Véronique Duranthon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1495240/publications.pdf

Version: 2024-02-01

64 papers 2,589 citations

218677 26 h-index 197818 49 g-index

74 all docs

74 docs citations

74 times ranked 3354 citing authors

#	Article	IF	CITATIONS
1	Investigating the role of BCAR4 in ovarian physiology and female fertility by genome editing in rabbit. Scientific Reports, 2020, 10, 4992.	3.3	8
2	Effects of first-generation in utero exposure to diesel engine exhaust on second-generation placental function, fatty acid profiles and foetal metabolism in rabbits: preliminary results. Scientific Reports, 2019, 9, 9710.	3.3	8
3	Differentiation of derived rabbit trophoblast stem cells under fluid shear stress to mimic the trophoblastic barrier. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 1608-1618.	2.4	11
4	Maternal ageing impairs mitochondrial DNA kinetics during early embryogenesis in mice. Human Reproduction, 2019, 34, 1313-1324.	0.9	12
5	Mono(2-ethylhexyl) phthalate (MEHP) induces transcriptomic alterations in oocytes and their derived blastocysts. Toxicology, 2019, 421, 59-73.	4.2	32
6	A short periconceptional exposure to maternal type-1 diabetes is sufficient to disrupt the feto-placental phenotype in a rabbit model. Molecular and Cellular Endocrinology, 2019, 480, 42-53.	3.2	20
7	Effects of maternal Au-NP exposure by inhalation on feto-placental development and placental function, in a rabbit model. Placenta, 2019, 83, e110-e111.	1.5	0
8	Three-dimensional analysis of nuclear heterochromatin distribution during early development in the rabbit. Chromosoma, 2018, 127, 387-403.	2.2	6
9	Long term effects of ART: What do animals tell us?. Molecular Reproduction and Development, 2018, 85, 348-368.	2.0	76
10	Control of inner cells' proportion by asymmetric divisions and ensuing resilience of cloned rabbit embryos. Development (Cambridge), 2018, 145, .	2.5	4
11	Lipid Identification and Transcriptional Analysis of Controlling Enzymes in Bovine Ovarian Follicle. International Journal of Molecular Sciences, 2018, 19, 3261.	4.1	43
12	Review: Epigenetics, developmental programming and nutrition in herbivores. Animal, 2018, 12, s363-s371.	3.3	37
13	Progressive methylation of POU5F1 regulatory regions during blastocyst development. Reproduction, 2018, 156, 145-161.	2.6	9
14	Regulation of heat-inducible HSPA1A gene expression during maternal-to-embryo transition and in response to heat in in vitro-produced bovine embryos. Reproduction, Fertility and Development, 2017, 29, 1868.	0.4	12
15	Localisation of stem cell factor, stanniocalcin-1, connective tissue growth factor and heparin-binding epidermal growth factor in the bovine uterus at the time of blastocyst formation. Reproduction, Fertility and Development, 2017, 29, 2127.	0.4	8
16	Expression and localization of ARTEMIN in the bovine uterus and embryos. Theriogenology, 2017, 90, 153-162.	2.1	8
17	Different co-culture systems have the same impact on bovine embryo transcriptome. Reproduction, 2017, 154, 695-710.	2.6	5
18	Reprogramming of rabbit induced pluripotent stem cells toward epiblast and chimeric competency using Krüppel-like factors. Stem Cell Research, 2017, 24, 106-117.	0.7	18

