List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1494211/publications.pdf Version: 2024-02-01

XIAN LUN LOH

#	Article	IF	CITATIONS
1	Supramolecular polymeric hydrogels. Chemical Society Reviews, 2012, 41, 6195.	18.7	988
2	Towards lignin-based functional materials in a sustainable world. Green Chemistry, 2016, 18, 1175-1200.	4.6	931
3	Structures, mechanical properties and applications of silk fibroin materials. Progress in Polymer Science, 2015, 46, 86-110.	11.8	811
4	Cyclodextrin-based supramolecular architectures: Syntheses, structures, and applications for drug and gene delivery. Advanced Drug Delivery Reviews, 2008, 60, 1000-1017.	6.6	725
5	Nanoparticle–Hydrogel Composites: Concept, Design, and Applications of These Promising, Multiâ€Functional Materials. Advanced Science, 2015, 2, 1400010.	5.6	653
6	Methods and strategies for the synthesis of diverse nanoparticles and their applications: a comprehensive overview. RSC Advances, 2015, 5, 105003-105037.	1.7	519
7	Silk Fibroin for Flexible Electronic Devices. Advanced Materials, 2016, 28, 4250-4265.	11.1	466
8	Polyhydroxyalkanoates: opening doors for a sustainable future. NPG Asia Materials, 2016, 8, e265-e265.	3.8	441
9	Ultrahigh-Water-Content Supramolecular Hydrogels Exhibiting Multistimuli Responsiveness. Journal of the American Chemical Society, 2012, 134, 11767-11773.	6.6	409
10	Pectin as a rheology modifier: Origin, structure, commercial production and rheology. Carbohydrate Polymers, 2017, 161, 118-139.	5.1	356
11	Biodegradable polymers for electrospinning: Towards biomedical applications. Materials Science and Engineering C, 2014, 45, 659-670.	3.8	318
12	Recent Advances in Shape Memory Soft Materials for Biomedical Applications. ACS Applied Materials & Interfaces, 2016, 8, 10070-10087.	4.0	313
13	Face Masks in the New COVID-19 Normal: Materials, Testing, and Perspectives. Research, 2020, 2020, 7286735.	2.8	306
14	Utilising inorganic nanocarriers for gene delivery. Biomaterials Science, 2016, 4, 70-86.	2.6	297
15	Editable Supercapacitors with Customizable Stretchability Based on Mechanically Strengthened Ultralong MnO ₂ Nanowire Composite. Advanced Materials, 2018, 30, 1704531.	11.1	270
16	Water soluble polyhydroxyalkanoates: future materials for therapeutic applications. Chemical Society Reviews, 2015, 44, 2865-2879.	18.7	257
17	New Biodegradable Thermogelling Copolymers Having Very Low Gelation Concentrations. Biomacromolecules, 2007, 8, 585-593.	2.6	254
18	Multi-functional fluorescent carbon dots with antibacterial and gene delivery properties. RSC Advances, 2015, 5, 46817-46822.	1.7	242

#	Article	IF	CITATIONS
19	Guided orientation of cardiomyocytes on electrospun aligned nanofibers for cardiac tissue engineering. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2011, 98B, 379-386.	1.6	241
20	Recent Advances of Using Hybrid Nanocarriers in Remotely Controlled Therapeutic Delivery. Small, 2016, 12, 4782-4806.	5.2	226
21	Tissue engineered plant extracts as nanofibrous wound dressing. Biomaterials, 2013, 34, 724-734.	5.7	216
22	Engineering Poly(lactide)–Lignin Nanofibers with Antioxidant Activity for Biomedical Application. ACS Sustainable Chemistry and Engineering, 2016, 4, 5268-5276.	3.2	209
23	Polypyrroleâ€contained electrospun conductive nanofibrous membranes for cardiac tissue engineering. Journal of Biomedical Materials Research - Part A, 2011, 99A, 376-385.	2.1	208
24	Surface Strain Redistribution on Structured Microfibers to Enhance Sensitivity of Fiberâ€Shaped Stretchable Strain Sensors. Advanced Materials, 2018, 30, 1704229.	11.1	208
25	Controlled drug release from biodegradable thermoresponsive physical hydrogel nanofibers. Journal of Controlled Release, 2010, 143, 175-182.	4.8	206
26	Supramolecular hydrogels for antimicrobial therapy. Chemical Society Reviews, 2018, 47, 6917-6929.	18.7	196
27	Hydrolytic degradation and protein release studies of thermogelling polyurethane copolymers consisting of poly[(R)-3-hydroxybutyrate], poly(ethylene glycol), and poly(propylene glycol). Biomaterials, 2007, 28, 4113-4123.	5.7	193
28	Supramolecular Peptide Amphiphile Vesicles through Host–Guest Complexation. Angewandte Chemie - International Edition, 2012, 51, 9633-9637.	7.2	191
29	Biodegradable electronics: cornerstone for sustainable electronics and transient applications. Journal of Materials Chemistry C, 2016, 4, 5531-5558.	2.7	184
30	Thermogels: In Situ Gelling Biomaterial. ACS Biomaterials Science and Engineering, 2016, 2, 295-316.	2.6	176
31	Triply Triggered Doxorubicin Release From Supramolecular Nanocontainers. Biomacromolecules, 2012, 13, 84-91.	2.6	174
32	Electrospinning of poly(glycerol sebacate)-based nanofibers for nerve tissue engineering. Materials Science and Engineering C, 2017, 70, 1089-1094.	3.8	171
33	Polyester elastomers for soft tissue engineering. Chemical Society Reviews, 2018, 47, 4545-4580.	18.7	168
34	An artificial sensory neuron with visual-haptic fusion. Nature Communications, 2020, 11, 4602.	5.8	166
35	Recent progress of atomic layer deposition on polymeric materials. Materials Science and Engineering C, 2017, 70, 1182-1191.	3.8	165
36	Bio-inspired crosslinking and matrix-drug interactions for advanced wound dressings with long-term antimicrobial activity. Biomaterials, 2017, 138, 153-168.	5.7	165

