List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1494493/publications.pdf Version: 2024-02-01

		81434	26792
124	14,114	41	111
papers	citations	h-index	g-index
127	127	127	23249
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Implications of Selection Bias Due to Delayed Study Entry in Clinical Genomic Studies. JAMA Oncology, 2022, 8, 287.	3.4	27
2	A Scalable Quality Assurance Process for Curating Oncology Electronic Health Records: The Project GENIE Biopharma Collaborative Approach. JCO Clinical Cancer Informatics, 2022, 6, e2100105.	1.0	5
3	<i>NOTCH1</i> PEST domain variants are responsive to standard of care treatments despite distinct transformative properties in a breast cancer model. Oncotarget, 2022, 13, 373-386.	0.8	1
4	Abstract P1-16-07: A synthetic lethality treatment strategy for p53 mutant breast cancer. Cancer Research, 2022, 82, P1-16-07-P1-16-07.	0.4	0
5	Abstract P2-08-15: Clinical, pathologic, and molecular associations of tumor mutational burden in metastatic breast cancer. Cancer Research, 2022, 82, P2-08-15-P2-08-15.	0.4	0
6	Rolling window-based hepatitis toxicity prediction from routine bloodwork in patients undergoing immune checkpoint inhibitor therapy Journal of Clinical Oncology, 2022, 40, e13565-e13565.	0.8	0
7	Predicting immune checkpoint inhibitor-related pneumonitis using patient medical information Journal of Clinical Oncology, 2022, 40, e13566-e13566.	0.8	0
8	Use of clinical RNA-sequencing in the detection of actionable fusions compared to DNA-sequencing alone Journal of Clinical Oncology, 2022, 40, 3077-3077.	0.8	2
9	Predicting immune checkpoint inhibitor-related hepatitis using electronic health records of patients Journal of Clinical Oncology, 2022, 40, e13564-e13564.	0.8	0
10	Overcoming barriers in academic-industry partnerships to improve predictive modeling in immuno-oncology Journal of Clinical Oncology, 2022, 40, e13581-e13581.	0.8	0
11	Biomarkers for Systemic Therapy in Metastatic Breast Cancer: ASCO Guideline Update. Journal of Clinical Oncology, 2022, 40, 3205-3221.	0.8	43
12	Longitudinal Shifts of Solid Tumor and Liquid Biopsy Sequencing Concordance in Metastatic Breast Cancer. JCO Precision Oncology, 2022, , .	1.5	6
13	Hierarchical tumor heterogeneity mediated by cell contact between distinct genetic subclones. Journal of Clinical Investigation, 2021, 131, .	3.9	11
14	G-protein coupled receptor 35 (GPR35) regulates the colonic epithelial cell response to enterotoxigenic Bacteroides fragilis. Communications Biology, 2021, 4, 585.	2.0	20
15	ERa-Dependent Lethal Hyperactivation of the Anticipatory Unfolded Protein Response Induces Complete Regression Without Recurrence of Advanced Breast Cancer. Journal of the Endocrine Society, 2021, 5, A981-A982.	0.1	0
16	The breast is yet to come: current and future utility of circulating tumour DNA in breast cancer. British Journal of Cancer, 2021, 125, 780-788.	2.9	10
17	Selective therapeutic strategy for p53-deficient cancer by targeting dysregulation in DNA repair. Communications Biology, 2021, 4, 862.	2.0	5
18	Updated Results of TBCRC026: Phase II Trial Correlating Standardized Uptake Value With Pathological Complete Response to Pertuzumab and Trastuzumab in Breast Cancer. Journal of Clinical Oncology, 2021, 39, 2247-2256.	0.8	22

