## **Demetrios Xenides**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1495910/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                            | IF                | CITATIONS              |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------------|
| 1  | Ab initio quantum mechanical charge field (QMCF) molecular dynamics: a QM/MM – MD procedure for accurate simulations of ions and complexes. Theoretical Chemistry Accounts, 2006, 115, 77-85.                                                                                                      | 1.4               | 183                    |
| 2  | Structure and ultrafast dynamics of liquid water: A quantum mechanics/molecular mechanics molecular dynamics simulations study. Journal of Chemical Physics, 2005, 122, 174506.                                                                                                                    | 3.0               | 106                    |
| 3  | Dipole, dipole–quadrupole, and dipole–octopole polarizability of adamantane, C10H16, from refractive<br>index measurements, depolarized collision-induced light scattering, conventionalab initioand density<br>functional theory calculations. Journal of Chemical Physics, 2001, 115, 7957-7967. | 3.0               | 92                     |
| 4  | Hydrogen bonding in liquid water: An ab initio QM/MM MD simulation study. Journal of Molecular<br>Liquids, 2006, 123, 61-67.                                                                                                                                                                       | 4.9               | 63                     |
| 5  | Basis set and electron correlation effects on the first and second static hyperpolarizability of SO2.<br>Chemical Physics Letters, 2000, 319, 618-624.                                                                                                                                             | 2.6               | 55                     |
| 6  | Enhanced Linear and Nonlinear Polarizabilities for the Li4Cluster. How Satisfactory Is the Agreement<br>between Theory and Experiment for the Static Dipole Polarizability?. Journal of Physical Chemistry A,<br>1999, 103, 4590-4593.                                                             | 2.5               | 49                     |
| 7  | New basis sets for xenon and the interaction polarizability of two xenon atoms. Chemical Physics<br>Letters, 2004, 396, 59-65.                                                                                                                                                                     | 2.6               | 43                     |
| 8  | Interaction dipole moment, polarizability and hyperpolarizability in the KrXe heterodiatom. Chemical Physics, 2005, 309, 271-275.                                                                                                                                                                  | 1.9               | 37                     |
| 9  | Electric dipole and quadrupole moment and dipole polarizability of CS, SiO and SiS. Molecular Physics, 2000, 98, 481-491.                                                                                                                                                                          | 1.7               | 29                     |
| 10 | Electric Quadrupole and Hexadecapole Moment, Dipole and Quadrupole Polarizability, Second Electric<br>Dipole Hyperpolarizability for P2, and a Comparative Study of Molecular Polarization in N2, P2, and<br>As2. Journal of Physical Chemistry A, 2003, 107, 712-719.                             | 2.5               | 23                     |
| 11 | The polarizabilities of small stoichiometric aluminum phosphide clusters AlnPn (n=2–9). Ab initio and density functional investigation. Chemical Physics Letters, 2008, 457, 137-142.                                                                                                              | 2.6               | 22                     |
| 12 | Comparison of high-level post-Hartree–Fock and DFT methods on the calculation of interaction-induced electric properties of Kr–He. Chemical Physics, 2011, 382, 80-87.                                                                                                                             | 1.9               | 21                     |
| 13 | Polarizability evolution on natural and artificial low dimensional binary semiconductor systems: A case study of stoichiometric aluminum phosphide semiconductor clusters. Journal of Chemical Physics, 2008, 129, 094708.                                                                         | 3.0               | 20                     |
| 14 | A critical analysis of the performance of new generation functionals on the calculation of the<br>(hyper) polarizabilities of clusters of varying stoichiometry: Test case the SimGen (m+n=7, n=0–7)<br>clusters. Chemical Physics Letters, 2010, 498, 134-139.                                    | 2.6               | 19                     |
| 15 | On the performance of DFT methods on electric polarizability and hyperpolarizability calculations for the lithium tetramer. Computing Letters, 2005, 1, 246-252.                                                                                                                                   | 0.5               | 15                     |
| 16 | On the performance of DFT methods in (hyper)polarizability calculations: N4 (Td) as a test case.<br>Computational and Theoretical Chemistry, 2007, 804, 41-46.                                                                                                                                     | 1.5               | 15                     |
| 17 | Trends of the bonding effect on the performance of DFT methods in electric properties calculations:<br>A pattern recognition and metric space approach on some XY <sub>2</sub> (X = O, S and Y = H, O, F, S,) Tj ETQ                                                                               | 91 <b>1.0.</b> 78 | 43 11 <b>4</b> rgBT /O |
| 18 | Electric polarizability and hyperpolarizability of BrCl(X1Σ+). Journal of Physics B: Atomic, Molecular                                                                                                                                                                                             | 1.5               | 11                     |

and Optical Physics, 2006, 39, 3629-3638.