#	Article	IF	CITATIONS
37	Mechanical properties and <i>in vitro</i> behavior of nanofiber–hydrogel composites for tissue engineering applications. Nanotechnology, 2012, 23, 095705.	1.3	163
38	Development of Lignin Supramolecular Hydrogels with Mechanically Responsive and Self-Healing Properties. ACS Sustainable Chemistry and Engineering, 2015, 3, 2160-2169.	3.2	162
39	Anisotropically branched metal nanostructures. Chemical Society Reviews, 2015, 44, 6001-6017.	18.7	161
40	Sanitizing agents for virus inactivation and disinfection. View, 2020, 1, e16.	2.7	158
41	Synthesis and water-swelling of thermo-responsive poly(ester urethane)s containing poly(ε-caprolactone), poly(ethylene glycol) and poly(propylene glycol). Biomaterials, 2008, 29, 3185-3194.	5.7	157
42	Advances in hydrogel delivery systems for tissue regeneration. Materials Science and Engineering C, 2014, 45, 690-697.	3.8	157
43	Engineering highly stretchable lignin-based electrospun nanofibers for potential biomedical applications. Journal of Materials Chemistry B, 2015, 3, 6194-6204.	2.9	156
44	Biodegradable thermogelling poly(ester urethane)s consisting of poly(lactic acid) – Thermodynamics of micellization and hydrolytic degradation. Biomaterials, 2008, 29, 2164-2172.	5.7	153
45	Sustainable and Antioxidant Lignin–Polyester Copolymers and Nanofibers for Potential Healthcare Applications. ACS Sustainable Chemistry and Engineering, 2017, 5, 6016-6025.	3.2	152
46	Honeycombâ€Lanternâ€Inspired 3D Stretchable Supercapacitors with Enhanced Specific Areal Capacitance. Advanced Materials, 2018, 30, e1805468.	11.1	152
47	Layer-by-layer assemblies for antibacterial applications. Biomaterials Science, 2015, 3, 1505-1518.	2.6	149
48	Polymeric Hydrogels and Nanoparticles: A Merging and Emerging Field. Australian Journal of Chemistry, 2013, 66, 997.	0.5	148
49	Pseudo-Block Copolymer Based on Star-Shaped Poly(<i>N</i> -isopropylacrylamide) with a β-Cyclodextrin Core and Guest-Bearing PEG: Controlling Thermoresponsivity through Supramolecular Self-Assembly. Macromolecules, 2008, 41, 5967-5970.	2.2	145
50	Longâ€Term Realâ€Time In Vivo Drug Release Monitoring with AIE Thermogelling Polymer. Small, 2017, 13, 1603404.	5.2	140
51	Sustained release of proteins from high water content supramolecular polymer hydrogels. Biomaterials, 2012, 33, 4646-4652.	5.7	139
52	Supramolecular host–guest polymeric materials for biomedical applications. Materials Horizons, 2014, 1, 185-195.	6.4	139
53	Recent development of unimolecular micelles as functional materials and applications. Polymer Chemistry, 2016, 7, 5898-5919.	1.9	131
54	Synthesis of Novel Biodegradable Thermoresponsive Triblock Copolymers Based on Poly[(<i>R</i>)-3-hydroxybutyrate] and Poly(<i>N</i> -isopropylacrylamide) and Their Formation of Thermoresponsive Micelles. Macromolecules, 2009, 42, 194-202.	2.2	130

#	Article	IF	CITATIONS
55	Effective Targeted Photothermal Ablation of Multidrug Resistant Bacteria and Their Biofilms with NIRâ€Absorbing Gold Nanocrosses. Advanced Healthcare Materials, 2016, 5, 2122-2130.	3.9	126
56	Nanomaterial mediated optogenetics: opportunities and challenges. RSC Advances, 2016, 6, 60896-60906.	1.7	125
57	Poly(glycerol sebacate) biomaterial: synthesis and biomedical applications. Journal of Materials Chemistry B, 2015, 3, 7641-7652.	2.9	124
58	Custom-Made Electrochemical Energy Storage Devices. ACS Energy Letters, 2019, 4, 606-614.	8.8	123
59	Biodegradable thermosensitive copolymer hydrogels for drug delivery. Expert Opinion on Therapeutic Patents, 2007, 17, 965-977.	2.4	121
60	Biodegradable Thermogelling Polymers: Working Towards Clinical Applications. Advanced Healthcare Materials, 2014, 3, 977-988.	3.9	121
61	Engineering PCL/lignin nanofibers as an antioxidant scaffold for the growth of neuron and Schwann cell. Colloids and Surfaces B: Biointerfaces, 2018, 169, 356-365.	2.5	121
62	Polyhydroxyalkanoates: Chemical Modifications Toward Biomedical Applications. ACS Sustainable Chemistry and Engineering, 2014, 2, 106-119.	3.2	120
63	Mechanically Interlocked Hydrogel–Elastomer Hybrids for Onâ€5kin Electronics. Advanced Functional Materials, 2020, 30, 1909540.	7.8	120
64	The in vitro hydrolysis of poly(ester urethane)s consisting of poly[(R)-3-hydroxybutyrate] and poly(ethylene glycol). Biomaterials, 2006, 27, 1841-1850.	5.7	117
65	A Perspective on the Trends and Challenges Facing Porphyrinâ€Based Antiâ€Microbial Materials. Small, 2016, 12, 3609-3644.	5.2	117
66	Elastic poly(<i>Îμ</i> -caprolactone)-polydimethylsiloxane copolymer fibers with shape memory effect for bone tissue engineering. Biomedical Materials (Bristol), 2016, 11, 015007.	1.7	117
67	How far is Lignin from being a biomedical material?. Bioactive Materials, 2022, 8, 71-94.	8.6	117
68	Fluorescent gels: a review of synthesis, properties, applications and challenges. Materials Chemistry Frontiers, 2019, 3, 1489-1502.	3.2	115
69	Review of Adaptive Programmable Materials and Their Bioapplications. ACS Applied Materials & Interfaces, 2016, 8, 33351-33370.	4.0	112
70	Purification and Characterization of a Vaterite-Inducing Peptide, Pelovaterin, from the Eggshells ofPelodiscussinensis(Chinese Soft-Shelled Turtle). Biomacromolecules, 2005, 6, 1429-1437.	2.6	109
71	Nanoâ€Starâ€Shaped Polymers for Drug Delivery Applications. Macromolecular Rapid Communications, 2017, 38, 1700410.	2.0	109
72	Emulsion electrospun vascular endothelial growth factor encapsulated poly(l-lactic) Tj ETQq0 0 0 rgBT /Overlock	10 Tf 50 6 1.7	7 Td (acid-co 108