#	Article	IF	CITATIONS
19	A small-molecule activator of the unfolded protein response eradicates human breast tumors in mice. Science Translational Medicine, 2021, 13, .	5.8	20
20	Randomized Phase III Postoperative Trial of Platinum-Based Chemotherapy Versus Capecitabine in Patients With Residual Triple-Negative Breast Cancer Following Neoadjuvant Chemotherapy: ECOG-ACRIN EA1131. Journal of Clinical Oncology, 2021, 39, 2539-2551.	0.8	78
21	Reply to T. Shimoi et al and Y. Shimanuki et al. Journal of Clinical Oncology, 2021, 39, JCO.21.01905.	0.8	3
22	Framework for Implementing and Tracking a Molecular Tumor Board at a National Cancer Institute–Designated Comprehensive Cancer Center. Oncologist, 2021, 26, e1962-e1970.	1.9	11
23	Circulating tumor DNA in early-stage breast cancer: new directions and potential clinical applications. Clinical Advances in Hematology and Oncology, 2021, 19, 155-161.	0.3	1
24	Sex Disparity Observed for Oncotype DX Breast Recurrence Score in Predicting Mortality Among Patients with Early Stage ER-Positive Breast Cancer. Clinical Cancer Research, 2020, 26, 101-109.	3.2	14
25	TrkA overexpression in non-tumorigenic human breast cell lines confers oncogenic and metastatic properties. Breast Cancer Research and Treatment, 2020, 179, 631-642.	1.1	10
26	Collaborative, Multidisciplinary Evaluation of Cancer Variants Through Virtual Molecular Tumor Boards Informs Local Clinical Practices. JCO Clinical Cancer Informatics, 2020, 4, 602-613.	1.0	26
27	Combined Targeting of Estrogen Receptor Alpha and Exportin 1 in Metastatic Breast Cancers. Cancers, 2020, 12, 2397.	1.7	10
28	OR05-05 Lethal ERα-Dependent Hyperactivation of the Unfolded Protein Response Induces Complete Regression Without Recurrence of Primary and Metastatic Breast Cancer. Journal of the Endocrine Society, 2020, 4, .	0.1	0
29	Variant Interpretation in Patients With Metastatic Breast Cancer—Reply. JAMA Oncology, 2020, 6, 582.	3.4	0
30	Suppression of breast cancer metastasis and extension of survival by a new antiestrogen in a preclinical model driven by mutant estrogen receptors. Breast Cancer Research and Treatment, 2020, 181, 297-307.	1.1	8
31	Undetectable Tumor Cell-Free DNA in a Patient With Metastatic Breast Cancer With Complete Response and Long-Term Remission. Journal of the National Comprehensive Cancer Network: JNCCN, 2020, 18, 375-379.	2.3	2
32	CTNI-02. TBCRC049: A PHASE II STUDY TO ASSESS THE SAFETY AND EFFICACY OF THE COMBINATION OF TUCATINIB, TRASTUZUMAB AND CAPECITABINE FOR THE TREATMENT OF LEPTOMENINGEAL METASTASIS IN HER2 POSITIVE BR1AST CANCER. Neuro-Oncology, 2020, 22, ii41-ii41.	0.6	0
33	Circulating Tumor DNA as a Marker for Disease Relapse in Early-Stage Breast Cancer—Bad Blood. JAMA Oncology, 2019, 5, 1479.	3.4	7
34	Pathogenic Germline Variants in Patients With Metastatic Breast Cancer. JAMA Oncology, 2019, 5, 1506.	3.4	10
35	BRCA1 mutations attenuate super-enhancer function and chromatin looping in haploinsufficient human breast epithelial cells. Breast Cancer Research, 2019, 21, 51.	2.2	16
36	The estrogen receptor-alpha S118P variant does not affect breast cancer incidence or response to endocrine therapies. Breast Cancer Research and Treatment, 2019, 174, 401-412.	1.1	2

#	Article	IF	CITATIONS
37	Circulating Cell-Free DNA for Molecular Diagnostics and Therapeutic Monitoring. , 2019, , 89-99.		0
