Ingunn M Stromnes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1495086/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Insufficiency of compound immune checkpoint blockade to overcome engineered T cell exhaustion in pancreatic cancer. , 2022, 10, e003525.		5
2	Distinct myeloid antigen-presenting cells dictate differential fates of tumor-specific CD8+ T cells in pancreatic cancer. JCI Insight, 2022, 7, .	5.0	5
3	Chemotherapy brings virtual memory T cells into reality for cancer therapy. Cellular and Molecular Immunology, 2021, 18, 1339-1340.	10.5	0
4	CD40 Agonist Overcomes T Cell Exhaustion Induced by Chronic Myeloid Cell IL-27 Production in a Pancreatic Cancer Preclinical Model. Journal of Immunology, 2021, 206, 1372-1384.	0.8	13
5	An aged immune system drives senescence and ageing of solid organs. Nature, 2021, 594, 100-105.	27.8	368
6	T Cell Receptor Engineered Lymphocytes for Cancer Therapy. Current Protocols in Immunology, 2020, 129, e97.	3.6	7
7	Comparative phenotypes of peripheral blood and spleen cells from cancer patients. International Immunopharmacology, 2020, 85, 106655.	3.8	4
8	Mechanisms Governing Immunotherapy Resistance in Pancreatic Ductal Adenocarcinoma. Frontiers in Immunology, 2020, 11, 613815.	4.8	26
9	Combination PD-1 and PD-L1 Blockade Promotes Durable Neoantigen-Specific T Cell-Mediated Immunity in Pancreatic Ductal Adenocarcinoma. Cell Reports, 2019, 28, 2140-2155.e6.	6.4	64
10	Engineered Adoptive T-cell Therapy Prolongs Survival in a Preclinical Model of Advanced-Stage Ovarian Cancer. Cancer Immunology Research, 2019, 7, 1412-1425.	3.4	26
11	Differential Effects of Depleting versus Programming Tumor-Associated Macrophages on Engineered T Cells in Pancreatic Ductal Adenocarcinoma. Cancer Immunology Research, 2019, 7, 977-989.	3.4	45
12	Obstacles Posed by the Tumor Microenvironment to TÂcell Activity: A Case for Synergistic Therapies. Cancer Cell, 2017, 31, 311-325.	16.8	502
13	T-cell Localization, Activation, and Clonal Expansion in Human Pancreatic Ductal Adenocarcinoma. Cancer Immunology Research, 2017, 5, 978-991.	3.4	170
14	Pancreatic Cancer: Planning Ahead for Metastatic Spread. Cancer Cell, 2016, 29, 774-776.	16.8	9
15	New Strategies in Engineering T-cell Receptor Gene-Modified T cells to More Effectively Target Malignancies. Clinical Cancer Research, 2015, 21, 5191-5197.	7.0	29
16	T Cells Engineered against a Native Antigen Can Surmount Immunologic and Physical Barriers to Treat Pancreatic Ductal Adenocarcinoma. Cancer Cell, 2015, 28, 638-652.	16.8	168
17	Reâ€adapting T cells for cancer therapy: from mouse models to clinical trials. Immunological Reviews, 2014, 257, 145-164.	6.0	67
18	Stromal reengineering to treat pancreas cancer. Carcinogenesis, 2014, 35, 1451-1460.	2.8	108

INGUNN M STROMNES

#	Article	IF	CITATIONS
19	Molecular Pathways: Myeloid Complicity in Cancer. Clinical Cancer Research, 2014, 20, 5157-5170.	7.0	44
20	Targeted depletion of an MDSC subset unmasks pancreatic ductal adenocarcinoma to adaptive immunity. Gut, 2014, 63, 1769-1781.	12.1	272
21	Enhanced-affinity murine T-cell receptors for tumor/self-antigens can be safe in gene therapy despite surpassing the threshold for thymic selection. Blood, 2013, 122, 348-356.	1.4	61
22	Abrogation of Src Homology Region 2 Domain-Containing Phosphatase 1 in Tumor-Specific T Cells Improves Efficacy of Adoptive Immunotherapy by Enhancing the Effector Function and Accumulation of Short-Lived Effector T Cells In Vivo. Journal of Immunology, 2012, 189, 1812-1825.	0.8	56
23	Abrogating Cbl-b in effector CD8+ T cells improves the efficacy of adoptive therapy of leukemia in mice. Journal of Clinical Investigation, 2010, 120, 3722-3734.	8.2	74
24	Passive induction of experimental allergic encephalomyelitis. Nature Protocols, 2006, 1, 1952-1960.	12.0	177
25	Active induction of experimental allergic encephalomyelitis. Nature Protocols. 2006. 1. 1810-1819.	12.0	477