Antonio Ceriello

List of Publications by Citations

Source: https://exaly.com/author-pdf/1495973/antonio-ceriello-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

109 119 11,925 47 h-index g-index citations papers 6.91 7.6 14,210 132 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
119	Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans: role of oxidative stress. <i>Circulation</i> , 2002 , 106, 2067-72	16.7	1425
118	2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. <i>European Heart Journal</i> , 2020 , 41, 255-323	9.5	1360
117	Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited. <i>Arteriosclerosis, Thrombosis, and Vascular Biology</i> , 2004 , 24, 816-23	9.4	990
116	Oscillating glucose is more deleterious to endothelial function and oxidative stress than mean glucose in normal and type 2 diabetic patients. <i>Diabetes</i> , 2008 , 57, 1349-54	0.9	762
115	New insights on oxidative stress and diabetic complications may lead to a "causal" antioxidant therapy. <i>Diabetes Care</i> , 2003 , 26, 1589-96	14.6	566
114	DPP-4 inhibitors: pharmacological differences and their clinical implications. <i>Expert Opinion on Drug Safety</i> , 2014 , 13 Suppl 1, S57-68	4.1	562
113	Evidence for an independent and cumulative effect of postprandial hypertriglyceridemia and hyperglycemia on endothelial dysfunction and oxidative stress generation: effects of short- and long-term simvastatin treatment. <i>Circulation</i> , 2002 , 106, 1211-8	16.7	545
112	Clinical review 2: The "metabolic memory": is more than just tight glucose control necessary to prevent diabetic complications?. <i>Journal of Clinical Endocrinology and Metabolism</i> , 2009 , 94, 410-5	5.6	293
111	Postprandial glucose regulation and diabetic complications. <i>Archives of Internal Medicine</i> , 2004 , 164, 2090-5		251
110	Effect of atorvastatin and irbesartan, alone and in combination, on postprandial endothelial dysfunction, oxidative stress, and inflammation in type 2 diabetic patients. <i>Circulation</i> , 2005 , 111, 2518	- 2 46.7	243
109	Acute hyperglycemia induces nitrotyrosine formation and apoptosis in perfused heart from rat. <i>Diabetes</i> , 2002 , 51, 1076-82	0.9	237
108	Role of hyperglycemia in nitrotyrosine postprandial generation. <i>Diabetes Care</i> , 2002 , 25, 1439-43	14.6	210
107	Glycaemic variability in diabetes: clinical and therapeutic implications. <i>Lancet Diabetes and Endocrinology,the</i> , 2019 , 7, 221-230	18.1	201
106	Oxidative stress and diabetes-associated complications. <i>Endocrine Practice</i> , 2006 , 12 Suppl 1, 60-2	3.2	162
105	Hyperglycemia-induced thrombin formation in diabetes. The possible role of oxidative stress. <i>Diabetes</i> , 1995 , 44, 924-8	0.9	148
104	Possible role of oxidative stress in the pathogenesis of hypertension. <i>Diabetes Care</i> , 2008 , 31 Suppl 2, S181-4	14.6	143
103	The emerging role of post-prandial hyperglycaemic spikes in the pathogenesis of diabetic complications. <i>Diabetic Medicine</i> , 1998 , 15, 188-93	3.5	137

(2013-2019)