38	Hotspot SF3B1 mutations induce metabolic reprogramming and vulnerability to serine deprivation. Journal of Clinical Investigation, 2019, 129, 4708-4723.	3.9	41
39	High prevalence of deleterious BRCA1 and BRCA2 germline mutations in arab breast and ovarian cancer patients. Breast Cancer Research and Treatment, 2018, 168, 695-702.	1.1	35
40	Detection of Cancer DNA in Early Stage and Metastatic Breast Cancer Patients. Methods in Molecular Biology, 2018, 1768, 209-227.	0.4	8
41	A primary breast cancer with distinct foci of estrogen receptor-alpha positive and negative cells derived from the same clonal origin as revealed by whole exome sequencing. Breast Cancer Research and Treatment, 2018, 170, 425-430.	1.1	0
42	Upregulation of IRS1 Enhances IGF1 Response in Y537S and D538G ESR1 Mutant Breast Cancer Cells. Endocrinology, 2018, 159, 285-296.	1.4	32
43	Circulating Tumor DNA: Measurement and Clinical Utility. Annual Review of Medicine, 2018, 69, 223-234.	5.0	65
44	Identification, Prioritization, and Treatment of Mutations Identified by Next-Generation Sequencing. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2018, 38, 873-880.	1.8	6
45	Personalized postdoctoral fellowship care. Nature Biotechnology, 2018, 36, 900-902.	9.4	2
46	Biotinylated amplicon sequencing: A method for preserving DNA samples of limited quantity. Practical Laboratory Medicine, 2018, 12, e00108.	0.6	3
47	PIK3CA Mutations in Hormone Receptor–Positive Breast Cancers. JAMA Oncology, 2018, 4, 1330.	3.4	3
48	PIK3CA mutations and TP53 alterations cooperate to increase cancerous phenotypes and tumor heterogeneity. Breast Cancer Research and Treatment, 2017, 162, 451-464.	1.1	16
49	Monitoring Daily Dynamics of Early Tumor Response to Targeted Therapy by Detecting Circulating Tumor DNA in Urine. Clinical Cancer Research, 2017, 23, 4716-4723.	3.2	102
50	Liquid biopsy: unlocking the potentials of cell-free DNA. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2017, 471, 147-154.	1.4	41
51	Single-Nucleotide Polymorphism Leading to False Allelic Fraction by Droplet Digital PCR. Clinical Chemistry, 2017, 63, 1370-1376.	1.5	6
52	Circulating Free Tumor DNA (ctDNA): The Real-Time Liquid Biopsy. Cancer Drug Discovery and Development, 2017, , 105-118.	0.2	0
53	Structurally Novel Antiestrogens Elicit Differential Responses from Constitutively Active Mutant Estrogen Receptors in Breast Cancer Cells and Tumors. Cancer Research, 2017, 77, 5602-5613.	0.4	48
54	Mutation site and context dependent effects of ESR1 mutation in genome-edited breast cancer cell models. Breast Cancer Research, 2017, 19, 60.	2.2	116

#	Article	IF	CITATIONS
55	The Impact of Collisions on the Ability to Detect Rare Mutant Alleles Using Barcode-Type Next-Generation Sequencing Techniques. Cancer Informatics, 2017, 16, 117693511771923.	0.9	1
56	ERpS294 is a biomarker of ligand or mutational ERα activation and a breast cancer target for CDK2 inhibition. Oncotarget, 2017, 8, 83432-83445.	0.8	11
57	Optimizing the Use of Gene Expression Profiling in Early-Stage Breast Cancer. Journal of Clinical Oncology, 2016, 34, 4390-4397.	0.8	51
58	Highly personalized detection of minimal Ewing sarcoma disease burden from plasma tumor DNA. Cancer, 2016, 122, 3015-3023.	2.0	60
59	A Polycythemia VeraJAK2Mutation Masquerading as a Duodenal Cancer Mutation. Journal of the National Comprehensive Cancer Network: JNCCN, 2016, 14, 1495-1498.	2.3	12
