
José Antonio Ezquerro FernÃ;ndez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1494941/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	A new concept of convergence for iterative methods: Restricted global convergence. Journal of Computational and Applied Mathematics, 2022, 405, 113051.	2.0	3
2	On global convergence for an efficient third-order iterative process. Journal of Computational and Applied Mathematics, 2022, 404, 113417.	2.0	4
3	Location of Solutions of Fredholm–Nemytskii Integral Equations from a Whittaker-Type Operator. Mediterranean Journal of Mathematics, 2022, 19, 1.	0.8	0
4	Extending the choice of starting points for Newton's method. Mathematical Methods in the Applied Sciences, 2020, 43, 8042-8050.	2.3	2
5	The Newtonian Operator and Global Convergence Balls for Newton's Method. Mathematics, 2020, 8, 1074.	2.2	1
6	Mild Differentiability Conditions for Newton's Method in Banach Spaces. Frontiers in Mathematics, 2020, , .	0.3	10
7	Using Center ω-Lipschitz Conditions for the First Derivative at Auxiliary Points. Frontiers in Mathematics, 2020, , 155-173.	0.3	0
8	A Chebyshev-like method for approximating matrix square root. AlP Conference Proceedings, 2020, , .	0.4	0
9	The Newton-Kantorovich Theorem. Frontiers in Mathematics, 2020, , 1-22.	0.3	0
10	Improving the Domain of Starting Points Based on Center Conditions for the First Derivative. Frontiers in Mathematics, 2020, , 95-137.	0.3	0
11	Auxiliary point on the semilocal convergence of Newton's method. Journal of Computational and Applied Mathematics, 2019, 354, 198-212.	2.0	2
12	Domains of global convergence for a type of nonlinear Fredholm-Nemytskii integral equations. Applied Numerical Mathematics, 2019, 146, 452-468.	2.1	6
13	Construction of simple majorizing sequences for iterative methods. Applied Mathematics Letters, 2019, 98, 149-156.	2.7	Ο
14	How to Obtain Global Convergence Domains via Newton's Method for Nonlinear Integral Equations. Mathematics, 2019, 7, 553.	2.2	8
15	Nonlinear Fredholm integral equations and majorant functions. Numerical Algorithms, 2019, 82, 1303-1323.	1.9	9
16	Extending the domain of starting points for Newton's method under conditions on the second derivative. Journal of Computational and Applied Mathematics, 2018, 340, 1-10.	2.0	0
17	Starting points for Newton's method under a center Lipschitz condition for the second derivative. Journal of Computational and Applied Mathematics, 2018, 330, 721-731.	2.0	6
18	The majorant principle applied to Hammerstein integral equations. Applied Mathematics Letters, 2018, 75, 50-58.	2.7	5

#	Article	IF	CITATIONS
19	Majorizing Sequences for Nonlinear Fredholm–Hammerstein Integral Equations. Studies in Applied Mathematics, 2018, 140, 270-297.	2.4	3
20	Domains of global convergence for Newton's method from auxiliary points. Applied Mathematics Letters, 2018, 85, 48-56.	2.7	12
21	Convergence of Newton's method under Vertgeim conditions: new extensions using restricted convergence domains. Journal of Mathematical Chemistry, 2017, 55, 1392-1406.	1.5	4
22	A study of the influence of center conditions on the domain of parameters of Newton's method by using recurrence relations. Advances in Computational Mathematics, 2017, 43, 1103-1129.	1.6	2
23	On the Existence of Solutions of Nonlinear Fredholm Integral Equations from Kantorovich's Technique. Algorithms, 2017, 10, 89.	2.1	3
24	The Theory of Kantorovich for Newton's Method: Conditions on the Second Derivative. SEMA SIMAI Springer Series, 2016, , 113-145.	0.7	0
25	A Steffensen type method of two steps in Banach spaces with applications. Journal of Computational and Applied Mathematics, 2016, 291, 317-331.	2.0	7
26	Enlarging the domain of starting points for Newton's method under center conditions on the first Fréchet-derivative. Journal of Complexity, 2016, 33, 89-106.	1.3	10