102	Diabetes as a cardiovascular risk factor: An overview of global trends of macro and micro vascular complications. <i>European Journal of Preventive Cardiology</i> , 2019 , 26, 25-32	3.9	133	
101	Glucagon-like peptide 1 reduces endothelial dysfunction, inflammation, and oxidative stress induced by both hyperglycemia and hypoglycemia in type 1 diabetes. <i>Diabetes Care</i> , 2013 , 36, 2346-50	14.6	122	
100	Inflammageing and metaflammation: The yin and yang of type 2 diabetes. <i>Ageing Research Reviews</i> , 2018 , 41, 1-17	12	117	
99	The "Metabolic Memory" Theory and the Early Treatment of Hyperglycemia in Prevention of Diabetic Complications. <i>Nutrients</i> , 2017 , 9,	6.7	116	
98	Antioxidant anti-inflammatory treatment in type 2 diabetes. <i>Diabetes Care</i> , 2009 , 32 Suppl 2, S232-6	14.6	114	
97	Postprandial hyperglycaemia and cardiovascular complications of diabetes: an update. <i>Nutrition, Metabolism and Cardiovascular Diseases</i> , 2006 , 16, 453-6	4.5	109	
96	Evidence that hyperglycemia after recovery from hypoglycemia worsens endothelial function and increases oxidative stress and inflammation in healthy control subjects and subjects with type 1 diabetes. <i>Diabetes</i> , 2012 , 61, 2993-7	0.9	108	
95	The emerging challenge in diabetes: the "metabolic memory". Vascular Pharmacology, 2012 , 57, 133-8	5.9	106	
94	The possible protective role of glucagon-like peptide 1 on endothelium during the meal and evidence for an "endothelial resistance" to glucagon-like peptide 1 in diabetes. <i>Diabetes Care</i> , 2011 , 34, 697-702	14.6	102	
93	Acute hyperglycaemia: a ThewTrisk factor during myocardial infarction. <i>European Heart Journal</i> , 2005 , 26, 328-31	9.5	101	
92	Impaired glucose tolerance and cardiovascular disease: the possible role of post-prandial hyperglycemia. <i>American Heart Journal</i> , 2004 , 147, 803-7	4.9	91	
91	Dietary Glycemic Index and Load and the Risk of Type 2 Diabetes: A Systematic Review and Updated Meta-Analyses of Prospective Cohort Studies. <i>Nutrients</i> , 2019 , 11,	6.7	87	
90	Simultaneous control of hyperglycemia and oxidative stress normalizes endothelial function in type 1 diabetes. <i>Diabetes Care</i> , 2007 , 30, 649-54	14.6	84	
89	Guideline for management of postmeal glucose. <i>Nutrition, Metabolism and Cardiovascular Diseases</i> , 2008 , 18, S17-33	4.5	83	
88	Thiazolidinediones as anti-inflammatory and anti-atherogenic agents. <i>Diabetes/Metabolism Research and Reviews</i> , 2008 , 24, 14-26	7.5	77	
87	Glucose "peak" and glucose "spike": Impact on endothelial function and oxidative stress. <i>Diabetes Research and Clinical Practice</i> , 2008 , 82, 262-7	7.4	71	
86	Short-term sustained hyperglycaemia fosters an archetypal senescence-associated secretory phenotype in endothelial cells and macrophages. <i>Redox Biology</i> , 2018 , 15, 170-181	11.3	69	
85	Type 1 diabetes and cardiovascular disease. <i>Cardiovascular Diabetology</i> , 2013 , 12, 156	8.7	69	

