
Robert Day

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1496372/publications.pdf Version: 2024-02-01

Ροβέρτ Πλυ

#	Article	IF	CITATIONS
1	Dissection of the Endogenous Cellular Pathways of PCSK9-induced Low Density Lipoprotein Receptor Degradation. Journal of Biological Chemistry, 2009, 284, 28856-28864.	3.4	228
2	Substrate Cleavage Analysis of Furin and Related Proprotein Convertases. Journal of Biological Chemistry, 2008, 283, 20897-20906.	3.4	126
3	Proteolytic Processing of Angiopoietin-like Protein 4 by Proprotein Convertases Modulates Its Inhibitory Effects on Lipoprotein Lipase Activity. Journal of Biological Chemistry, 2011, 286, 15747-15756.	3.4	116
4	Cutting back on pro-protein convertases: the latest approaches to pharmacological inhibition. Trends in Pharmacological Sciences, 2005, 26, 294-301.	8.7	115
5	Potent Inhibitors of Furin and Furin-like Proprotein Convertases Containing Decarboxylated P1 Arginine Mimetics. Journal of Medicinal Chemistry, 2010, 53, 1067-1075.	6.4	111
6	Highly Potent Inhibitors of Proprotein Convertase Furin as Potential Drugs for Treatment of Infectious Diseases. Journal of Biological Chemistry, 2012, 287, 21992-22003.	3.4	98
7	Targeting Host Cell Furin Proprotein Convertases as a Therapeutic Strategy against Bacterial Toxins and Viral Pathogens*. Journal of Biological Chemistry, 2007, 282, 20847-20853.	3.4	93
8	Inhibitory Potency and Specificity of Subtilase-like Pro-protein Convertase (SPC) Prodomains. Journal of Biological Chemistry, 2002, 277, 7648-7656.	3.4	83
9	Furin Processing and Proteolytic Activation of Semliki Forest Virus. Journal of Virology, 2003, 77, 2981-2989.	3.4	82
10	Therapeutic uses of furin and its inhibitors: a patent review. Expert Opinion on Therapeutic Patents, 2015, 25, 379-396.	5.0	70
11	IDA-1, aCaenorhabditis elegans homolog of the diabetic autoantigens IA-2 and phogrin, is expressed in peptidergic neurons in the worm. Journal of Comparative Neurology, 2001, 429, 127-143.	1.6	69
12	Molecular Validation of PACE4 as a Target in Prostate Cancer. Translational Oncology, 2011, 4, 157-IN9.	3.7	67
13	Analysis of peptides in prohormone convertase 1/3 null mouse brain using quantitative peptidomics. Journal of Neurochemistry, 2010, 114, 215-225.	3.9	66
14	Inhibition of Furin/Proprotein Convertase-catalyzed Surface and Intracellular Processing by Small Molecules. Journal of Biological Chemistry, 2009, 284, 15729-15738.	3.4	65
15	Secretory granule biogenesis and chromogranin A: master gene, on/off switch or assembly factor?. Trends in Endocrinology and Metabolism, 2003, 14, 10-13.	7.1	64
16	The M2 Module of the Cys-His-rich Domain (CHRD) of PCSK9 Protein Is Needed for the Extracellular Low-density Lipoprotein Receptor (LDLR) Degradation Pathway. Journal of Biological Chemistry, 2012, 287, 43492-43501.	3.4	62
17	MALDI imaging mass spectrometry in ovarian cancer for tracking, identifying, and validating biomarkers. Medical Science Monitor, 2010, 16, BR233-45.	1.1	60
18	Short Polybasic Peptide Sequences Are Potent Inhibitors of PC5/6 and PC7: Use of Positional Scanning-Synthetic Peptide Combinatorial Libraries as a Tool for the Optimization of Inhibitory Sequences. Molecular Pharmacology, 2007, 71, 323-332.	2.3	59

