Shanlin Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1494302/publications.pdf Version: 2024-02-01

SHANLIN LILL

#	Article	IF	CITATIONS
1	Phylogenomics resolves the timing and pattern of insect evolution. Science, 2014, 346, 763-767.	12.6	2,096
2	SOAPdenovo-Trans: <i>de novo</i> transcriptome assembly with short RNA-Seq reads. Bioinformatics, 2014, 30, 1660-1666.	4.1	826
3	Evolutionary History of the Hymenoptera. Current Biology, 2017, 27, 1013-1018.	3.9	611
4	MitoZ: a toolkit for animal mitochondrial genome assembly, annotation and visualization. Nucleic Acids Research, 2019, 47, e63-e63.	14.5	593
5	NextPolish: a fast and efficient genome polishing tool for long-read assembly. Bioinformatics, 2020, 36, 2253-2255.	4.1	554
6	The evolution and genomic basis of beetle diversity. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24729-24737.	7.1	372
7	Phylogenomics reveals the evolutionary timing and pattern of butterflies and moths. Proceedings of the United States of America, 2019, 116, 22657-22663.	7.1	291
8	Phylogenomics and the evolution of hemipteroid insects. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12775-12780.	7.1	275
9	Multiplex sequencing of pooled mitochondrial genomes—a crucial step toward biodiversity analysis using mito-metagenomics. Nucleic Acids Research, 2014, 42, e166-e166.	14.5	230
10	Ultra-deep sequencing enables high-fidelity recovery of biodiversity for bulk arthropod samples without PCR amplification. GigaScience, 2013, 2, 4.	6.4	227
11	Evolutionary history of Polyneoptera and its implications for our understanding of early winged insects. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3024-3029.	7.1	150
12	Orthograph: a versatile tool for mapping coding nucleotide sequences to clusters of orthologous genes. BMC Bioinformatics, 2017, 18, 111.	2.6	146
13	An integrative phylogenomic approach illuminates the evolutionary history of cockroaches and termites (Blattodea). Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182076.	2.6	143
14	Comparative performance of the BGISEQ-500 vs Illumina HiSeq2500 sequencing platforms for palaeogenomic sequencing. GigaScience, 2017, 6, 1-13.	6.4	137
15	Early Pleistocene enamel proteome from Dmanisi resolves Stephanorhinus phylogeny. Nature, 2019, 574, 103-107.	27.8	135
16	Highâ€ŧhroughput monitoring of wild bee diversity and abundance via mitogenomics. Methods in Ecology and Evolution, 2015, 6, 1034-1043.	5.2	119
17	Performance of amplicon and shotgun sequencing for accurate biomass estimation in invertebrate community samples. Molecular Ecology Resources, 2018, 18, 1020-1034.	4.8	104
18	Re-assessing the diversity of negative strand RNA viruses in insects. PLoS Pathogens, 2019, 15, e1008224.	4.7	101