#	Article	IF	CITATIONS
73	Recent Advances in the Development of Antimicrobial Nanoparticles for Combating Resistant Pathogens. Advanced Healthcare Materials, 2018, 7, e1701400.	3.9	106
74	Formation of Transient Amorphous Calcium Carbonate Precursor in Quail Eggshell Mineralization:Â An In Vitro Study. Biomacromolecules, 2006, 7, 3202-3209.	2.6	105
75	Supramolecular soft biomaterials for biomedical applications. Materials Today, 2014, 17, 194-202.	8.3	105
76	Biocompatible electrically conductive nanofibers from inorganic-organic shape memory polymers. Colloids and Surfaces B: Biointerfaces, 2016, 148, 557-565.	2.5	105
77	Structure mapping of dengue and Zika viruses reveals functional long-range interactions. Nature Communications, 2019, 10, 1408.	5.8	104
78	PHBâ€Based Gels as Delivery Agents of Chemotherapeutics for the Effective Shrinkage of Tumors. Advanced Healthcare Materials, 2016, 5, 2679-2685.	3.9	103
79	Metal carbonyl-gold nanoparticle conjugates for highly sensitive SERS detection of organophosphorus pesticides. Biosensors and Bioelectronics, 2017, 96, 167-172.	5.3	103
80	Poly(ester urethane)s Consisting of Poly[(R)-3-hydroxybutyrate] and Poly(ethylene glycol) as Candidate Biomaterials:Â Characterization and Mechanical Property Study. Biomacromolecules, 2005, 6, 2740-2747.	2.6	102
81	Molecular gel sorbent materials for environmental remediation and wastewater treatment. Journal of Materials Chemistry A, 2019, 7, 18759-18791.	5.2	102
82	New biocompatible thermogelling copolymers containing ethylene-butylene segments exhibiting very low gelation concentrations. Soft Matter, 2011, 7, 2150.	1.2	101
83	Highly Efficient Supramolecular Aggregation-Induced Emission-Active Pseudorotaxane Luminogen for Functional Bioimaging. Biomacromolecules, 2017, 18, 886-897.	2.6	101
84	Biodegradable Thermogelling Poly[(<i>R</i>)-3-hydroxybutyrate]-Based Block Copolymers: Micellization, Gelation, and Cytotoxicity and Cell Culture Studies. Journal of Physical Chemistry B, 2009, 113, 11822-11830.	1.2	100
85	Implantable and degradable antioxidant poly(ε-caprolactone)-lignin nanofiber membrane for effective osteoarthritis treatment. Biomaterials, 2020, 230, 119601.	5.7	100
86	â€~Living' Controlled <i>in Situ</i> Gelling Systems: Thiolâ^'Disulfide Exchange Method toward Tailor-Made Biodegradable Hydrogels. Journal of the American Chemical Society, 2010, 132, 15140-15143.	6.6	99
87	Co-delivery of drug and DNA from cationic dual-responsive micelles derived from poly(DMAEMA-co-PPGMA). Materials Science and Engineering C, 2013, 33, 4545-4550.	3.8	99
88	Recent Progress in Using Biomaterials as Vitreous Substitutes. Biomacromolecules, 2015, 16, 3093-3102.	2.6	98
89	Emerging Supramolecular Therapeutic Carriers Based on Host–Guest Interactions. Chemistry - an Asian Journal, 2016, 11, 1300-1321.	1.7	98
90	Magnetic Anisotropic Particles: Toward Remotely Actuated Applications. Particle and Particle Systems Characterization, 2016, 33, 709-728.	1.2	98