ROBERT DAY

#	Article	IF	CITATIONS
19	The distinct gene expression of the pro-hormone convertases in the rat heart suggests potential substrates. Cell and Tissue Research, 1995, 279, 539-549.	2.9	58
20	PACE4 Undergoes an Oncogenic Alternative Splicing Switch in Cancer. Cancer Research, 2017, 77, 6863-6879.	0.9	58
21	On the cutting edge of proprotein convertase pharmacology: from molecular concepts to clinical applications. Biomolecular Concepts, 2011, 2, 421-438.	2.2	57
22	Ovarian cancer molecular pathology. Cancer and Metastasis Reviews, 2012, 31, 713-732.	5.9	57
23	Role of Proprotein Convertases in Prostate Cancer Progression. Neoplasia, 2012, 14, 1032-IN6.	5.3	52
24	The Multi-Leu Peptide Inhibitor Discriminates Between PACE4 and Furin And Exhibits Antiproliferative Effects On Prostate Cancer Cells. Journal of Medicinal Chemistry, 2012, 55, 10501-10511.	6.4	49
25	Annexin A2 Reduces PCSK9 Protein Levels via a Translational Mechanism and Interacts with the M1 and M2 Domains of PCSK9. Journal of Biological Chemistry, 2014, 289, 17732-17746.	3.4	40
26	Selective and potent furin inhibitors protect cells from anthrax without significant toxicity. International Journal of Biochemistry and Cell Biology, 2010, 42, 987-995.	2.8	36
27	Ser-Phosphorylation of PCSK9 (Proprotein Convertase Subtilisin-Kexin 9) by Fam20C (Family With) Tj ETQq1 1	0.784314 2.4	rgBT /Overloc 36
28	PACE4 inhibitors and their peptidomimetic analogs block prostate cancer tumor progression through quiescence induction, increased apoptosis and impaired neovascularisation. Oncotarget, 2015, 6, 3680-3693.	1.8	35
29	Disruption of Proprotein Convertase 1/3 (PC1/3) Expression in Mice Causes Innate Immune Defects and Uncontrolled Cytokine Secretion. Journal of Biological Chemistry, 2012, 287, 14703-14717.	3.4	32
30	Asbestos-Induced Fibrosis in Rats: Increase in Lung Mast Cells and Autacoid Contents. Experimental Lung Research, 1987, 13, 311-327.	1.2	31
31	Design, Synthesis, and Structure–Activity Relationship Studies of a Potent PACE4 Inhibitor. Journal of Medicinal Chemistry, 2014, 57, 98-109.	6.4	30
32	Implications of Proprotein Convertases in Ovarian Cancer Cell Proliferation and Tumor Progression: Insights for PACE4 as a Therapeutic Target. Translational Oncology, 2014, 7, 410-419.	3.7	30
33	The C-terminal fragment of the immunoproteasome PA28S (Reg alpha) as an early diagnosis and tumor-relapse biomarker: evidence from mass spectrometry profiling. Histochemistry and Cell Biology, 2012, 138, 141-154.	1.7	29
34	Inhibitors of the Subtilase-Like Pro-Protein Convertases (SPCs). Current Pharmaceutical Design, 2002, 8, 549-562.	1.9	27
35	Dynorphin in bovine adrenal medulla. International Journal of Peptide and Protein Research, 1982, 19, 10-17.	0.1	25
36	Dynorphin in bovine adrenal medulla. International Journal of Peptide and Protein Research, 1982, 19, 18-24.	0.1	24

