved orphan adhesionâ€GPCR in mouse. Developmental Dynamics, 2012, 241, 1591-1602.	1.8	52
35	Learning from the past: evolution of GPCR functions. Trends in Pharmacological Sciences, 2007, 28, 117-121.	8.7	51
36	The G Protein-coupled Receptor P2Y14 Influences Insulin Release and Smooth Muscle Function in Mice. Journal of Biological Chemistry, 2014, 289, 23353-23366.	3.4	49

#	Article	IF	CITATIONS
37	Adhesion G Protein–Coupled Receptors: From In Vitro Pharmacology to In Vivo Mechanisms. Molecular Pharmacology, 2015, 88, 617-623.	2.3	48
38	Reduction in corpora lutea number in obese melanocortin-4-receptor-deficient mice. Reproductive Biology and Endocrinology, 2009, 7, 24.	3.3	46
39	Tethered Agonism: A Common Activation Mechanism of Adhesion GPCRs. Handbook of Experimental Pharmacology, 2016, 234, 111-125.	1.8	46
40	Involvement of the Adhesion GPCRs Latrophilins in the Regulation of Insulin Release. Cell Reports, 2019, 26, 1573-1584.e5.	6.4	46
41	Structural Requirements for Mutational Lutropin/Choriogonadotropin Receptor Activation. Journal of Biological Chemistry, 2002, 277, 47748-47755.	3.4	44
42	Progress in demystification of adhesion G protein-coupled receptors. Biological Chemistry, 2013, 394, 937-950.	2.5	41
43	Behavioral and molecular effects of prenatal continuous light exposure in the adult rat. Brain Research, 2016, 1650, 51-59.	2.2	40
44	Structural and functional evolution of the P2Y12-like receptor group. Purinergic Signalling, 2007, 3, 255-268.	2.2	37
45	Congenital Hypothyroidism Caused by Mutations in the Thyrotropin-Receptor Gene. New England Journal of Medicine, 1997, 336, 1390-1391.	27.0	35
46	P2Y Receptors in Immune Response and Inflammation. Advances in Immunology, 2017, 136, 85-121.	2.2	34
47	Identification of Determinants Required for Agonistic and Inverse Agonistic Ligand Properties at the ADP Receptor P2Y ₁₂ . Molecular Pharmacology, 2013, 83, 256-266.	2.3	33
48	Prostaglandin E2 glyceryl ester is an endogenous agonist of the nucleotide receptor P2Y6. Scientific Reports, 2017, 7, 2380.	3.3	29
49	The G protein-coupled receptor GPR34 – The past 20†years of a grownup. , 2018, 189, 71-88.		29
50	Revisiting the classification of adhesion GPCRs. Annals of the New York Academy of Sciences, 2019, 1456, 80-95.	3.8	27
51	Genetic basis of functional variability in adhesion G protein-coupled receptors. Scientific Reports, 2019, 9, 11036.	3.3	27
52	The repertoire of Adhesion G protein-coupled receptors in adipocytes and their functional relevance. International Journal of Obesity, 2020, 44, 2124-2136.	3.4	26
53	The Rise and Fall of the Chemoattractant Receptor GPR33. Journal of Biological Chemistry, 2005, 280, 31068-31075.	3.4	25
54	Functional Linkage of Adenine Nucleotide Binding Sites in Mammalian Muscle 6-Phosphofructokinase. Journal of Biological Chemistry, 2012, 287, 17546-17553.	3.4	25

#	Article	IF	CITATIONS
55	Evolutionary Conservation of 3-lodothyronamine as an Agonist at the Trace Amine-Associated Receptor 1. European Thyroid Journal, 2015, 4, 9-20.	2.4	23
56	Functional impact of intramolecular cleavage and dissociation of adhesion G protein–coupled receptor GPR133 (ADGRD1) on canonical signaling. Journal of Biological Chemistry, 2021, 296, 100798.	3.4	23
57	Crystal structure of human platelet phosphofructokinase-1 locked in an activated conformation. Biochemical Journal, 2015, 469, 421-432.	3.7	22
58	Orphan GPR116 mediates the insulin sensitizing effects of the hepatokine FNDC4 in adipose tissue. Nature Communications, 2021, 12, 2999.	12.8	22
59	Using ortholog sequence data to predict the functional relevance of mutations in Gâ€proteinâ€coupled receptors. FASEB Journal, 2012, 26, 3273-3281.	0.5	21
60	What are they waiting for?—Tethered agonism in G protein-coupled receptors. Pharmacological Research, 2016, 108, 9-15.	7.1	21
61	Dendritic Cells Regulate GPR34 through Mitogenic Signals and Undergo Apoptosis in Its Absence. Journal of Immunology, 2016, 196, 2504-2513.	0.8	20
62	In vivo identification of small molecules mediating Gpr126/Adgrg6 signaling during Schwann cell development. Annals of the New York Academy of Sciences, 2019, 1456, 44-63.	3.8	19
63	Tethered agonists: a new mechanism underlying adhesion G protein-coupled receptor activation. Journal of Receptor and Signal Transduction Research, 2015, 35, 220-223.	2.5	17
64	The Relevance of Genomic Signatures at Adhesion GPCR Loci in Humans. Handbook of Experimental Pharmacology, 2016, 234, 179-217.	1.8	15
65	The intramolecular agonist is obligate for activation of glycoprotein hormone receptors. FASEB Journal, 2020, 34, 11243-11256.	0.5	15
66	Natural biased signaling of hydroxycarboxylic acid receptor 3 and G protein-coupled receptor 84. Cell Communication and Signaling, 2020, 18, 31.	6.5	15
67	Ecological Specialization and Evolutionary Reticulation in Extant Hyaenidae. Molecular Biology and Evolution, 2021, 38, 3884-3897.	8.9	15
68	Altered hepatic lipid metabolism in mice lacking both the melanocortin type 4 receptor and low density lipoprotein receptor. PLoS ONE, 2017, 12, e0172000.	2.5	15
69	Developmental exposure to ethanol increases the neuronal vulnerability to oxygen–glucose deprivation in cerebellar granule cell cultures. Brain Research, 2015, 1614, 1-13.	2.2	14
70	Functional relevance of naturally occurring mutations in adhesion G protein-coupled receptor ADGRD1 (GPR133). BMC Genomics, 2016, 17, 609.	2.8	14
71	Reduced lipolysis in lipoma phenocopies lipid accumulation in obesity. International Journal of Obesity, 2021, 45, 565-576.	3.4	14
72	Functional characterization of novel loss-of-function mutations in the vasopressin type 2 receptor gene causing nephrogenic diabetes insipidus. Nephrology Dialysis Transplantation, 2012, 27, 1521-1528.	0.7	13