#	Article	IF	CITATIONS
91	Sustained delivery of doxorubicin from thermogelling poly(PEG/PPG/PTMC urethane)s for effective eradication of cancer cells. Journal of Materials Chemistry, 2012, 22, 21249.	6.7	97
92	Biodegradable Polysaccharides for Controlled Drug Delivery. ChemPlusChem, 2016, 81, 504-514.	1.3	97
93	Poly(DMAEMAâ€ <i>co</i> â€PPGMA): Dualâ€responsive "reversible―micelles. Journal of Applied Polymer Science, 2013, 127, 992-1000.	1.3	96
94	Recent development of synthetic nonviral systems for sustained gene delivery. Drug Discovery Today, 2017, 22, 1318-1335.	3.2	96
95	Control of PLA Stereoisomers-Based Polyurethane Elastomers as Highly Efficient Shape Memory Materials. ACS Sustainable Chemistry and Engineering, 2017, 5, 1217-1227.	3.2	96
96	Highly Stable and Stretchable Conductive Films through Thermalâ€Radiationâ€Assisted Metal Encapsulation. Advanced Materials, 2019, 31, e1901360.	11.1	96
97	Encapsulation of basic fibroblast growth factor in thermogelling copolymers preserves its bioactivity. Journal of Materials Chemistry, 2011, 21, 2246.	6.7	94
98	Injectable Supramolecular Hydrogels as Delivery Agents of Bclâ€⊋ Conversion Gene for the Effective Shrinkage of Therapeutic Resistance Tumors. Advanced Healthcare Materials, 2017, 6, 1700159.	3.9	93
99	Biomechanoâ€Interactive Materials and Interfaces. Advanced Materials, 2018, 30, e1800572.	11.1	93
100	Recent advances in supramolecular hydrogels for biomedical applications. Materials Today Advances, 2019, 3, 100021.	2.5	93
101	Safe and efficient membrane permeabilizing polymers based on PLLA for antibacterial applications. RSC Advances, 2016, 6, 28947-28955.	1.7	92
102	Thermo-Responsive Hydrogels: From Recent Progress to Biomedical Applications. Gels, 2021, 7, 77.	2.1	92
103	Electrospun synthetic and natural nanofibers for regenerative medicine and stem cells. Biotechnology Journal, 2013, 8, 59-72.	1.8	91
104	An experimental and theoretical investigation of the anisotropic branching in gold nanocrosses. Nanoscale, 2016, 8, 543-552.	2.8	90
105	Lightâ€Induced Redoxâ€Responsive Smart Drug Delivery System by Using Selenium ontaining Polymer@MOF Shell/Core Nanocomposite. Advanced Healthcare Materials, 2019, 8, e1900406.	3.9	90
106	Micellization and phase transition behavior of thermosensitive poly(N-isopropylacrylamide)–poly(ɛ-caprolactone)–poly(N-isopropylacrylamide) triblock copolymers. Polymer, 2008, 49, 5084-5094.	1.8	89
107	Polyolefins and Polystyrene as Chemical Resources for a Sustainable Future: Challenges, Advances, and Prospects. , 2021, 3, 1660-1676.		89
108	Efficient gene delivery with paclitaxel-loaded DNA-hybrid polyplexes based on cationic polyhedral oligomeric silsesquioxanes. Journal of Materials Chemistry, 2010, 20, 10634.	6.7	85

#	Article	IF	CITATIONS
109	Sustained delivery of paclitaxel using thermogelling poly(PEG/PPG/PCL urethane)s for enhanced toxicity against cancer cells. Journal of Biomedical Materials Research - Part A, 2012, 100A, 2686-2694.	2.1	85
110	Controlling cell adhesion using layer-by-layer approaches for biomedical applications. Materials Science and Engineering C, 2017, 70, 1163-1175.	3.8	84
111	Retinal-detachment repair and vitreous-like-body reformation via a thermogelling polymer endotamponade. Nature Biomedical Engineering, 2019, 3, 598-610.	11.6	84
112	Acrylamide-derived freestanding polymer gel electrolyte for flexible metal-air batteries. Journal of Power Sources, 2018, 400, 566-571.	4.0	83
113	Dual responsive micelles based on poly[(R)-3-hydroxybutyrate] and poly(2-(di-methylamino)ethyl) Tj ETQq1 1 0.7	843]4 rgE 1.9	BT /Overlock
114	Surface Coating with a Thermoresponsive Copolymer for the Culture and Nonâ€Enzymatic Recovery of Mouse Embryonic Stem Cells. Macromolecular Bioscience, 2009, 9, 1069-1079.	2.1	80
115	Enhanced stability and activity of temozolomide in primary glioblastoma multiforme cells with cucurbit[n]uril. Chemical Communications, 2012, 48, 9843.	2.2	80
116	Triggered insulin release studies of triply responsive supramolecular micelles. Polymer Chemistry, 2012, 3, 3180.	1.9	80
117	New stimuli-responsive copolymers of N -acryloyl- N ′-alkyl piperazine and methyl methacrylate and their hydrogels. Polymer, 2001, 42, 65-69.	1.8	79
118	New Linear and Starâ€ s haped Thermogelling Poly([<i>R</i>]â€3â€hydroxybutyrate) Copolymers. Chemistry - A European Journal, 2016, 22, 10501-10512.	1.7	79
119	Novel poly(N-isopropylacrylamide)-poly[(R)-3-hydroxybutyrate]-poly(N-isopropylacrylamide) triblock copolymer surface as a culture substrate for human mesenchymal stem cells. Soft Matter, 2009, 5, 2937.	1.2	78
120	"On-demand―control of thermoresponsive properties of poly(N-isopropylacrylamide) with cucurbit[8]uril host–guest complexes. Chemical Communications, 2011, 47, 6000.	2.2	78
121	Rational Design of Biomolecular Templates for Synthesizing Multifunctional Noble Metal Nanoclusters toward Personalized Theranostic Applications. Advanced Healthcare Materials, 2016, 5, 1844-1859.	3.9	78
122	Biocompatibility evaluation of electrically conductive nanofibrous scaffolds for cardiac tissue engineering. Journal of Materials Chemistry B, 2013, 1, 2305.	2.9	77
123	Stem cell-loaded nanofibrous patch promotes the regeneration of infarcted myocardium with functional improvement in rat model. Acta Biomaterialia, 2014, 10, 2727-2738.	4.1	77
124	Recent advances of using polyhydroxyalkanoateâ€based nanovehicles as therapeutic delivery carriers. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2017, 9, e1429.	3.3	77
125	Thermoelectric materials and transport physics. Materials Today Physics, 2021, 21, 100519.	2.9	77
126	Cationic star copolymers based on β-cyclodextrins for efficient gene delivery to mouse embryonic stem cell colonies. Chemical Communications, 2015, 51, 10815-10818.	2.2	76

