
Aboulfazl Barati

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1495245/publications.pdf Version: 2024-02-01

ABOILLEAZI RADATI

#	Article	IF	CITATIONS
1	Decellularized Alstroemeria flower stem modified with chitosan for tissue engineering purposes: A cellulose/chitosan scaffold. International Journal of Biological Macromolecules, 2022, 204, 321-332.	7.5	10
2	Effect of clinoptilolite on structure and drug release behavior of chitosan/thyme oil <scp>γ yclodextrin</scp> inclusion compound hydrogels. Journal of Applied Polymer Science, 2021, 138, 49822.	2.6	11
3	Employing hydrogels in tissue engineering approaches to boost conventional cancer-based research and therapies. RSC Advances, 2021, 11, 10646-10669.	3.6	9
4	3D printed chitosan/polycaprolactone scaffold for lung tissue engineering: hope to be useful for COVID-19 studies. RSC Advances, 2021, 11, 19508-19520.	3.6	28
5	Preparation and evaluation of thermoplastic vulcanizate / organo-modified layered double hydroxide nanocomposite: Statistical modelling and optimization. Materials Today Communications, 2021, 26, 102046.	1.9	6
6	Design of thermosensitive polymerâ€coated magnetic mesoporous silica nanocomposites with a coreâ€shellâ€shell structure as a magnetic/temperature dualâ€responsive drug delivery vehicle. Polymers for Advanced Technologies, 2021, 32, 4101-4109.	3.2	18
7	Chitosan-based hydrogels loading with thyme oil cyclodextrin inclusion compounds: From preparation to characterization. European Polymer Journal, 2020, 122, 109303.	5.4	40
8	Characterization, in vitro antibacterial activity, and toxicity for rat of tetracycline in a nanocomposite hydrogel based on PEG and cellulose. Cellulose, 2020, 27, 347-356.	4.9	14
9	Solvothermal synthesis of CuFe2O4 and Fe3O4 nanoparticles with high heating efficiency for magnetic hyperthermia application. Journal of Alloys and Compounds, 2020, 816, 152548.	5.5	105
10	Integration of microbubbles with biomaterials in tissue engineering for pharmaceutical purposes. Heliyon, 2020, 6, e04189.	3.2	12
11	One-pot preparation of hyaluronic acidâ€coated iron oxide nanoparticles for magnetic hyperthermia therapy and targeting CD44-overexpressing cancer cells. Carbohydrate Polymers, 2020, 237, 116130.	10.2	74
12	Nanofibrous cellulose acetate/gelatin wound dressing endowed with antibacterial and healing efficacy using nanoemulsion of Zataria multiflora. International Journal of Biological Macromolecules, 2020, 162, 762-773.	7.5	39
13	Fabrication of novel agarose–nickel bilayer composite for purification of protein nanoparticles in expanded bed adsorption column. Chemical Engineering Research and Design, 2020, 159, 291-299.	5.6	20
14	Using oral penicillin as a novel environmentally friendly corrosion inhibitor for low carbon steel in an environment containing hydrogen sulfide corrosive gas. Journal of Natural Gas Science and Engineering, 2020, 77, 103262.	4.4	17
15	Preparation and characterization of chitosan based hydrogels containing cyclodextrin inclusion compounds or nanoemulsions of thyme oil. Polymer International, 2019, 68, 1891-1902.	3.1	35
16	A robust method for fabrication of monodisperse magnetic mesoporous silica nanoparticles with core-shell structure as anticancer drug carriers. Journal of Molecular Liquids, 2019, 292, 111367.	4.9	47
17	Optimization on thermal treatment synthesis of lactoferrin nanoparticles via Taguchi design method. SN Applied Sciences, 2019, 1, 1.	2.9	16
18	Efficient copper removal from wastewater through montmorilloniteâ€supported hydrogel adsorbent. Water Environment Research, 2019, 91, 332-339.	2.7	6

ABOULFAZL BARATI

#	Article	IF	CITATIONS
19	The use of nanoemulsion-based strategies to improve corrosion inhibition efficiency of Thyme-based inhibitor. Journal of Molecular Liquids, 2019, 296, 112110.	4.9	2
20	A novel approach to prepare Ni-Al mesoporous powder using electrochemical method in one step. Journal of Alloys and Compounds, 2017, 705, 226-231.	5.5	2
21	Chitosan/polyethylene glycol impregnated activated carbons: Synthesis, characterization and adsorption performance. Frontiers of Chemical Science and Engineering, 2017, 11, 575-585.	4.4	20
22	Synthesis of superabsorbent hydrogel nanocomposites for use as hemostatic agent. International Journal of Polymeric Materials and Polymeric Biomaterials, 2016, 65, 779-788.	3.4	7
23	Study on Steady Shear Rheological Behavior of Concentrated Suspensions of Sulfonated Polyacrylamide/Na-Montmorillonite Nanoparticles. Journal of Macromolecular Science - Physics, 2015, 54, 761-770.	1.0	5
24	Synthesis and characterization of fast-swelling porous superabsorbent hydrogel based on starch as a hemostatic agent. Journal of Biomaterials Science, Polymer Edition, 2015, 26, 1439-1451.	3.5	31
25	Industrial wastewater treatment by using of membrane. Membrane Water Treatment, 2015, 6, 489-499.	0.5	5
26	Synthesis and study the controlled release of etronidazole from the new PEG/NaY and PEG/MCM-41 nanocomposites. Journal of Environmental Health Science & Engineering, 2014, 12, 35.	3.0	6
27	Rapid Removal of Heavy Metal Cations by Novel Nanocomposite Hydrogels Based on Wheat Bran and Clinoptilolite: Kinetics, Thermodynamics, and Isotherms. Water, Air, and Soil Pollution, 2014, 225, 1.	2.4	20
28	Removal and recovery of copper and nickel ions from aqueous solution by poly(methacrylamide-co-acrylic acid)/montmorillonite nanocomposites. Environmental Science and Pollution Research, 2013, 20, 6242-6255.	5.3	36
29	Model Development and Experimental Verification of Liquid Desiccant Drying of Gelcast α-Alumina Ceramic Objects. Industrial & Engineering Chemistry Research, 2011, 50, 7504-7512.	3.7	2
30	Simulation and experimental analysis of an intelligent tissue for controlled drug delivery. Canadian Journal of Chemical Engineering, 2011, 89, 1521-1527.	1.7	3
31	Dynamical Modeling and Experimental Analysis on the Swelling Behavior of the sIPN Hydrogels. Industrial & Engineering Chemistry Research, 2010, 49, 10111-10115.	3.7	13
32	Gelation process in low-toxic gelcasting systems. Journal of the European Ceramic Society, 2006, 26, 3083-3090.	5.7	49
33	Chemorheology of alumina–aqueous acrylamide gelcasting systems. Journal of the European Ceramic Society, 2004, 24, 635-644.	5.7	31
34	Drying of gelcast ceramic parts via the liquid desiccant method. Journal of the European Ceramic Society, 2003, 23, 2265-2272.	5.7	60
35	CMC-based hydrogels loaded with <i>Hypericum perforatum</i> nanoemulsion for potential wound dressing applications. Journal of Bioactive and Compatible Polymers, 0, , 088391152210980.	2.1	0