84	Comparison Review of Short-Acting and Long-Acting Glucagon-like Peptide-1 Receptor Agonists. <i>Diabetes Therapy</i> , 2015 , 6, 239-56	3.6	64	
83	Small extracellular vesicles deliver miR-21 and miR-217 as pro-senescence effectors to endothelial cells. <i>Journal of Extracellular Vesicles</i> , 2020 , 9, 1725285	16.4	63	
82	COVID-19 and diabetes management: What should be considered?. <i>Diabetes Research and Clinical Practice</i> , 2020 , 163, 108151	7.4	63	
81	Increases in circulating levels of ketone bodies and cardiovascular protection with SGLT2 inhibitors: Is low-grade inflammation the neglected component?. <i>Diabetes, Obesity and Metabolism</i> , 2018 , 20, 2515	5-2 <u>5</u> 22	62	
80	Cardiovascular effects of acute hyperglycaemia: pathophysiological underpinnings. <i>Diabetes and Vascular Disease Research</i> , 2008 , 5, 260-8	3.3	59	
79	Effects of pramlintide on postprandial glucose excursions and measures of oxidative stress in patients with type 1 diabetes. <i>Diabetes Care</i> , 2005 , 28, 632-7	14.6	58	
78	COVID-19 infection in Italian people with diabetes: Lessons learned for our future (an experience to be used). <i>Diabetes Research and Clinical Practice</i> , 2020 , 162, 108137	7.4	55	
77	Pleiotropic effects of metformin: Shaping the microbiome to manage type 2 diabetes and postpone ageing. <i>Ageing Research Reviews</i> , 2018 , 48, 87-98	12	54	
76	Controlling oxidative stress as a novel molecular approach to protecting the vascular wall in diabetes. <i>Current Opinion in Lipidology</i> , 2006 , 17, 510-8	4.4	52	
75	Exosome-based immunomodulation during aging: A nano-perspective on inflamm-aging. <i>Mechanisms of Ageing and Development</i> , 2017 , 168, 44-53	5.6	51	
74	Long-term glycemic control influences the long-lasting effect of hyperglycemia on endothelial function in type 1 diabetes. <i>Journal of Clinical Endocrinology and Metabolism</i> , 2009 , 94, 2751-6	5.6	50	
73	Issues of Cardiovascular Risk Management in People With Diabetes in the COVID-19 Era. <i>Diabetes Care</i> , 2020 , 43, 1427-1432	14.6	47	
72	Glucose-sensing microRNA-21 disrupts ROS homeostasis and impairs antioxidant responses in cellular glucose variability. <i>Cardiovascular Diabetology</i> , 2018 , 17, 105	8.7	47	
71	Why is hyperglycaemia worsening COVID-19 and its prognosis?. <i>Diabetes, Obesity and Metabolism</i> , 2020 , 22, 1951-1952	6.7	46	
70	Oscillating glucose induces microRNA-185 and impairs an efficient antioxidant response in human endothelial cells. <i>Cardiovascular Diabetology</i> , 2016 , 15, 71	8.7	46	
69	Oxidative stress evaluation in diabetes. <i>Diabetes Technology and Therapeutics</i> , 2000 , 2, 589-600	8.1	46	
68	The protective effect of the Mediterranean diet on endothelial resistance to GLP-1 in type 2 diabetes: a preliminary report. <i>Cardiovascular Diabetology</i> , 2014 , 13, 140	8.7	43	
67	The link between diabetes and atherosclerosis. European Journal of Preventive Cardiology, 2019, 26, 15-	24 9	43	

(2021-2019)