#	Article	IF	CITATIONS
127	Current research progress and perspectives on liquid hydrogen rich molecules in sustainable hydrogen storage. Energy Storage Materials, 2021, 35, 695-722.	9.5	76
128	"Y―shape armed amphiphilic star-like copolymers: design, synthesis and dual-responsive unimolecular micelle formation for controlled drug delivery. Polymer Chemistry, 2017, 8, 5611-5620.	1.9	75
129	Multi-arm carriers composed of an antioxidant lignin core and poly(glycidyl) Tj ETQq1 1 0.784314 rgBT /Overlock Journal of Materials Chemistry B, 2015, 3, 6897-6904.	10 Tf 50 6 2.9	567 Td (met 74
130	Mechanically cartilage-mimicking poly(PCL-PTHF urethane)/collagen nanofibers induce chondrogenesis by blocking NF–kappa B signaling pathway. Biomaterials, 2018, 178, 281-292.	5.7	72
131	Hydrogels as Emerging Materials for Translational Biomedicine. Advanced Therapeutics, 2019, 2, 1800088.	1.6	72
132	Supramolecular cyclodextrin nanocarriers for chemo- and gene therapy towards the effective treatment of drug resistant cancers. Nanoscale, 2016, 8, 18876-18881.	2.8	70
133	Strong and biocompatible lignin /poly (3-hydroxybutyrate) composite nanofibers. Composites Science and Technology, 2018, 158, 26-33.	3.8	70
134	An adherent tissue-inspired hydrogel delivery vehicle utilised in primary human glioma models. Biomaterials, 2018, 179, 199-208.	5.7	69
135	Multifunctional Antimicrobial Nanofiber Dressings Containing Îμ-Polylysine for the Eradication of Bacterial Bioburden and Promotion of Wound Healing in Critically Colonized Wounds. ACS Applied Materials & Interfaces, 2020, 12, 15989-16005.	4.0	69
136	Interaction of gelatin with polyenes modulates antifungal activity and biocompatibility of electrospun fiber mats. International Journal of Nanomedicine, 2014, 9, 2439.	3.3	68
137	Supramolecular polymeric peptide amphiphile vesicles for the encapsulation of basic fibroblast growth factor. Chemical Communications, 2014, 50, 3033-3035.	2.2	68
138	Multifunctional Polyphenols- and Catecholamines-Based Self-Defensive Films for Health Care Applications. ACS Applied Materials & amp; Interfaces, 2016, 8, 1220-1232.	4.0	68
139	Machine Learningâ€Driven Biomaterials Evolution. Advanced Materials, 2022, 34, e2102703.	11.1	68
140	Design of a micellized α-cyclodextrin based supramolecular hydrogel system. Soft Matter, 2015, 11, 5425-5434.	1.2	67
141	PLA-based thermogel for the sustained delivery of chemotherapeutics in a mouse model of hepatocellular carcinoma. RSC Advances, 2016, 6, 44506-44513.	1.7	66
142	Small molecule therapeutic-loaded liposomes as therapeutic carriers: from development to clinical applications. RSC Advances, 2016, 6, 70592-70615.	1.7	65
143	Formulation, characterization and evaluation of mRNA-loaded dissolvable polymeric microneedles (RNApatch). Scientific Reports, 2018, 8, 11842.	1.6	65
144	Engineered Janus amphipathic polymeric fiber films with unidirectional drainage and anti-adhesion abilities to accelerate wound healing. Chemical Engineering Journal, 2021, 421, 127725.	6.6	65

#	Article	IF	CITATIONS
145	Structural Reconstruction of Cu ₂ O Superparticles toward Electrocatalytic CO ₂ Reduction with High C ₂₊ Products Selectivity. Advanced Science, 2022, 9, e2105292.	5.6	65
146	Engineering Bioresponsive Hydrogels toward Healthcare Applications. Macromolecular Chemistry and Physics, 2016, 217, 175-188.	1.1	64
147	Biocompatible pH-responsive nanoparticles with a core-anchored multilayer shell of triblock copolymers for enhanced cancer therapy. Journal of Materials Chemistry B, 2017, 5, 4421-4425.	2.9	64
148	Unexpected formation of gold nanoflowers by a green synthesis method as agents for a safe and effective photothermal therapy. Nanoscale, 2017, 9, 15753-15759.	2.8	64
149	Stimuli-Responsive Cationic Hydrogels in Drug Delivery Applications. Gels, 2018, 4, 13.	2.1	64
150	Cyber–Physiochemical Interfaces. Advanced Materials, 2020, 32, e1905522.	11.1	64
151	Artificial Sense Technology: Emulating and Extending Biological Senses. ACS Nano, 2021, 15, 18671-18678.	7.3	64
152	Current treatment options and drug delivery systems as potential therapeutic agents for ovarian cancer: A review. Materials Science and Engineering C, 2014, 45, 609-619.	3.8	62
153	Machine Learningâ€Reinforced Noninvasive Biosensors for Healthcare. Advanced Healthcare Materials, 2021, 10, e2100734.	3.9	62
154	Use of biomaterials for sustained delivery of anti-VEGF to treat retinal diseases. Eye, 2020, 34, 1341-1356.	1.1	62
155	A thixotropic polyglycerol sebacate-based supramolecular hydrogel showing UCST behavior. RSC Advances, 2015, 5, 48720-48728.	1.7	61
156	Polymeric Janus Nanoparticles: Recent Advances in Synthetic Strategies, Materials Properties, and Applications. Macromolecular Rapid Communications, 2019, 40, e1800203.	2.0	61
157	Unusual thermogelling behaviour of poly[2-(dimethylamino)ethyl methacrylate] (PDMAEMA)-based polymers polymerized in bulk. RSC Advances, 2015, 5, 62314-62318.	1.7	60
158	Devising Materials Manufacturing Toward Labâ€ŧoâ€Fab Translation of Flexible Electronics. Advanced Materials, 2020, 32, e2001903.	11.1	60
159	Sensors, Biosensors, and Analytical Technologies for Aquaculture Water Quality. Research, 2020, 2020, 8272705.	2.8	59
160	Lab-on-Mask for Remote Respiratory Monitoring. , 2020, 2, 1178-1181.		58
161	Lignin-Incorporated Nanogel Serving As an Antioxidant Biomaterial for Wound Healing. ACS Applied Bio Materials, 2021, 4, 3-13.	2.3	58
162	pH-responsive and hyaluronic acid-functionalized metal–organic frameworks for therapy of osteoarthritis. Journal of Nanobiotechnology, 2020, 18, 139.	4.2	58