#	Article	IF	CITATIONS
73	Adaptation to nocturnality – learning from avian genomes. BioEssays, 2016, 38, 694-703.	2.5	13
74	Expression profiling of the adhesion G protein-coupled receptor GPR133 (ADGRD1) in glioma subtypes. Neuro-Oncology Advances, 2020, 2, vdaa053.	0.7	13
75	Involvement of the chemokine-like receptor GPR33 in innate immunity. Biochemical and Biophysical Research Communications, 2010, 396, 272-277.	2.1	11
76	Signatures of Natural Selection at the FTO (Fat Mass and Obesity Associated) Locus in Human Populations. PLoS ONE, 2015, 10, e0117093.	2.5	11
77	Effects of exposure to single and multiple parabens on asthma development in an experimental mouse model and a prospective cohort study. Science of the Total Environment, 2022, 814, 152676.	8.0	11
78	Genomic basis for skin phenotype and cold adaptation in the extinct Steller's sea cow. Science Advances, 2022, 8, eabl6496.	10.3	9
79	Latrophilins and Teneurins in Invertebrates: No Love for Each Other?. Frontiers in Neuroscience, 2019, 13, 154.	2.8	8
80	Phenotype-tissue expression and exploration (PTEE) resource facilitates the choice of tissue for RNA-seq-based clinical genetics studies. BMC Genomics, 2021, 22, 802.	2.8	8
81	Latrophilin-1 drives neuron morphogenesis and shapes chemo- and mechanosensation-dependent behavior in C.Âelegans via a trans function. Biochemical and Biophysical Research Communications, 2022, 589, 152-158.	2.1	8
82	Deciphering and modulating G protein signalling in C. elegans using the DREADD technology. Scientific Reports, 2016, 6, 28901.	3.3	7
83	Exploring G Protein-Coupled Receptor Signaling in Primary Pancreatic Islets. Biological Procedures Online, 2020, 22, 4.	2.9	7
84	The Evolutionary History of Vertebrate Adhesion GPCRs and Its Implication on Their Classification. International Journal of Molecular Sciences, 2021, 22, 11803.	4.1	7
85	Severe Atherosclerosis and Hypercholesterolemia in Mice Lacking Both the Melanocortin Type 4 Receptor and Low Density Lipoprotein Receptor. PLoS ONE, 2016, 11, e0167888.	2.5	6
86	Functional characterization of AVPR2 mutants found in Turkish patients with nephrogenic diabetes insipidus. Endocrine Connections, 2018, 7, 56-64.	1.9	6
87	The relevance of adhesion G protein-coupled receptors in metabolic functions. Biological Chemistry, 2022, 403, 195-209.	2.5	6
88	How to wake a giant. Oncotarget, 2015, 6, 23038-23039.	1.8	6
89	Crystallization and preliminary crystallographic analysis of human muscle phosphofructokinase, the main regulator of glycolysis. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 578-582.	0.8	5
90	Performance of a SARS CoV-2 antibody ELISA based on simultaneous measurement of antibodies against the viral nucleoprotein and receptor-binding domain. European Journal of Clinical Microbiology and Infectious Diseases, 2021, 40, 2645-2649.	2.9	5

#	Article	IF	CITATION
91	Adaptive Gene Regulation in the Striatum of RGS9-Deficient Mice. PLoS ONE, 2014, 9, e92605.	2.5	3
92	Mapping the Binding Sites of UDP and Prostaglandin E2 Glyceryl Ester in the Nucleotide Receptor P2Y ₆ . ChemMedChem, 2022, 17, .	3.2	3
93	NanoBRET in C. elegans illuminates functional receptor interactions in real time. BMC Molecular and Cell Biology, 2022, 23, 8.	2.0	2
94	Molecular basis and clinical features of nephrogenic diabetes insipidus. Expert Review of Endocrinology and Metabolism, 2006, 1, 727-741.	2.4	0
95	Copy number variations in "classical―obesity candidate genes are not frequently associated with severe early-onset obesity in children. Journal of Pediatric Endocrinology and Metabolism, 2017, 30, 507-515.	0.9	0
96	Open housing drives the expression of immune response genes in the nasal mucosa, but not the olfactory bulb. PLoS ONE, 2017, 12, e0187192.	2.5	0
97	Evaluating the feasibility of Cas9 overexpression in 3T3-L1 cells for generation of genetic knock-out adipocyte cell lines. Adipocyte, 2021, 10, 631-645.	2.8	0