Shanlin Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1494302/publications.pdf

Version: 2024-02-01

50 papers 8,368 citations

168829 31 h-index 51 g-index

54 all docs

54 does citations

times ranked

54

10984 citing authors

#	Article	IF	CITATIONS
1	Tracing the origin of honey products based on metagenomics and machine learning. Food Chemistry, 2022, 371, 131066.	4.2	15
2	A super pan-genomic landscape of rice. Cell Research, 2022, 32, 878-896.	5.7	99
3	Viromics of extant insect orders unveil the evolution of the flavi-like superfamily. Virus Evolution, 2021, 7, veab030.	2.2	35
4	Genomic insights into the conservation status of the world's last remaining Sumatran rhinoceros populations. Nature Communications, 2021, 12, 2393.	5 . 8	39
5	Combining molecular datasets with strongly heterogeneous taxon coverage enlightens the peculiar biogeographic history of stoneflies (Insecta: Plecoptera). Systematic Entomology, 2021, 46, 952-967.	1.7	13
6	Ancient and modern genomes unravel the evolutionary history of the rhinoceros family. Cell, 2021, 184, 4874-4885.e16.	13.5	49
7	Evolutionary history and divergence times of Odonata (dragonflies and damselflies) revealed through transcriptomics. IScience, 2021, 24, 103324.	1.9	25
8	NextPolish: a fast and efficient genome polishing tool for long-read assembly. Bioinformatics, 2020, 36, 2253-2255.	1.8	554
9	Historical isolation facilitates species radiation by sexual selection: Insights from <i>Chorthippus</i> grasshoppers. Molecular Ecology, 2020, 29, 4985-5002.	2.0	18
10	Efficient COI barcoding using high throughput single-end 400 bp sequencing. BMC Genomics, 2020, 21, 862.	1.2	19
11	Using full-length metabarcoding and DNA barcoding to infer community assembly for speciose taxonomic groups: a case study. Evolutionary Ecology, 2020, 34, 1063-1088.	0.5	2
12	Gene reuse facilitates rapid radiation and independent adaptation to diverse habitats in the Asian honeybee. Science Advances, 2020, 6, .	4.7	42
13	Comparison of the two up-to-date sequencing technologies for genome assembly: HiFi reads of Pacific Biosciences Sequel II system and ultralong reads of Oxford Nanopore. GigaScience, 2020, 9, .	3.3	90
14	Four myriapod relatives – but who are sisters? No end to debates on relationships among the four major myriapod subgroups. BMC Evolutionary Biology, 2020, 20, 144.	3.2	13
15	The evolutionary history of extinct and living lions. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10927-10934.	3.3	70
16	An integrative phylogenomic approach to elucidate the evolutionary history and divergence times of Neuropterida (Insecta: Holometabola). BMC Evolutionary Biology, 2020, 20, 64.	3.2	48
17	Recent mitochondrial lineage extinction in the critically endangered Javan rhinoceros. Zoological Journal of the Linnean Society, 2020, 190, 372-383.	1.0	13
18	Phylogeny of Neotropical Seirinae (Collembola, Entomobryidae) based on mitochondrial genomes. Zoologica Scripta, 2020, 49, 329-339.	0.7	11