27	On the Domain of Starting Points of Newton's Method Under Center Lipschitz Conditions. Mediterranean Journal of Mathematics, 2016, 13, 2287-2300.	0.8	7
28	On a Steffensen-like method for solving nonlinear equations. Calcolo, 2016, 53, 171-188.	1.1	12
29	A study of optimization for Steffensen-type methods with frozen divided differences. SeMA Journal, 2015, 70, 23-46.	2.0	5
30	On the Accessibility of Newton's Method under a Hölder Condition on the First Derivative. Algorithms, 2015, 8, 514-528.	2.1	3
31	Center conditions on high order derivatives in the semilocal convergence of Newton's method. Journal of Complexity, 2015, 31, 277-292.	1.3	2
32	A family of iterative methods that uses divided differences of first and second orders. Numerical Algorithms, 2015, 70, 571-589.	1.9	8
33	On a new family of highâ€order iterative methods for the matrix <i>p</i> th root. Numerical Linear Algebra With Applications, 2015, 22, 585-595.	1.6	9
34	An analysis of the semilocal convergence for secant-like methods. Applied Mathematics and Computation, 2015, 266, 883-892.	2.2	11
35	Iterative methods for computing the matrix square root. SeMA Journal, 2015, 70, 11-21.	2.0	2
36	How to improve the domain of parameters for Newton's method. Applied Mathematics Letters, 2015, 48, 91-101.	2.7	11

#	Article	IF	CITATIONS
37	On the local convergence of a fifth-order iterative method in Banach spaces. Applied Mathematics and Computation, 2015, 251, 396-403.	2.2	36
38	ENLARGING THE CONVERGENCE DOMAIN OF SECANT-LIKE METHODS FOR EQUATIONS. Taiwanese Journal of Mathematics, 2015, 19, .	0.4	1
39	A Traub type result for one-point iterative methods with memory. Analysis and Applications, 2014, 12, 323-340.	2.2	5
40	Approximation of inverse operators by a new family of high-order iterative methods. Numerical Linear Algebra With Applications, 2014, 21, 629-644.	1.6	15
41	A semilocal convergence result for Newton's method under generalized conditions of Kantorovich. Journal of Complexity, 2014, 30, 309-324.	1.3	11
42	An hybrid method that improves the accessibility of Steffensen's method. Numerical Algorithms, 2014, 66, 241-267.	1.9	0
43	How to Improve the Domain of Starting Points for Steffensen's Method. Studies in Applied Mathematics, 2014, 132, 354-380.	2.4	5
44	Increasing the applicability of Steffensen's method. Journal of Mathematical Analysis and Applications, 2014, 418, 1062-1073.	1.0	7
45	On the efficiency of two variants of Kurchatov's method for solving nonlinear systems. Numerical Algorithms, 2013, 64, 685-698.	1.9	16
46	Chebyshev-Secant-type Methods for Non-differentiable Operators. Milan Journal of Mathematics, 2013, 81, 25-35.	1.1	5
47	On Steffensen's method on Banach spaces. Journal of Computational and Applied Mathematics, 2013, 249, 9-23.	2.0	26
48	On the local convergence of Newton's method under generalized conditions of Kantorovich. Applied Mathematics Letters, 2013, 26, 566-570.	2.7	11
49	Semilocal convergence of secant-like methods for differentiable and nondifferentiable operator equations. Journal of Mathematical Analysis and Applications, 2013, 398, 100-112.	1.0	15
50	A modification of the classic conditions of Newton–Kantorovich for Newton's method. Mathematical and Computer Modelling, 2013, 57, 584-594.	2.0	15
51	CONSTRUCTION OF DERIVATIVE-FREE ITERATIVE METHODS FROM CHEBYSHEV'S METHOD. Analysis and Applications, 2013, 11, 1350009.	2.2	8
52	A general semilocal convergence result for Newton's method under centered conditions for the second derivative. ESAIM: Mathematical Modelling and Numerical Analysis, 2013, 47, 149-167.	1.9	8
53	Analysing the efficiency of some modifications of the secant method. Computers and Mathematics With Applications, 2012, 64, 2066-2073.	2.7	17
54	Improving the domain of starting points for secant-like methods. Applied Mathematics and Computation, 2012, 219, 3677-3692.	2.2	3