#	Article	IF	CITATIONS
163	New Dual Functional PHB-Grafted Lignin Copolymer: Synthesis, Mechanical Properties, and Biocompatibility Studies. ACS Applied Bio Materials, 2019, 2, 127-134.	2.3	57
164	Electrospun cellulose acetate butyrate/polyethylene glycol (CAB/PEG) composite nanofibers: A potential scaffold for tissue engineering. Colloids and Surfaces B: Biointerfaces, 2020, 188, 110713.	2.5	57
165	Limiting the Uncoordinated N Species in M–N <i>_x</i> Singleâ€Atom Catalysts toward Electrocatalytic CO ₂ Reduction in Broad Voltage Range. Advanced Materials, 2022, 34, e2104090.	11.1	57
166	Conjugation of poly(ethylene glycol) to poly(lactide)-based polyelectrolytes: An effective method to modulate cytotoxicity in gene delivery. Materials Science and Engineering C, 2017, 73, 275-284.	3.8	56
167	Sustained delivery of anti-VEGFs from thermogel depots inhibits angiogenesis without the need for multiple injections. Biomaterials Science, 2019, 7, 4603-4614.	2.6	56
168	Codelivery for Paclitaxel and Bclâ€2 Conversion Gene by PHBâ€PDMAEMA Amphiphilic Cationic Copolymer for Effective Drug Resistant Cancer Therapy. Macromolecular Bioscience, 2017, 17, 1700186.	2.1	55
169	Hierarchically Self-Assembled Supramolecular Host–Guest Delivery System for Drug Resistant Cancer Therapy. Biomacromolecules, 2018, 19, 1926-1938.	2.6	55
170	Targeted and Sustained Corelease of Chemotherapeutics and Gene by Injectable Supramolecular Hydrogel for Drugâ€Resistant Cancer Therapy. Macromolecular Rapid Communications, 2019, 40, e1800117.	2.0	55
171	The role of hydrogen bonding in alginate/poly(acrylamide-co-dimethylacrylamide) and alginate/poly(ethylene glycol) methyl ether methacrylate-based tough hybrid hydrogels. RSC Advances, 2015, 5, 57678-57685.	1.7	54
172	Electrospun Pectin-Polyhydroxybutyrate Nanofibers for Retinal Tissue Engineering. ACS Omega, 2017, 2, 8959-8968.	1.6	54
173	Recent Progress in Polyhydroxyalkanoatesâ€Based Copolymers for Biomedical Applications. Biotechnology Journal, 2019, 14, e1900283.	1.8	54
174	Modification of Thermal and Mechanical Properties of PEG-PPG-PEG Copolymer (F127) with MA-POSS. Polymers, 2016, 8, 341.	2.0	53
175	Using Artificial Skin Devices as Skin Replacements: Insights into Superficial Treatment. Small, 2019, 15, e1805453.	5.2	53
176	PCL-based thermo-gelling polymers for in vivo delivery of chemotherapeutics to tumors. Materials Science and Engineering C, 2017, 74, 110-116.	3.8	52
177	Dual-responsive hybrid thermoplastic shape memory polyurethane. Materials Chemistry Frontiers, 2017, 1, 767-779.	3.2	52
178	Dual Tumor Microenvironment Remodeling by Glucoseâ€Contained Radical Copolymer for MRIâ€Guided Photoimmunotherapy. Advanced Materials, 2022, 34, e2107674.	11.1	52
179	Antimicrobial Activity and Cell Selectivity of Synthetic and Biosynthetic Cationic Polymers. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	51
180	Polymeric hydrogels as a vitreous replacement strategy in the eye. Biomaterials, 2021, 268, 120547.	5.7	51