#	Article	IF	CITATIONS
19	Prosurvival effect of cumulus prostaglandin G/H synthase 2/prostaglandin2 signaling on bovine blastocyst: impact on in vivo posthatching developmentâ€. Biology of Reproduction, 2017, 96, 531-541.	2.7	13
20	Docosahexaenoic acid mechanisms of action on the bovine oocyte-cumulus complex. Journal of Ovarian Research, 2017, 10, 74.	3.0	19
21	Random Allocation of Blastomere Descendants to the Trophectoderm and ICM of the Bovine Blastocyst. Biology of Reproduction, 2016, 95, 123-123.	2.7	4
22	Gametes, Embryos, and Their Epigenome: Considerations for Equine Embryo Technologies. Journal of Equine Veterinary Science, 2016, 41, 13-21.	0.9	6
23	Assessment of â€~one-step' versus â€~sequential' embryo culture conditions through embryonic genome methylation and hydroxymethylation changes. Human Reproduction, 2016, 31, 2471-2483.	0.9	23
24	A Panel of Embryonic Stem Cell Lines Reveals the Variety and Dynamic of Pluripotent States in Rabbits. Stem Cell Reports, 2016, 7, 383-398.	4.8	17
25	Breeding animals for quality products: not only genetics. Reproduction, Fertility and Development, 2016, 28, 94.	0.4	29
26	Genome-wide immunity studies in the rabbit: transcriptome variations in peripheral blood mononuclear cells after in vitro stimulation by LPS or PMA-Ionomycin. BMC Genomics, 2015, 16, 26.	2.8	21
27	Expression and localization of interleukin 1 beta and interleukin 1 receptor (type I) in the bovine endometrium and embryo. Journal of Reproductive Immunology, 2015, 110, 1-13.	1.9	23
28	Early embryonic and endometrial regulation of tumor necrosis factor and tumor necrosis factor receptor 2 in the cattle uterus. Theriogenology, 2015, 83, 1028-1037.	2.1	18
29	Gene Expression Analysis in Early Embryos Through Reverse Transcription Quantitative PCR (RT-qPCR). Methods in Molecular Biology, 2015, 1222, 181-196.	0.9	7
30	Vitrification alters rabbit foetal placenta at transcriptomic and proteomic level. Reproduction, 2014, 147, 789-801.	2.6	25
31	Hepatoma-derived growth factor: from the bovine uterus to the in vitro embryo culture. Reproduction, 2014, 148, 353-365.	2.6	27
32	Rabbit genome analysis reveals a polygenic basis for phenotypic change during domestication. Science, 2014, 345, 1074-1079.	12.6	343
33	Contrasting transcriptome landscapes of rabbit pluripotent stem cells in vitro and in vivo. Animal Reproduction Science, 2014, 149, 67-79.	1.5	15
34	Heterochromatin reprogramming in rabbit embryos after fertilization, intra-, and inter-species SCNT correlates with preimplantation development. Reproduction, 2013, 145, 149-159.	2.6	17
35	Sexual dimorphism starting from the blastocyst stage in response to an imbalanced maternal diet in a rabbit model. Placenta, 2013, 34, A18.	1.5	O
36	Induced pluripotent stem cells derived from rabbits exhibit some characteristics of $na\tilde{A}$ ve pluripotency. Biology Open, 2013, 2, 613-628.	1.2	50