Shanlin Liu

#	Article	IF	CITATIONS
19	A super pan-genomic landscape of rice. Cell Research, 2022, 32, 878-896.	12.0	99
20	Comparison of the two up-to-date sequencing technologies for genome assembly: HiFi reads of Pacific Biosciences Sequel II system and ultralong reads of Oxford Nanopore. GigaScience, 2020, 9, .	6.4	90
21	Transcriptome and target DNA enrichment sequence data provide new insights into the phylogeny of vespid wasps (Hymenoptera: Aculeata: Vespidae). Molecular Phylogenetics and Evolution, 2017, 116, 213-226.	2.7	87
22	Transcriptome sequence-based phylogeny of chalcidoid wasps (Hymenoptera: Chalcidoidea) reveals a history of rapid radiations, convergence, and evolutionary success. Molecular Phylogenetics and Evolution, 2018, 120, 286-296.	2.7	83
23	Mitochondrial capture enriches mitoâ€ÐNA 100 fold, enabling PCRâ€free mitogenomics biodiversity analysis. Molecular Ecology Resources, 2016, 16, 470-479.	4.8	74
24	The evolutionary history of extinct and living lions. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10927-10934.	7.1	70
25	Evolution of neuropeptides in non-pterygote hexapods. BMC Evolutionary Biology, 2016, 16, 51.	3.2	63
26	New data, same story: phylogenomics does not support Syrphoidea (Diptera: Syrphidae, Pipunculidae). Systematic Entomology, 2018, 43, 447-459.	3.9	53
27	Ancient and modern genomes unravel the evolutionary history of the rhinoceros family. Cell, 2021, 184, 4874-4885.e16.	28.9	49
28	An integrative phylogenomic approach to elucidate the evolutionary history and divergence times of Neuropterida (Insecta: Holometabola). BMC Evolutionary Biology, 2020, 20, 64.	3.2	48
29	SOAP B arcode: revealing arthropod biodiversity through assembly of Illumina shotgun sequences of PCR amplicons. Methods in Ecology and Evolution, 2013, 4, 1142-1150.	5.2	45
30	Gene reuse facilitates rapid radiation and independent adaptation to diverse habitats in the Asian honeybee. Science Advances, 2020, 6, .	10.3	42
31	Positive and relaxed selection associated with flight evolution and loss in insect transcriptomes. GigaScience, 2017, 6, 1-14.	6.4	40
32	The molecular evolutionary dynamics of oxidative phosphorylation (OXPHOS) genes in Hymenoptera. BMC Evolutionary Biology, 2017, 17, 269.	3.2	40
33	Identification of transcription factor genes involved in anthocyanin biosynthesis in carrot (Daucus) Tj ETQq1 1	0.784314 r 2.8	gBT_/Overloc
34	Genomic insights into the conservation status of the world's last remaining Sumatran rhinoceros populations. Nature Communications, 2021, 12, 2393.	12.8	39
35	Phylogenomics of the superfamily Dytiscoidea (Coleoptera: Adephaga) with an evaluation of phylogenetic conflict and systematic error. Molecular Phylogenetics and Evolution, 2019, 135, 270-285.	2.7	36
36	Viromics of extant insect orders unveil the evolution of the flavi-like superfamily. Virus Evolution, 2021, 7, veab030.	4.9	35

Shanlin Liu

#	Article	IF	CITATIONS
37	An expanded mammal mitogenome dataset from Southeast Asia. GigaScience, 2017, 6, 1-8.	6.4	27
38	Evolutionary history and divergence times of Odonata (dragonflies and damselflies) revealed through transcriptomics. IScience, 2021, 24, 103324.	4.1	25
39	Transcriptomic data from panarthropods shed new light on the evolution of insulator binding proteins in insects. BMC Genomics, 2016, 17, 861.	2.8	23
40	Efficient COI barcoding using high throughput single-end 400 bp sequencing. BMC Genomics, 2020, 21, 862.	2.8	19
41	Filling reference gaps via assembling DNA barcodes using high-throughput sequencing—moving toward barcoding the world. GigaScience, 2017, 6, 1-8.	6.4	18
42	Historical isolation facilitates species radiation by sexual selection: Insights from <i>Chorthippus</i> grasshoppers. Molecular Ecology, 2020, 29, 4985-5002.	3.9	18
43	Tracing the origin of honey products based on metagenomics and machine learning. Food Chemistry, 2022, 371, 131066.	8.2	15
44	Four myriapod relatives – but who are sisters? No end to debates on relationships among the four major myriapod subgroups. BMC Evolutionary Biology, 2020, 20, 144.	3.2	13
45	Recent mitochondrial lineage extinction in the critically endangered Javan rhinoceros. Zoological Journal of the Linnean Society, 2020, 190, 372-383.	2.3	13
46	Combining molecular datasets with strongly heterogeneous taxon coverage enlightens the peculiar biogeographic history of stoneflies (Insecta: Plecoptera). Systematic Entomology, 2021, 46, 952-967.	3.9	13
47	Phylogeny of Neotropical Seirinae (Collembola, Entomobryidae) based on mitochondrial genomes. Zoologica Scripta, 2020, 49, 329-339.	1.7	11
48	The discovery of Neotropical Lepidosira (Collembola, Entomobryidae) and its systematic position. Zoologica Scripta, 2019, 48, 783-800.	1.7	6
49	RAD-Seq data advance captive-based conservation of wild bactrian camels (Camelus ferus). Conservation Genetics, 2019, 20, 817-824.	1.5	4
50	Using full-length metabarcoding and DNA barcoding to infer community assembly for speciose taxonomic groups: a case study. Evolutionary Ecology, 2020, 34, 1063-1088.	1.2	2