#	Article	IF	CITATIONS
181	A Morphable Ionic Electrode Based on Thermogel for Nonâ€Invasive Hairy Plant Electrophysiology. Advanced Materials, 2021, 33, e2007848.	11.1	51
182	Incorporation of Poly[(<scp><i>R</i></scp>)â€3â€hydroxybutyrate] into Cationic Copolymers Based on Poly(2â€(dimethylamino)ethyl methacrylate) to Improve Gene Delivery. Macromolecular Bioscience, 2013, 13, 1092-1099.	2.1	50
183	Effective near-infrared photodynamic therapy assisted by upconversion nanoparticles conjugated with photosensitizers. International Journal of Nanomedicine, 2015, 10, 419.	3.3	50
184	A Thixotropic Polyglycerol Sebacate-Based Supramolecular Hydrogel as an Injectable Drug Delivery Matrix. Polymers, 2016, 8, 130.	2.0	50
185	Strainâ€Driven Autoâ€Detachable Patterning of Flexible Electrodes. Advanced Materials, 2022, 34, .	11.1	50
186	Dual functional anti-oxidant and SPF enhancing lignin-based copolymers as additives for personal and healthcare products. RSC Advances, 2016, 6, 86420-86427.	1.7	49
187	High molecular weight polyacrylamides by atom transfer radical polymerization: Enabling advancements in waterâ€based applications. Journal of Polymer Science Part A, 2012, 50, 181-186.	2.5	47
188	A new highly transparent injectable PHA-based thermogelling vitreous substitute. Biomaterials Science, 2020, 8, 926-936.	2.6	47
189	Biodegradable thermogelling polymers for biomedical applications. MRS Bulletin, 2016, 41, 557-566.	1.7	46
190	Bottom-Up Engineering of Responsive Hydrogel Materials for Molecular Detection and Biosensing. , 2020, 2, 918-950.		46
191	Bioimaging and biodetection assisted with TTA-UC materials. Drug Discovery Today, 2017, 22, 1400-1411.	3.2	45
192	Current Research Trends and Perspectives on Solid-State Nanomaterials in Hydrogen Storage. Research, 2021, 2021, 3750689.	2.8	45
193	A supramolecular route towards core–shell polymeric microspheres in water via cucurbit[8]uril complexation. Chemical Communications, 2012, 48, 8757.	2.2	43
194	Poly(hydroxyalkanoates): Production, Applications and End-of-Life Strategies–Life Cycle Assessment Nexus. ACS Sustainable Chemistry and Engineering, 2022, 10, 3387-3406.	3.2	43
195	Organic–inorganic shape memory thermoplastic polyurethane based on polycaprolactone and polydimethylsiloxane. RSC Advances, 2016, 6, 34946-34954.	1.7	42
196	Tailoring Polyelectrolyte Architecture To Promote Cell Growth and Inhibit Bacterial Adhesion. ACS Applied Materials & Interfaces, 2018, 10, 7882-7891.	4.0	42
197	Thermogelling chitosan-based polymers for the treatment of oral mucosa ulcers. Biomaterials Science, 2020, 8, 1364-1379.	2.6	42
198	Polylactic acid face masks: Are these the sustainable solutions in times of COVID-19 pandemic?. Science of the Total Environment, 2022, 807, 151084.	3.9	42

#	Article	IF	CITATIONS
199	Supramolecular cyclodextrin pseudorotaxane hydrogels: A candidate for sustained release?. Materials Science and Engineering C, 2014, 39, 6-12.	3.8	41
200	New thermogelling poly(ether carbonate urethane)s based on pluronics F127 and poly(polytetrahydrofuran carbonate). Journal of Applied Polymer Science, 2014, 131, .	1.3	40
201	Additive Manufacturing of Thermoelectrics: Emerging Trends and Outlook. ACS Energy Letters, 2022, 7, 720-735.	8.8	40
202	The effect of pH on the hydrolytic degradation of poly(ε aprolactone)â€blockâ€poly(ethylene glycol) copolymers. Journal of Applied Polymer Science, 2013, 127, 2046-2056.	1.3	39
203	New Poly[(<i>R</i>)-3-hydroxybutyrate- <i>co</i> -4-hydroxybutyrate] (P3HB4HB)-Based Thermogels. Macromolecular Chemistry and Physics, 2017, 218, 1700196.	1.1	39
204	Thermoresponsive Supramolecular Chemotherapy by "Vâ€â€Shaped Armed β yclodextrin Star Polymer to Overcome Drug Resistance. Advanced Healthcare Materials, 2018, 7, e1701143.	3.9	38
205	Autonomous Chitosan-Based Self-Healing Hydrogel Formed through Noncovalent Interactions. ACS Applied Polymer Materials, 2019, 1, 1769-1777.	2.0	38
206	Recent innovations in artificial skin. Biomaterials Science, 2020, 8, 776-797.	2.6	38
207	Hofmeister Effect Mediated Strong PHEMA-Gelatin Hydrogel Actuator. ACS Applied Materials & Interfaces, 2022, 14, 23826-23838.	4.0	38
208	Electrospun Poly(L-Lactic Acid)-co-Poly(<i>ϵ</i> -Caprolactone) Nanofibres Containing Silver Nanoparticles for Skin-Tissue Engineering. Journal of Biomaterials Science, Polymer Edition, 2012, 23, 2337-2352.	1.9	37
209	Biocompatibility evaluation of protein-incorporated electrospun polyurethane-based scaffolds with smooth muscle cells for vascular tissue engineering. Journal of Materials Science, 2013, 48, 5113-5124.	1.7	37
210	Insight into membrane selectivity of linear and branched polyethylenimines and their potential as biocides for advanced wound dressings. Acta Biomaterialia, 2016, 37, 155-164.	4.1	37
211	Gold-decorated TiO2 nanofibrous hybrid for improved solar-driven photocatalytic pollutant degradation. Chemosphere, 2021, 265, 129114.	4.2	37
212	Potential of VEGF-encapsulated electrospun nanofibers for <i>in vitro</i> cardiomyogenic differentiation of human mesenchymal stem cells. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 1002-1010.	1.3	36
213	Recycling of spent coffee grounds for useful extracts and green composites. RSC Advances, 2021, 11, 2682-2692.	1.7	36
214	Dualâ€responsive reversible photo/thermogelling polymers exhibiting high modulus change. Journal of Polymer Science Part A, 2016, 54, 2837-2844.	2.5	35
215	Surfactant Free Delivery of Docetaxel by Poly[(<i>R</i>)â€3â€hydroxybutyrateâ€(<i>R</i>)â€3â€hydroxyhexanoate]â€Based Polymeric Micelles for Effecti Melanoma Treatments. Advanced Healthcare Materials, 2018, 7, e1801221.	i ∨æ. 9	35
216	Glycogen-nucleic acid constructs for gene silencing in multicellular tumor spheroids. Biomaterials, 2018, 176, 34-49.	5.7	35