60	ESR1 mutations: Pièce de résistance. Genes and Diseases, 2016, 3, 124-129.	1.5	3
61	Circulating Tumor DNA—the Potential of Liquid Biopsies. Current Breast Cancer Reports, 2016, 8, 14-21.	0.5	2
62	Familial GI Stromal Tumor With Loss of Heterozygosity and Amplification of Mutant <i>KIT</i> . Journal of Clinical Oncology, 2016, 34, e13-e16.	0.8	11
63	Use of cell free DNA in breast oncology. Biochimica Et Biophysica Acta: Reviews on Cancer, 2016, 1865, 266-274.	3.3	24
64	<i>ESR1</i> Mutations in Circulating Plasma Tumor DNA from Metastatic Breast Cancer Patients. Clinical Cancer Research, 2016, 22, 993-999.	3.2	152
65	Ki-67 is required for maintenance of cancer stem cells but not cell proliferation. Oncotarget, 2016, 7, 6281-6293.	0.8	76
66	A phosphoproteomic screen demonstrates differential dependence on HER3 for MAP kinase pathway activation by distinct <i>PIK3CA</i> mutations. Proteomics, 2015, 15, 318-326.	1.3	13
67	Comparison of cell stabilizing blood collection tubes for circulating plasma tumor DNA. Clinical Biochemistry, 2015, 48, 993-998.	0.8	91
68	Activating PIK3CA Mutations Induce an Epidermal Growth Factor Receptor (EGFR)/Extracellular Signal-regulated Kinase (ERK) Paracrine Signaling Axis in Basal-like Breast Cancer*. Molecular and Cellular Proteomics, 2015, 14, 1959-1976.	2.5	44
69	Gene Mutation Profiling of Breast Cancers for Clinical Decision Making. JAMA Oncology, 2015, 1, 569.	3.4	3
70	<i>HER2</i> missense mutations have distinct effects on oncogenic signaling and migration. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6205-14.	3.3	69
71	Detecting Plasma Tumor DNA in Early-Stage Breast Cancer—Reply. Clinical Cancer Research, 2015, 21, 3570-3570.	3.2	3
72	<i>NDRG1</i> links p53 with proliferation-mediated centrosome homeostasis and genome stability. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11583-11588	3.3	21

#	Article	IF	CITATIONS
73	Activating Mutations in <i>PIK3CA</i> Lead to Widespread Modulation of the Tyrosine Phosphoproteome. Journal of Proteome Research, 2015, 14, 3882-3891.	1.8	7
74	AMP-activated kinase (AMPK) regulates activity of HER2 and EGFR in breast cancer. Oncotarget, 2015, 6, 14754-14765.	0.8	30
75	Functional isogenic modeling of BRCA1 alleles reveals distinct carrier phenotypes. Oncotarget, 2015, 6, 25240-25251.	0.8	9
76	<i>TMSB4Y</i> is a candidate tumor suppressor on the Y chromosome and is deleted in male breast cancer. Oncotarget, 2015, 6, 44927-44940.	0.8	34
77	<i>MACROD2</i> overexpression mediates estrogen independent growth and tamoxifen resistance in breast cancers. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17606-17611.	3.3	56
78	Engineering ePTEN, an enhanced PTEN with increased tumor suppressor activities. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2684-93.	3.3	60
79	Detection of Cancer DNA in Plasma of Patients with Early-Stage Breast Cancer. Clinical Cancer Research, 2014, 20, 2643-2650.	3.2	341
80	A p21-ZEB1 Complex Inhibits Epithelial-Mesenchymal Transition through the MicroRNA 183-96-182 Cluster. Molecular and Cellular Biology, 2014, 34, 533-550.	1.1	92
81	BRCA1 Deficiency Exacerbates Estrogen-Induced DNA Damage and Genomic Instability. Cancer Research, 2014, 74, 2773-2784.	0.4	94