#	Article	IF	CITATIONS
55	Majorizing sequences for Newton's method from initial value problems. Journal of Computational and Applied Mathematics, 2012, 236, 2246-2258.	2.0	28
56	A variant of the Newton–Kantorovich theorem for nonlinear integral equations of mixed Hammerstein type. Applied Mathematics and Computation, 2012, 218, 9536-9546.	2.2	18
57	An Ulm-type method with -order of convergence three. Nonlinear Analysis: Real World Applications, 2012, 13, 14-26.	1.7	4
58	Solving non-differentiable equations by a new one-point iterative method with memory. Journal of Complexity, 2012, 28, 48-58.	1.3	15
59	How to Apply Newton $\hat{a} \in \mathbb{M}$ s Method to Operators with Unbounded Second Derivative. , 2011, , .		Ο
60	Solving nonlinear integral equations of Fredholm type with high order iterative methods. Journal of Computational and Applied Mathematics, 2011, 236, 1449-1463.	2.0	12
61	On Iterative Methods with Accelerated Convergence for Solving Systems of Nonlinear Equations. Journal of Optimization Theory and Applications, 2011, 151, 163-174.	1.5	27
62	On the semilocal convergence of efficient Chebyshev–Secant-type methods. Journal of Computational and Applied Mathematics, 2011, 235, 3195-3206.	2.0	42
63	On some one-point hybrid iterative methods. Nonlinear Analysis: Theory, Methods & Applications, 2010, 72, 587-601.	1.1	6
64	An extension of Gander's result for quadratic equations. Journal of Computational and Applied Mathematics, 2010, 234, 960-971.	2.0	9
65	Variants of a classic Traub's result. Computers and Mathematics With Applications, 2010, 60, 2899-2908.	2.7	6
66	An optimization of Chebyshev's method. Journal of Complexity, 2009, 25, 343-361.	1.3	63
67	New iterations of R-order four with reduced computational cost. BIT Numerical Mathematics, 2009, 49, 325-342.	2.0	80
68	Newton-type methods of high order and domains of semilocal and global convergence. Applied Mathematics and Computation, 2009, 214, 142-154.	2.2	42
69	Improving the efficiency index of one-point iterative processes. Journal of Computational and Applied Mathematics, 2009, 223, 879-892.	2.0	6
70	Fourth-order iterations for solving Hammerstein integral equations. Applied Numerical Mathematics, 2009, 59, 1149-1158.	2.1	11
71	An improvement of the region of accessibility of Chebyshev's method from Newton's method. Mathematics of Computation, 2009, 78, 1613-1627.	2.1	23
72	The Ulm method under mild differentiability conditions. Numerische Mathematik, 2008, 109, 193-207.	1.9	8

#	Article	IF	CITATIONS
73	A modification of Cauchy's method for quadratic equations. Journal of Mathematical Analysis and Applications, 2008, 339, 954-969.	1.0	7
74	Picard's Iterations for Integral Equations of Mixed Hammerstein Type. Canadian Mathematical Bulletin, 2008, 51, 372-377.	0.5	1
75	A generalization of the Kantorovich type assumptions for Halley's method. International Journal of Computer Mathematics, 2007, 84, 1771-1779.	1.8	3
76	Halley's method for operators with unbounded second derivative. Applied Numerical Mathematics, 2007, 57, 354-360.	2.1	27
77	On the R-order of convergence of Newton's method under mild differentiability conditions. Journal of Computational and Applied Mathematics, 2006, 197, 53-61.	2.0	24
78	Fewer Convergence Conditions for the Halley Method. Zeitschrift Fur Analysis Und Ihre Anwendung, 2006, 25, 249-255.	0.6	2
79	On the R-order of the Halley method. Journal of Mathematical Analysis and Applications, 2005, 303, 591-601.	1.0	71
80	Solving a special case of conservative problems by Secant-like methods. Applied Mathematics and Computation, 2005, 169, 926-942.	2.2	34
81	New Kantorovich-Type Conditions for Halley's Method. Applied Numerical Analysis and Computational Mathematics, 2005, 2, 70-77.	0.6	26
82	A modification of the convergence conditions for Picard's iteration. Computational and Applied Mathematics, 2004, 23, .	1.3	5
83	On Halley-type iterations with free second derivative. Journal of Computational and Applied Mathematics, 2004, 170, 455-459.	2.0	43