66	Type 2 Diabetes: How Much of an Autoimmune Disease?. Frontiers in Endocrinology, 2019, 10, 451	5.7	42
65	The dipeptidyl peptidase-4 (DPP-4) inhibitor teneligliptin functions as antioxidant on human endothelial cells exposed to chronic hyperglycemia and metabolic high-glucose memory. <i>Endocrine</i> , 2017 , 56, 509-520	4	41
64	Telmisartan shows an equivalent effect of vitamin C in further improving endothelial dysfunction after glycemia normalization in type 1 diabetes. <i>Diabetes Care</i> , 2007 , 30, 1694-8	14.6	40
63	Glucose-lowering therapies in patients with type 2 diabetes and cardiovascular diseases. <i>European Journal of Preventive Cardiology</i> , 2019 , 26, 73-80	3.9	39
62	Hyperglycemia may determine fibrinopeptide A plasma level increase in humans. <i>Metabolism: Clinical and Experimental</i> , 1989 , 38, 1162-3	12.7	37
61	Updates on cardiovascular outcome trials in diabetes. <i>Cardiovascular Diabetology</i> , 2017 , 16, 128	8.7	36
60	Short-term high glucose exposure impairs insulin signaling in endothelial cells. <i>Cardiovascular Diabetology</i> , 2015 , 14, 114	8.7	32
59	Lowering glucose to prevent adverse cardiovascular outcomes in a critical care setting. <i>Journal of the American College of Cardiology</i> , 2009 , 53, S9-13	15.1	32
58	Fibrinogen Plasma Levels as a Marker of Thrombin Activation: New Insights on the Role of Fibrinogen as a Cardiovascular Risk Factor. <i>Thrombosis and Haemostasis</i> , 1994 , 71, 593-595	7	28
57	Prevalence of residual inflammatory risk and associated clinical variables in patients with type 2 diabetes. <i>Diabetes, Obesity and Metabolism</i> , 2020 , 22, 1696-1700	6.7	25
56	Extracellular vesicles circulating in young organisms promote healthy longevity. <i>Journal of Extracellular Vesicles</i> , 2019 , 8, 1656044	16.4	25
55	Administration of a new diabetes-specific enteral formula results in an improved 24h glucose profile in type 2 diabetic patients. <i>Diabetes Research and Clinical Practice</i> , 2009 , 84, 259-66	7.4	24
54	Glucose Variability and Diabetic Complications: Is It Time to Treat?. <i>Diabetes Care</i> , 2020 , 43, 1169-1171	14.6	23
53	Issues for the management of people with diabetes and COVID-19 in ICU. <i>Cardiovascular Diabetology</i> , 2020 , 19, 114	8.7	23
52	Incremental role of glycaemic variability over HbA1c in identifying type 2 diabetic patients with high platelet reactivity undergoing percutaneous coronary intervention. <i>Cardiovascular Diabetology</i> , 2019 , 18, 147	8.7	23
51	Extracellular vesicle-shuttled miRNAs: a critical appraisal of their potential as nano-diagnostics and nano-therapeutics in type 2 diabetes mellitus and its cardiovascular complications. <i>Theranostics</i> , 2021 , 11, 1031-1045	12.1	20
50	Legacy effect of intensive glucose control on major adverse cardiovascular outcome: Systematic review and meta-analyses of trials according to different scenarios. <i>Metabolism: Clinical and Experimental</i> , 2020 , 110, 154308	12.7	19
49	CD31 Extracellular Vesicles From Patients With Type 2 Diabetes Shuttle a miRNA Signature Associated With Cardiovascular Complications. <i>Diabetes</i> , 2021 , 70, 240-254	0.9	19