82	Estrogen Receptor and Receptor Tyrosine Kinase Signaling: Use of Combinatorial Hormone and Epidermal Growth Factor Receptor/Human Epidermal Growth Factor Receptor 2–Targeted Therapies for Breast Cancer. Journal of Clinical Oncology, 2014, 32, 1084-1086.	0.8	7
83	Activation of diverse signalling pathways by oncogenic PIK3CA mutations. Nature Communications, 2014, 5, 4961.	5.8	72
84	Somatic alterations as the basis for resistance to targeted therapies. Journal of Pathology, 2014, 232, 244-254.	2.1	31
85	Analysis of BRCA2 loss of heterozygosity in tumor tissue using droplet digital polymerase chain reaction. Human Pathology, 2014, 45, 1546-1550.	1.1	12
86	Plasma tumor DNA: on your markers, get set, go!. Annals of Translational Medicine, 2014, 2, 2.	0.7	8
87	GATA3 expression in breast carcinoma: utility in triple-negative, sarcomatoid, and metastatic carcinomas. Human Pathology, 2013, 44, 1341-1349.	1.1	192
88	Single Copies of Mutant <i>KRAS</i> and Mutant <i>PIK3CA</i> Cooperate in Immortalized Human Epithelial Cells to Induce Tumor Formation. Cancer Research, 2013, 73, 3248-3261.	0.4	33
89	Needles in a haystack: finding recurrent genomic changes in breast cancer. Breast Cancer Research, 2013, 14, 304.	2.2	2
90	Prevalence of <i>PIK3CA</i> mutations and the SNP rs17849079 in Arab breast cancer patients. Cancer Biology and Therapy, 2013, 14, 888-896.	1.5	23

#	Article	IF	CITATIONS
91	mTOR Signaling Feedback Modulates Mammary Epithelial Differentiation and Restrains Invasion Downstream of <i>PTEN</i> Loss. Cancer Research, 2013, 73, 5218-5231.	0.4	13
92	<i>PIK3CA</i> and <i>AKT1</i> Mutations Have Distinct Effects on Sensitivity to Targeted Pathway Inhibitors in an Isogenic Luminal Breast Cancer Model System. Clinical Cancer Research, 2013, 19, 5413-5422.	3.2	84
93	The Phosphoinositide-3-Kinase-Akt-mTOR Pathway as a Therapeutic Target in Breast Cancer. Journal of the National Comprehensive Cancer Network: JNCCN, 2013, 11, 670-678.	2.3	96
94	The role of targeted therapy and biomarkers in breast cancer treatment. Clinical and Experimental Metastasis, 2012, 29, 807-819.	1.7	36
95	Targeting the PI3K/Akt/mTOR Pathway for Breast Cancer Therapy. Journal of Mammary Gland Biology and Neoplasia, 2012, 17, 205-216.	1.0	77
96	Androgen receptor expression is usually maintained in initial surgically resected breast cancer metastases but is often lost in end-stage metastases found at autopsy. Human Pathology, 2012, 43, 1003-1011.	1.1	49
97	NSD2 Links Dimethylation of Histone H3 at Lysine 36 to Oncogenic Programming. Molecular Cell, 2011, 44, 609-620.	4.5	356
98	PIK3CAmutations and EGFR overexpression predict for lithium sensitivity in human breast epithelial cells. Cancer Biology and Therapy, 2011, 11, 358-367.	1.5	7
99	Relationship Between Molecular Subtype of Invasive Breast Carcinoma and Expression of Gross Cystic Disease Fluid Protein 15 and Mammaglobin. American Journal of Clinical Pathology, 2011, 135, 587-591.	0.4	65
100	A High-Throughput Screen with Isogenic PTEN+/+ and PTENâ^'/â^' Cells Identifies CID1340132 as a Novel Compound That Induces Apoptosis in PTEN and PIK3CA Mutant Human Cancer Cells. Journal of Biomolecular Screening, 2011, 16, 383-393.	2.6	9
101	Mutation of a single allele of the cancer susceptibility gene <i>BRCA1</i> leads to genomic instability in human breast epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17773-17778.	3.3	134