84	A NEWTON-LIKE METHOD FOR SOLVING SOME BOUNDARY VALUE PROBLEMS. Numerical Functional Analysis and Optimization, 2002, 23, 791-805.	1.4	12
85	Generalized differentiability conditions for Newton's method. IMA Journal of Numerical Analysis, 2002, 22, 187-205.	2.9	59
86	Solving a Boundary Value Problem by a Newton-Like Method. International Journal of Computer Mathematics, 2002, 79, 1113-1120.	1.8	4
87	On an Application of Newton's Method to Nonlinear Operators with w-Conditioned Second Derivative. BIT Numerical Mathematics, 2002, 42, 519-530.	2.0	30
88	A Super-Halley Type Approximation in Banach Spaces. Analysis in Theory and Applications, 2001, 17, 14-25.	0.0	0
89	On the application of a fourth-order two-point method to Chandrasekhar's integral equation. Aequationes Mathematicae, 2001, 62, 39-47.	0.8	2
90	Multipoint Super-Halley Type Approximation Algorithms in Banach Spaces. Numerical Functional Analysis and Optimization, 2000, 21, 845-858.	1.4	15

#	Article	IF	CITATIONS
91	A discretization scheme for some conservative problems. Journal of Computational and Applied Mathematics, 2000, 115, 181-192.	2.0	23
92	Secant-like methods for solving nonlinear integral equations of the Hammerstein type. Journal of Computational and Applied Mathematics, 2000, 115, 245-254.	2.0	91
93	A modification of the super-Halley method under mild differentiability conditions. Journal of Computational and Applied Mathematics, 2000, 114, 405-409.	2.0	20
94	Recurrence Relations for Chebyshev-Type Methods. Applied Mathematics and Optimization, 2000, 41, 227-236.	1.6	48
95	On a Convex Acceleration of Newton's Method. Journal of Optimization Theory and Applications, 1999, 100, 311-326.	1.5	20
96	Solving nonlinear integral equations arising in radiative transfer. Numerical Functional Analysis and Optimization, 1999, 20, 661-673.	1.4	14
97	The application of an inverse-free Jarratt-type approximation to nonlinear integral equations of Hammerstein-type. Computers and Mathematics With Applications, 1998, 36, 9-20.	2.7	13
98	A construction procedure of iterative methods with cubical convergence II: Another convergence approach. Applied Mathematics and Computation, 1998, 92, 59-68.	2.2	2
99	Avoiding the computation of the second Fréchet-derivative in the convex acceleration of Newton's method. Journal of Computational and Applied Mathematics, 1998, 96, 1-12.	2.0	37
100	Remark on the convergence of the midpoint method under mild differentiability conditions. Journal of Computational and Applied Mathematics, 1998, 98, 305-309.	2.0	5
101	Construction of iterative processes with high order of convergence. International Journal of Computer Mathematics, 1998, 69, 191-201.	1.8	2
102	Solving a nonlinear equation by a uniparametric family of iterative processes. International Journal of Computer Mathematics, 1998, 68, 301-308.	1.8	0
103	A new family of multipoint methods of second order. Numerical Functional Analysis and Optimization, 1998, 19, 499-512.	1.4	2
104	Region of accessibility for a class of Newton-type iterations. Proyecciones, 1998, 17, 71-76.	0.3	2
105	Relaxing convergence conditions for an inverse-free Jarratt-type approximation. Journal of Computational and Applied Mathematics, 1997, 83, 131-135.	2.0	5
106	A construction procedure of iterative methods with cubical convergence. Applied Mathematics and Computation, 1997, 85, 181-199.	2.2	12
107	A note on a family of newton type iterative processes. International Journal of Computer Mathematics, 1996, 62, 223-232.	1.8	2
108	On an efficient modification of the Chebyshev method. Computational and Mathematical Methods, 0, , .	0.8	0

#	Article	IF	CITATIONS
109	How to Increase the Accessibility of Newton's Method for Operators With Center-Lipschitz Continuous First Derivative. Numerical Functional Analysis and Optimization, 0, , 1-14.	1.4	0