48	Perspectives on cardiovascular effects of incretin-based drugs: From bedside to bench, return trip. <i>International Journal of Cardiology</i> , 2017 , 241, 302-310	3.2	18
47	COVID-19, ketoacidosis and new-onset diabetes: Are there possible cause and effect relationships among them?. <i>Diabetes, Obesity and Metabolism</i> , 2020 , 22, 2507-2508	6.7	18
46	The Unique Pharmacological and Pharmacokinetic Profile of Teneligliptin: Implications for Clinical Practice. <i>Drugs</i> , 2019 , 79, 733-750	12.1	16
45	Use of oral antidiabetic drugs in the treatment of maturity-onset diabetes of the young: A mini review. <i>Diabetes/Metabolism Research and Reviews</i> , 2018 , 34, e2940	7.5	16
44	Pramlintide reduced markers of oxidative stress in the postprandial period in patients with type 2 diabetes. <i>Diabetes/Metabolism Research and Reviews</i> , 2008 , 24, 103-8	7.5	16
43	Effects of macronutrient excess and composition on oxidative stress: relevance to diabetes and cardiovascular disease. <i>Current Atherosclerosis Reports</i> , 2006 , 8, 472-6	6	15
42	Premeal insulin lispro plus bedtime NPH or twice-daily NPH in patients with type 2 diabetes: acute postprandial and chronic effects on glycemic control and cardiovascular risk factors. <i>Journal of Diabetes and Its Complications</i> , 2007 , 21, 20-7	3.2	12
41	Empagliflozin reduced long-term HbA1c variability and cardiovascular death: insights from the EMPA-REG OUTCOME trial. <i>Cardiovascular Diabetology</i> , 2020 , 19, 176	8.7	11
40	GLP-1 reduces metalloproteinase-9 induced by both hyperglycemia and hypoglycemia in type 1 diabetes. The possible role of oxidative stress. <i>Therapeutics and Clinical Risk Management</i> , 2015 , 11, 901	-3 .9	10
39	Personalized therapy algorithms for type 2 diabetes: a phenotype-based approach. <i>Pharmacogenomics and Personalized Medicine</i> , 2014 , 7, 129-36	2.1	10
38	PROactive Study: (r)evolution in the therapy of diabetes?. <i>Diabetic Medicine</i> , 2005 , 22, 1463-4	3.5	10
37	Teneligliptin enhances the beneficial effects of GLP-1 in endothelial cells exposed to hyperglycemic conditions. <i>Oncotarget</i> , 2018 , 9, 8898-8910	3.3	10
36	Hydroxychloroquine, COVID-19 and diabetes. Why it is a different story. <i>Diabetes/Metabolism Research and Reviews</i> , 2021 , 37, e3379	7.5	10
35	The emerging role of post-prandial hyperglycaemic spikes in the pathogenesis of diabetic complications 1998 , 15, 188		10
34	The pivotal role of high glucose-induced overexpression of PKClin the appearance of glucagon-like peptide-1 resistance in endothelial cells. <i>Endocrine</i> , 2016 , 54, 396-410	4	9
33	Glycaemic index: did Health Canada get it wrong? Position from the International Carbohydrate Quality Consortium (ICQC). <i>British Journal of Nutrition</i> , 2014 , 111, 380-2	3.6	9
32	Effects of gliclazide beyond metabolic control. <i>Metabolism: Clinical and Experimental</i> , 2006 , 55, S10-5	12.7	9
31	Glycaemic management in diabetes: old and new approaches. <i>Lancet Diabetes and Endocrinology,the</i> , 2021 ,	18.1	9

30	Two drugs are better than one to start T2DM therapy. Nature Reviews Endocrinology, 2020, 16, 15-16	15.2	9
29	Elevated HbA1c levels in pre-Covid-19 infection increases the risk of mortality: A sistematic review and meta-analysis. <i>Diabetes/Metabolism Research and Reviews</i> , 2021 , e3476	7.5	9
28	Diabetes and kidney disease: emphasis on treatment with SGLT-2 inhibitors and GLP-1 receptor agonists. <i>Metabolism: Clinical and Experimental</i> , 2021 , 120, 154799	12.7	9
27	Lipodistrophy and Associated Risk Factors in Insulin-Treated People With Diabetes. <i>International Journal of Endocrinology and Metabolism</i> , 2016 , 14, e33997	1.8	8
26	From glucose lowering agents to disease/diabetes modifying drugs: a "SIMPLE" approach for the treatment of type 2 diabetes. <i>Cardiovascular Diabetology</i> , 2021 , 20, 92	8.7	8
25	The simultaneous control of hyperglycemia and GLP-1 infusion normalize endothelial function in type 1 diabetes. <i>Diabetes Research and Clinical Practice</i> , 2016 , 114, 64-8	7.4	7
24	Heart failure in type 2 diabetes: current perspectives on screening, diagnosis and management. <i>Cardiovascular Diabetology</i> , 2021 , 20, 218	8.7	7
23	Pharmacological management of COVID-19 in type 2 diabetes. <i>Journal of Diabetes and Its Complications</i> , 2021 , 35, 107927	3.2	7
22	Targets for blood glucose: What have the trials told us. <i>European Journal of Preventive Cardiology</i> , 2019 , 26, 64-72	3.9	6
21	The Need for Diabetes Care Customization in the ICU at the Time of SARS-CoV-2 Outbreak. <i>Diabetes Therapy</i> , 2020 , 11, 1-3	3.6	5
20	DPP-4 Inhibitors Have Different Effects on Endothelial Low-Grade Inflammation and on the M1-M2 Macrophage Polarization Under Hyperglycemic Conditions. <i>Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy</i> , 2021 , 14, 1519-1531	3.4	5
19	Variability of risk factors and diabetes complications. <i>Cardiovascular Diabetology</i> , 2021 , 20, 101	8.7	5
18	Algorithms for personalized therapy of type 2 diabetes: results of a web-based international survey. <i>BMJ Open Diabetes Research and Care</i> , 2015 , 3, e000109	4.5	4
17	Diabetes, D-dimer and COVID-19: The possible role of glucose control. <i>Diabetes and Metabolic Syndrome: Clinical Research and Reviews</i> , 2020 , 14, 1987	8.9	4
16	Tackling the pillars of ageing to fight COVID-19. The Lancet Healthy Longevity, 2021, 2, e191	9.5	4
15	Variability in body weight and the risk of cardiovascular complications in type 2 diabetes: results from the Swedish National Diabetes Register. <i>Cardiovascular Diabetology</i> , 2021 , 20, 173	8.7	4
14	Dietary Glycaemic Index Labelling: A Global Perspective. <i>Nutrients</i> , 2021 , 13,	6.7	4
13	Effect of Hyperglycemia on COVID-19 Outcomes: Vaccination Efficacy, Disease Severity, and Molecular Mechanisms <i>Journal of Clinical Medicine</i> , 2022 , 11,	5.1	4