102	The Role of PIK3CA Mutations as A Predictor of Outcomes and A Therapeutic Target. Current Breast Cancer Reports, 2010, 2, 167-173.	0.5	0
103	PIK3CA and KRAS mutations predict for response to everolimus therapy: now that's RAD001. Journal of Clinical Investigation, 2010, 120, 2655-2658.	3.9	31
104	Knockin of mutant PIK3CA activates multiple oncogenic pathways. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2835-2840.	3.3	145
105	Deletion of PTEN Promotes Tumorigenic Signaling, Resistance to Anoikis, and Altered Response to Chemotherapeutic Agents in Human Mammary Epithelial Cells. Cancer Research, 2009, 69, 8275-8283.	0.4	79
106	p21 and p27: roles in carcinogenesis and drug resistance. Expert Reviews in Molecular Medicine, 2008, 10, e19.	1.6	346
107	Tamoxifen-stimulated growth of breast cancer due to p21 loss. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 288-293.	3.3	86
108	The multiple myeloma–associated MMSET gene contributes to cellular adhesion, clonogenic growth, and tumorigenicity. Blood, 2008, 111, 856-864.	0.6	137

7

#	Article	IF	CITATIONS
109	The PIK3CA Gene as a Mutated Target for Cancer Therapy. Current Cancer Drug Targets, 2008, 8, 733-740.	0.8	41
110	p21 gene knock down does not identify genetic effectors seen with gene knock out. Cancer Biology and Therapy, 2007, 6, 1025-1030.	1.5	22
111	Knock-in of Mutant K- <i>ras</i> in Nontumorigenic Human Epithelial Cells as a New Model for Studying K- <i>ras</i> –Mediated Transformation. Cancer Research, 2007, 67, 8460-8467.	0.4	85
112	Estrogen Receptor α Mediates Breast Cancer Cell Resistance to Paclitaxel through Inhibition of Apoptotic Cell Death. Cancer Research, 2007, 67, 5337-5344.	0.4	94
113	PI3 Kinase Activation and Response to Trastuzumab Therapy: What's neu with Herceptin Resistance?. Cancer Cell, 2007, 12, 297-299.	7.7	45
114	The Genomic Landscapes of Human Breast and Colorectal Cancers. Science, 2007, 318, 1108-1113.	6.0	3,049
115	The Consensus Coding Sequences of Human Breast and Colorectal Cancers. Science, 2006, 314, 268-274.	6.0	3,130
116	Physiologic estrogen receptor alpha signaling in non-tumorigenic human mammary epithelial cells. Breast Cancer Research and Treatment, 2006, 99, 23-33.	1.1	20
117	Polyamine Analogues Down-regulate Estrogen Receptor α Expression in Human Breast Cancer Cells. Journal of Biological Chemistry, 2006, 281, 19055-19063.	1.6	37
118	Duel nature of TGF-?? signaling: tumor suppressor vs. tumor promoter. Current Opinion in Oncology, 2005, 17, 49-54.	1.1	161
119	Protein Phosphatase 2A Regulates Estrogen Receptor α (ER) Expression through Modulation of ER mRNA Stability. Journal of Biological Chemistry, 2005, 280, 29519-29524.	1.6	39
120	The PIK3CA gene is mutated with high frequency in human breast cancers. Cancer Biology and Therapy, 2004, 3, 772-775.	1.5	594
121	p21 (WAF1/CIP1) Mediates the Growth Response to TGF-b in Human Epithelial Cells. Cancer Biology and Therapy, 2004, 3, 221-225.	1.5	44
122	Histone modifications and silencing prior to DNA methylation of a tumor suppressor gene. Cancer Cell, 2003, 3, 89-95.	7.7	378
123	DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature, 2002, 416, 552-556.	13.7	1,126
124	Role of BAX in the Apoptotic Response to Anticancer Agents. Science, 2000, 290, 989-992.	6.0	843