#	Article	IF	Citations
37	Sexual Dimorphism of the Feto-Placental Phenotype in Response to a High Fat and Control Maternal Diets in a Rabbit Model. PLoS ONE, 2013, 8, e83458.	2.5	62
38	Rabbit as a reproductive model for human health. Reproduction, 2012, 144, 1-10.	2.6	164
39	Generation of rabbit pluripotent stem cell lines. Theriogenology, 2012, 78, 1774-1786.	2.1	19
40	Alteration of DNA demethylation dynamics by in vitro culture conditions in rabbit pre-implantation embryos. Epigenetics, 2012, 7, 440-446.	2.7	49
41	Expression of Pluripotency Master Regulators during Two Key Developmental Transitions: EGA and Early Lineage Specification in the Bovine Embryo. PLoS ONE, 2012, 7, e34110.	2.5	87
42	On the emerging role of rabbit as human disease model and the instrumental role of novel transgenic tools. Transgenic Research, 2012, 21, 699-713.	2.4	49
43	35 DYNAMICS OF PERICENTRIC REPETITIVE SEQUENCES IN PREIMPLANTATION RABBIT EMBRYOS UNDERLINES INADEQUATE SPATIO-TEMPORAL REORGANIZATION AFTER NUCLEAR TRANSFER. Reproduction, Fertility and Development, 2012, 24, 130.	0.4	1
44	Hyperlipidic hypercholesterolemic diet in prepubertal rabbits affects gene expression in the embryo, restricts fetal growth and increases offspring susceptibility to obesity. Theriogenology, 2011, 75, 287-299.	2.1	65
45	Eutherian mammals use diverse strategies to initiate X-chromosome inactivation during development. Nature, 2011, 472, 370-374.	27.8	394
46	Dynamics of DNA methylation levels in maternal and paternal rabbit genomes after fertilization. Epigenetics, 2011, 6, 987-993.	2.7	38
47	Statistical Analysis of 3D Images Detects Regular Spatial Distributions of Centromeres and Chromocenters in Animal and Plant Nuclei. PLoS Computational Biology, 2010, 6, e1000853.	3.2	104
48	Retrotransposon expression as a defining event of genome reprograming in fertilized and cloned bovine embryos. Reproduction, 2009, 138, 289-299.	2.6	49
49	Revealing the dynamics of gene expression during embryonic genome activation and first differentiation in the rabbit embryo with a dedicated array screening. Physiological Genomics, 2009, 36, 98-113.	2.3	29
50	S05-04. Evolutionary diversity and developmental dynamics of X-chromosome inactivation. Mechanisms of Development, 2009, 126, S7.	1.7	0
51	Differential regulation of LTR retrotransposons during the transition from totipotency to pluripotency in mammalian embryos. Retrovirology, 2009, 6, .	2.0	1
52	Preimplantation embryo programming: transcription, epigenetics, and culture environment. Reproduction, 2008, 135, 141-150.	2.6	97
53	SSH adequacy to preimplantation mammalian development: Scarce specific transcripts cloning despite irregular normalisation. BMC Genomics, 2005, 6, 155.	2.8	22
54	Tight Junction Messenger RNA Expression Levels in Bovine Embryos are Dependent upon the Ability to Compact and In Vitro Culture Methods1. Biology of Reproduction, 2003, 68, 1394-1402.	2.7	28

#	Article	IF	CITATIONS
55	Identification of differentially expressed mRNAs in bovine preimplantation embryos. Zygote, 2003, 11, 43-52.	1.1	19
56	Molecular Characterization of Genomic Activities at the Onset of Zygotic Transcription in Mammals 1. Biology of Reproduction, 2002, 67, 1907-1918.	2.7	26
57	The developmental competence of mammalian oocytes: a convenient but biologically fuzzy concept. Theriogenology, 2001, 55, 1277-1289.	2.1	66
58	Onset of zygotic transcription and maternal transcript legacy in the rabbit embryo. Molecular Reproduction and Development, 2001, 58, 127-136.	2.0	53
59	Identification of maternal transcripts that progressively disappear during the cleavage period of rabbit embryos. Molecular Reproduction and Development, 1997, 47, 353-362.	2.0	32
60	PCR-generated cDNA libraries from reduced numbers of mouse oocytes. Zygote, 1995, 3, 241-250.	1.1	17
61	The locus Om, responsible for the DDK syndrome, maps close to Sigje on mouse Chromosome 11. Mammalian Genome, 1992, 2, 100-105.	2.2	54
62	Synthesis and developmental regulation of an egg specific mouse protein translated from maternal mRNA. Molecular Reproduction and Development, 1991, 28, 218-229.	2.0	17
63	Acquisition of endogenous ecotropic MuLV can occur before the late one-cell stage in the genital tract of SWR/J-RF/J hybrid females. The Journal of Experimental Zoology, 1989, 252, 96-100.	1.4	5
64	Distribution of fibronectins and laminin in the early pig embryo. The Anatomical Record, 1989, 223, 72-81.	1.8	40