12	Glycaemic control is associated with SARS-CoV-2 breakthrough infections in vaccinated patients with type 2 diabetes <i>Nature Communications</i> , 2022 , 13, 2318	17.4	4
11	Oxidative Stress in the Pathogenesis/Treatment of Diabetes and its Complications. <i>Current Nutrition and Food Science</i> , 2007 , 3, 194-199	0.7	3
10	Death by SARS-CoV 2 - a Romanian COVID-19 multi-centre comorbidity study		3
9	Positioning newer drugs in the management of type 2 diabetes. <i>Lancet Diabetes and Endocrinology,the</i> , 2021 , 9, 138-139	18.1	3
8	Does postprandial blood glucose matter and why?. <i>Endocrinologia Y Nutricion: Organo De La Sociedad Espanola De Endocrinologia Y Nutricion</i> , 2009 , 56 Suppl 4, 8-11		3
7	Influence of labile glucose adducts on glycosylated protein assay by aminophenylboronic acid affinity chromatography: in vivo studies. <i>Acta Diabetologica Latina</i> , 1985 , 22, 81-2		2
6	Anti-inflammatory effect of SGLT-2 inhibitors via uric acid and insulin <i>Cellular and Molecular Life Sciences</i> , 2022 , 79, 273	10.3	2
5	HbA1c variability predicts cardiovascular complications in type 2 diabetes regardless of being at glycemic target <i>Cardiovascular Diabetology</i> , 2022 , 21, 13	8.7	1
4	Glycated Albumin for Glycemic Control in T2DM Population: A Multi-Dimensional Evaluation. <i>ClinicoEconomics and Outcomes Research</i> , 2021 , 13, 453-464	1.7	1
3	Insulin treatment of people with diabetes mellitus and chronic liver disease. <i>Annals of Hepatology</i> , 2016 , 15, 287-8	3.1	1
2	Managing weight and glycaemic targets in people with type 2 diabetes-How far have we come?. Endocrinology, Diabetes and Metabolism, 2022 , e00330	2.7	О
1	Macromolecular Protein Complex: A New Way to Understand the Fibrinogen Lowering Effect of Glycosaminoglycans?. <i>Thrombosis and Haemostasis</i> , 1994 , 72, 985-986	7	