**DEMETRIOS XENIDES** 

| #  | Article                                                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | How does the closing of the ring affect the electric properties of sulphur dioxide? A comparison with the open and closed form of ozone. Journal of Chemical Physics, 2001, 115, 7953-7956.                                                                                                       | 3.0 | 10        |
| 20 | From Pyridine Adduct of Borabenzene to (In)finite Graphene Architectures Functionalized with N → B<br>Dative Bonds. Prototype Systems of Strong One- and Two-Photon Quantum Transitions Triggering<br>Large Nonlinear Optical Responses. Journal of Physical Chemistry C, 2020, 124, 21063-21074. | 3.1 | 9         |
| 21 | (Hyper)polarizability dependence on the interatomic distance of N4 (Td): Fourth order polynomials and third order derivatives. Computational and Theoretical Chemistry, 2006, 764, 41-46.                                                                                                         | 1.5 | 8         |
| 22 | Synchronization in complex systems following a decision based queuing process: rhythmic applause as a test case. Journal of Statistical Mechanics: Theory and Experiment, 2008, 2008, P07017.                                                                                                     | 2.3 | 8         |
| 23 | On the dipole polarizability of the cyclic form of ozone. Journal of Physics B: Atomic, Molecular and Optical Physics, 1998, 31, L951-L954.                                                                                                                                                       | 1.5 | 7         |
| 24 | Electric Multipole Moments and (Hyper)Polarizability of X–C≡C–X, X = F, Cl, Br and I. International<br>Journal of Molecular Sciences, 2003, 4, 263-271.                                                                                                                                           | 4.1 | 7         |
| 25 | Molecular geometry, charge distribution and polarization in platinum nitrides. An ab initio and<br>density functional theory study of PtNN, PtPtNN, NPtPtN, and NNPtNN. Journal of Computational<br>Methods in Sciences and Engineering, 2006, 6, 201-209.                                        | 0.2 | 2         |
| 26 | Static electric polarizability and hyperpolarizability of sodium clusters: The case of the sodium tetramer. Journal of Computational Methods in Sciences and Engineering, 2008, 7, 431-442.                                                                                                       | 0.2 | 2         |
| 27 | How does protonation affect the electron density of ozone?. Molecular Physics, 2002, 100, 1057-1059.                                                                                                                                                                                              | 1.7 | 1         |
| 28 | How do the available density functionals perform on the calculation of eigenvalues of frontier to<br>deeper orbitals? A metric space evaluation of experimental and quantum chemical findings. Chemical<br>Physics, 2022, 561, 111600.                                                            | 1.9 | 1         |
| 29 | Electric Dipole Polarizability of Aluminum Phosphide Clusters Al[sub n]P[sub n] (n = 2–9) and Electron Delocalization. AlP Conference Proceedings, 2007, , .                                                                                                                                      | 0.4 | 0         |
| 30 | Ab Initio QMâ^•MM Simulations of Water and Hydrated Cations. AIP Conference Proceedings, 2007, , .                                                                                                                                                                                                | 0.4 | 0         |
| 31 | Electric polarizabilities of the CxSi4-x (0 ⩼ x ⩼ 4) clusters. A conventional and time-dependent density functional theory study. Journal of Computational Methods in Sciences and Engineering, 2008, 7, 287-296.                                                                                 | 0.2 | Ο         |
| 32 | Finding the Pattern in the Space of ab initio and DFT Theoretical Descriptions: A Pattern Recognition<br>and Metric Space Approach Based on the Electric Response Properties of the Open and Ring Isomers of<br>XO[sub 2] (X = O,S). , 2009, , .                                                  |     | 0         |
| 33 | Computational Quantum Chemistry: From Atoms and Molecules to Clusters and Nano-objects. , 2009, ,                                                                                                                                                                                                 |     | 0         |
| 34 | How many shades of grey? On the proximity of density functional approximation to ab initio method via calculations of electric multipole moments. Journal of Physics: Conference Series, 2021, 1730, 012126.                                                                                      | 0.4 | 0         |