ROBERT DAY

#	Article	IF	CITATIONS
37	Optimization of Furin Inhibitors To Protect against the Activation of Influenza Hemagglutinin H5 and Shiga Toxin. Journal of Medicinal Chemistry, 2014, 57, 29-41.	6.4	24
38	Protease inhibitors suppress in vitro growth of human small cell lung cancer. Peptides, 1993, 14, 1021-1028.	2.4	21
39	Comparative Characterization of Two Forms of Recombinant Human SPC1 Secreted from Schneider 2 Cells. Protein Expression and Purification, 2000, 19, 113-124.	1.3	20
40	The neuroendocrine phenotype, cellular plasticity, and the search for genetic switches: redefining the diffuse neuroendocrine system. Neuroendocrinology Letters, 2002, 23, 447-51.	0.2	20
41	Proteomic analyses of serous and endometrioid epithelial ovarian cancers – Cases studies – Molecular insights of a possible histological etiology of serous ovarian cancer. Proteomics - Clinical Applications, 2013, 7, 337-354.	1.6	18
42	Chymase inhibitor-sensitive synthesis of endothelin-1 (1–31) by recombinant mouse mast cell protease 4 and human chymase. Biochemical Pharmacology, 2015, 94, 91-100.	4.4	18
43	PACE4-Based Molecular Targeting of Prostate Cancer Using an Engineered 64Cu-Radiolabeled Peptide Inhibitor. Neoplasia, 2014, 16, 634-643.	5.3	14
44	An Unbiased Mass Spectrometry Approach Identifies Glypican-3 as an Interactor of Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) and Low Density Lipoprotein Receptor (LDLR) in Hepatocellular Carcinoma Cells. Journal of Biological Chemistry, 2016, 291, 24676-24687.	3.4	14
45	PACE4 is an important driver of ZR-75-1 estrogen receptor-positive breast cancer proliferation and tumor progression. European Journal of Cell Biology, 2017, 96, 469-475.	3.6	14
46	Novel Insights into Structure–Activity Relationships of Nâ€īrerminally Modified PACE4 Inhibitors. ChemMedChem, 2016, 11, 289-301.	3.2	12
47	Mouse Mast Cell Protease 4 Deletion Protects Heart Function and Survival After Permanent Myocardial Infarction. Frontiers in Pharmacology, 2018, 9, 868.	3.5	12
48	V-ATPase-associated prorenin receptor is upregulated in prostate cancer after PTEN loss. Oncotarget, 2019, 10, 4923-4936.	1.8	12
49	Enhanced anti-tumor activity of the Multi-Leu peptide PACE4 inhibitor transformed into an albumin-bound tumor-targeting prodrug. Scientific Reports, 2019, 9, 2118.	3.3	11
50	Thrombin activation of protein C requires prior processing by a liver proprotein convertase. Journal of Biological Chemistry, 2017, 292, 10564-10573.	3.4	10
51	Positional Scanning Identifies the Molecular Determinants of a High Affinity Multi-Leucine Inhibitor for Furin and PACE4. Journal of Medicinal Chemistry, 2017, 60, 2732-2744.	6.4	9
52	Rational Design of a Highly Potent and Selective Peptide Inhibitor of PACE4 by Salt Bridge Interaction with D160 at Position P3. ChemMedChem, 2017, 12, 1169-1172.	3.2	9
53	Evaluation of PACE4 isoforms as biomarkers in thyroid cancer. Journal of Otolaryngology - Head and Neck Surgery, 2018, 47, 63.	1.9	9
54	Functional analysis of natural <scp>PCSK</scp> 9 mutants in modern and archaic humans. FEBS Journal, 2020, 287, 515-528.	4.7	8

ROBERT DAY

#	Article	IF	CITATIONS
55	Macrocyclization of a potent PACE4 inhibitor: Benefits and limitations. European Journal of Cell Biology, 2017, 96, 476-485.	3.6	7
56	Design and Structure–Activity Relationship of a Potent Furin Inhibitor Derived from Influenza Hemagglutinin. ACS Medicinal Chemistry Letters, 2021, 12, 365-372.	2.8	7
57	Improving the Selectivity of PACE4 Inhibitors through Modifications of the P1 Residue. Journal of Medicinal Chemistry, 2018, 61, 11250-11260.	6.4	6
58	Knockdown Strategies for the Study of Proprotein Convertases and Proliferation in Prostate Cancer Cells. Methods in Molecular Biology, 2014, 1103, 67-82.	0.9	6
59	Multi-Leu PACE4 Inhibitor Retention within Cells Is PACE4 Dependent and a Prerequisite for Antiproliferative Activity. BioMed Research International, 2015, 2015, 1-9.	1.9	5
60	Increasing C-Terminal Hydrophobicity Improves the Cell Permeability and Antiproliferative Activity of PACE4 Inhibitors against Prostate Cancer Cell Lines. Journal of Medicinal Chemistry, 2018, 61, 8457-8467.	6.4	4
61	PACE4-altCT isoform of proprotein convertase PACE4 as tissue and plasmatic biomarker for prostate cancer. Scientific Reports, 2022, 12, 6066.	3.3	4
62	Upregulation of PACE4 in prostate cancer is not dependent on E2F transcription factors. Canadian Journal of Physiology and Pharmacology, 2020, 98, 477-481.	1.4	3
63	Mast Cell Degranulation Increases Mouse Mast Cell Protease 4–Dependent Vasopressor Responses to Big Endothelin-1 But Not Angiotensin I. Journal of Pharmacology and Experimental Therapeutics, 2021, 376, 213-221.	2.5	3