Jixian Xu

List of Publications by Citations

Source: https://exaly.com/author-pdf/1494543/jixian-xu-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

27 6,840 23 29 g-index

29 7,866 19.2 5.44 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
27	Homogeneously dispersed multimetal oxygen-evolving catalysts. <i>Science</i> , 2016 , 352, 333-7	33.3	1459
26	Enhanced electrocatalytic CO reduction via field-induced reagent concentration. <i>Nature</i> , 2016 , 537, 38	2- 3 8.4	997
25	Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes. <i>Nature Communications</i> , 2015 , 6, 7081	17.4	815
24	Materials processing routes to trap-free halide perovskites. <i>Nano Letters</i> , 2014 , 14, 6281-6	11.5	567
23	Air-stable n-type colloidal quantum dot solids. <i>Nature Materials</i> , 2014 , 13, 822-8	27	466
22	Triple-halide wide-band gap perovskites with suppressed phase segregation for efficient tandems. <i>Science</i> , 2020 , 367, 1097-1104	33.3	366
21	Passivation Using Molecular Halides Increases Quantum Dot Solar Cell Performance. <i>Advanced Materials</i> , 2016 , 28, 299-304	24	279
20	10.6% Certified Colloidal Quantum Dot Solar Cells via Solvent-Polarity-Engineered Halide Passivation. <i>Nano Letters</i> , 2016 , 16, 4630-4	11.5	275
19	Halide-Dependent Electronic Structure of Organolead Perovskite Materials. <i>Chemistry of Materials</i> , 2015 , 27, 4405-4412	9.6	251
18	Sensitive, Fast, and Stable Perovskite Photodetectors Exploiting Interface Engineering. <i>ACS Photonics</i> , 2015 , 2, 1117-1123	6.3	247
17	2D matrix engineering for homogeneous quantum dot coupling in photovoltaic solids. <i>Nature Nanotechnology</i> , 2018 , 13, 456-462	28.7	196
16	Perovskite thin films via atomic layer deposition. <i>Advanced Materials</i> , 2015 , 27, 53-8	24	171
15	Graded doping for enhanced colloidal quantum dot photovoltaics. Advanced Materials, 2013, 25, 1719-	2 3 . ₄	150
14	Crosslinked Remote-Doped Hole-Extracting Contacts Enhance Stability under Accelerated Lifetime Testing in Perovskite Solar Cells. <i>Advanced Materials</i> , 2016 , 28, 2807-15	24	94
13	A two-step route to planar perovskite cells exhibiting reduced hysteresis. <i>Applied Physics Letters</i> , 2015 , 106, 143902	3.4	74
12	Mobile Ion Concentration Measurement and Open-Access Band Diagram Simulation Platform for Halide Perovskite Solar Cells. <i>Joule</i> , 2020 , 4, 109-127	27.8	72
11	Field-emission from quantum-dot-in-perovskite solids. <i>Nature Communications</i> , 2017 , 8, 14757	17.4	68

LIST OF PUBLICATIONS

1	10	Pseudohalide-Exchanged Quantum Dot Solids Achieve Record Quantum Efficiency in Infrared Photovoltaics. <i>Advanced Materials</i> , 2017 , 29, 1700749	24	61	
Š	9	Overcoming the Ambient Manufacturability-Scalability-Performance Bottleneck in Colloidal Quantum Dot Photovoltaics. <i>Advanced Materials</i> , 2018 , 30, e1801661	24	58	
8	8	Enhanced Open-Circuit Voltage in Colloidal Quantum Dot Photovoltaics via Reactivity-Controlled Solution-Phase Ligand Exchange. <i>Advanced Materials</i> , 2017 , 29, 1703627	24	42	
7	7	Picosecond Charge Transfer and Long Carrier Diffusion Lengths in Colloidal Quantum Dot Solids. <i>Nano Letters</i> , 2018 , 18, 7052-7059	11.5	42	
6	6	Multibandgap quantum dot ensembles for solar-matched infrared energy harvesting. <i>Nature Communications</i> , 2018 , 9, 4003	17.4	39	
	5	Solution-Processed In2O3/ZnO Heterojunction Electron Transport Layers for Efficient Organic Bulk Heterojunction and Inorganic Colloidal Quantum-Dot Solar Cells. <i>Solar Rrl</i> , 2018 , 2, 1800076	7.1	32	
4	4	Perovskite tandem solar cells with improved efficiency and stability. <i>Journal of Energy Chemistry</i> , 2021 , 58, 219-232	12	9	
3	3	Atomic layer deposition of absorbing thin films on nanostructured electrodes for short-wavelength infrared photosensing. <i>Applied Physics Letters</i> , 2015 , 107, 153105	3.4	4	
2	2	Fast Wetting of a Fullerene Capping Layer Improves the Efficiency and Scalability of Perovskite Solar Cells. <i>ACS Applied Materials & Description</i> (12, 37265-37274)	9.5	3	
1	1	Solar Cells: Overcoming the Ambient Manufacturability-Scalability-Performance Bottleneck in Colloidal Quantum Dot Photovoltaics (Adv. Mater. 35/2018). <i>Advanced Materials</i> , 2018 , 30, 1870260	24	3	