#	Article	IF	CITATIONS
19	The discovery of Neotropical Lepidosira (Collembola, Entomobryidae) and its systematic position. Zoologica Scripta, 2019, 48, 783-800.	0.7	6
20	Phylogenomics reveals the evolutionary timing and pattern of butterflies and moths. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22657-22663.	3.3	291
21	Early Pleistocene enamel proteome from Dmanisi resolves Stephanorhinus phylogeny. Nature, 2019, 574, 103-107.	13.7	135
22	RAD-Seq data advance captive-based conservation of wild bactrian camels (Camelus ferus). Conservation Genetics, 2019, 20, 817-824.	0.8	4
23	MitoZ: a toolkit for animal mitochondrial genome assembly, annotation and visualization. Nucleic Acids Research, 2019, 47, e63-e63.	6.5	593
24	Phylogenomics of the superfamily Dytiscoidea (Coleoptera: Adephaga) with an evaluation of phylogenetic conflict and systematic error. Molecular Phylogenetics and Evolution, 2019, 135, 270-285.	1.2	36
25	An integrative phylogenomic approach illuminates the evolutionary history of cockroaches and termites (Blattodea). Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182076.	1.2	143
26	The evolution and genomic basis of beetle diversity. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24729-24737.	3.3	372
27	Re-assessing the diversity of negative strand RNA viruses in insects. PLoS Pathogens, 2019, 15, e1008224.	2.1	101
28	Evolutionary history of Polyneoptera and its implications for our understanding of early winged insects. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3024-3029.	3.3	150
29	New data, same story: phylogenomics does not support Syrphoidea (Diptera: Syrphidae, Pipunculidae). Systematic Entomology, 2018, 43, 447-459.	1.7	53
30	Performance of amplicon and shotgun sequencing for accurate biomass estimation in invertebrate community samples. Molecular Ecology Resources, 2018, 18, 1020-1034.	2.2	104
31	Transcriptome sequence-based phylogeny of chalcidoid wasps (Hymenoptera: Chalcidoidea) reveals a history of rapid radiations, convergence, and evolutionary success. Molecular Phylogenetics and Evolution, 2018, 120, 286-296.	1.2	83
32	Identification of transcription factor genes involved in anthocyanin biosynthesis in carrot (Daucus) Tj ETQq0 0 0	rgBT/Ove	rlogg 10 Tf 50
33	Phylogenomics and the evolution of hemipteroid insects. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12775-12780.	3.3	275
34	Evolutionary History of the Hymenoptera. Current Biology, 2017, 27, 1013-1018.	1.8	611
35	An expanded mammal mitogenome dataset from Southeast Asia. GigaScience, 2017, 6, 1-8.	3.3	27
36	Transcriptome and target DNA enrichment sequence data provide new insights into the phylogeny of vespid wasps (Hymenoptera: Aculeata: Vespidae). Molecular Phylogenetics and Evolution, 2017, 116, 213-226.	1.2	87

#	Article	IF	CITATIONS
37	Positive and relaxed selection associated with flight evolution and loss in insect transcriptomes. GigaScience, 2017, 6, 1-14.	3.3	40
38	Orthograph: a versatile tool for mapping coding nucleotide sequences to clusters of orthologous genes. BMC Bioinformatics, 2017, 18, 111.	1.2	146
39	Comparative performance of the BGISEQ-500 vs Illumina HiSeq2500 sequencing platforms for palaeogenomic sequencing. GigaScience, 2017, 6, 1-13.	3.3	137
40	Filling reference gaps via assembling DNA barcodes using high-throughput sequencing—moving toward barcoding the world. GigaScience, 2017, 6, 1-8.	3.3	18
41	The molecular evolutionary dynamics of oxidative phosphorylation (OXPHOS) genes in Hymenoptera. BMC Evolutionary Biology, 2017, 17, 269.	3.2	40
42	Transcriptomic data from panarthropods shed new light on the evolution of insulator binding proteins in insects. BMC Genomics, 2016, 17, 861.	1.2	23
43	Evolution of neuropeptides in non-pterygote hexapods. BMC Evolutionary Biology, 2016, 16, 51.	3.2	63
44	Mitochondrial capture enriches mitoâ€DNA 100 fold, enabling PCRâ€free mitogenomics biodiversity analysis. Molecular Ecology Resources, 2016, 16, 470-479.	2.2	74
45	Highâ€throughput monitoring of wild bee diversity and abundance via mitogenomics. Methods in Ecology and Evolution, 2015, 6, 1034-1043.	2.2	119
46	Phylogenomics resolves the timing and pattern of insect evolution. Science, 2014, 346, 763-767.	6.0	2,096
47	Multiplex sequencing of pooled mitochondrial genomes—a crucial step toward biodiversity analysis using mito-metagenomics. Nucleic Acids Research, 2014, 42, e166-e166.	6.5	230
48	SOAPdenovo-Trans: <i>de novo</i> transcriptome assembly with short RNA-Seq reads. Bioinformatics, 2014, 30, 1660-1666.	1.8	826
49	Ultra-deep sequencing enables high-fidelity recovery of biodiversity for bulk arthropod samples without PCR amplification. GigaScience, 2013, 2, 4.	3.3	227
50	SOAP B arcode: revealing arthropod biodiversity through assembly of Illumina shotgun sequences of PCR amplicons. Methods in Ecology and Evolution, 2013, 4, 1142-1150.	2.2	45