#	Article	IF	CITATIONS
217	Cyclodextrin-based sustained gene release systems: a supramolecular solution towards clinical applications. Materials Chemistry Frontiers, 2019, 3, 181-192.	3.2	34
218	Supramolecular Hydrogels: Design Strategies and Contemporary Biomedical Applications. Chemistry - an Asian Journal, 2022, 17, e202200081.	1.7	34
219	Insights into the epigenetic effects of nanomaterials on cells. Biomaterials Science, 2020, 8, 763-775.	2.6	33
220	Inâ€Situ Generated CsPbBr ₃ Nanocrystals on Oâ€Defective WO ₃ for Photocatalytic CO ₂ Reduction. ChemSusChem, 2022, 15, .	3.6	33
221	Rapid UV-Curable Form-Stable Polyethylene-Glycol-Based Phase Change Material. ACS Applied Polymer Materials, 2022, 4, 2747-2756.	2.0	33
222	Engineering Porous Waterâ€Responsive Poly(PEG/PCL/PDMS Urethane) Shape Memory Polymers. Macromolecular Materials and Engineering, 2017, 302, 1700174.	1.7	32
223	Poly(carbonate urethane)-Based Thermogels with Enhanced Drug Release Efficacy for Chemotherapeutic Applications. Polymers, 2018, 10, 89.	2.0	32
224	Biodegradable polyester unimolecular systems as emerging materials for therapeutic applications. Journal of Materials Chemistry B, 2018, 6, 5488-5498.	2.9	32
225	Effectiveness of an ocular adhesive polyhedral oligomeric silsesquioxane hybrid thermo-responsive FK506 hydrogel in a murine model of dry eye. Bioactive Materials, 2022, 9, 77-91.	8.6	32
226	Antiangiogenic Nanomicelles for the Topical Delivery of Aflibercept to Treat Retinal Neovascular Disease. Advanced Materials, 2022, 34, e2108360.	11.1	32
227	Compositional study and cytotoxicity of biodegradable poly(ester urethane)s consisting of poly[(R)-3-hydroxybutyrate] and poly(ethylene glycol). Materials Science and Engineering C, 2007, 27, 267-273.	3.8	31
228	PHA-Based Thermogel as a Controlled Zero-Order Chemotherapeutic Delivery System for the Effective Treatment of Melanoma. ACS Applied Bio Materials, 2019, 2, 3591-3600.	2.3	31
229	Water-sorption and metal-uptake behavior of pH-responsive poly (N-acryloyl-N?-methylpiperazine) gels. Journal of Applied Polymer Science, 2001, 80, 268-273.	1.3	30
230	A Recent Perspective on Noncovalently Formed Polymeric Hydrogels. Chemical Record, 2018, 18, 1517-1529.	2.9	30
231	Recent advances in nanotechnology-based functional coatings for the built environment. Materials Today Advances, 2022, 15, 100270.	2.5	30
232	Latent Oxidative Polymerization of Catecholamines as Potential Cross-linkers for Biocompatible and Multifunctional Biopolymer Scaffolds. ACS Applied Materials & Interfaces, 2016, 8, 32266-32281.	4.0	29
233	Synthesis of a new poly([R]-3-hydroxybutyrate) RAFT agent. Polymer Chemistry, 2016, 7, 1693-1700.	1.9	28
234	Biodegradable Thermogelling Polymers. Small Methods, 2019, 3, 1800313.	4.6	28

#	Article	IF	CITATIONS
235	PCL-Based Thermogelling Polymer: Molecular Weight Effects on Its Suitability as Vitreous Tamponade. ACS Applied Bio Materials, 2020, 3, 9043-9053.	2.3	27
236	Development of a Magnetic 3D Spheroid Platform with Potential Application for High-Throughput Drug Screening. Molecular Pharmaceutics, 2014, 11, 2182-2189.	2.3	26
237	Thixotropic Supramolecular Pectin-Poly(Ethylene Glycol) Methacrylate (PEGMA) Hydrogels. Polymers, 2016, 8, 404.	2.0	26
238	UV Protection and Antioxidant Activity of Nanodiamonds and Fullerenes for Sunscreen Formulations. ACS Applied Nano Materials, 2019, 2, 7604-7616.	2.4	26
239	Introduction to In Situ Forming Hydrogels for Biomedical Applications. Series in Bioengineering, 2015, , 5-35.	0.3	25
240	Natural rheological modifiers for personal care. Polymers for Advanced Technologies, 2016, 27, 1664-1679.	1.6	25
241	Cyclodextrinâ€Based Starâ€Like Amphiphilic Cationic Polymer as a Potential Pharmaceutical Carrier in Macrophages. Macromolecular Rapid Communications, 2019, 40, e1800207.	2.0	25
242	Solar-Powered Photodegradation of Pollutant Dyes Using Silver-Embedded Porous TiO2 Nanofibers. Nanomaterials, 2021, 11, 856.	1.9	25
243	Upcycling Silicon Photovoltaic Waste into Thermoelectrics. Advanced Materials, 2022, 34, e2110518.	11.1	25
244	Sensors and Analytical Technologies for Air Quality: Particulate Matters and Bioaerosols. Chemistry - an Asian Journal, 2020, 15, 4241-4255.	1.7	24
245	The sustainable materials roadmap. JPhys Materials, 2022, 5, 032001.	1.8	24
246	Flexible polymeric patch based nanotherapeutics against non-cancer therapy. Bioactive Materials, 2022, 18, 471-491.	8.6	24
247	Pitfalls and Protocols: Evaluating Catalysts for CO ₂ Reduction in Electrolyzers Based on Gas Diffusion Electrodes. ACS Energy Letters, 2022, 7, 2012-2023.	8.8	24
248	Advances in sustainable polymeric materials from lignocellulosic biomass. Materials Today Chemistry, 2022, 26, 101022.	1.7	24
249	Latest Advances in Antibacterial Materials. Journal of Molecular and Engineering Materials, 2017, 05, 1740001.	0.9	23
250	Halogen bonding regulated functional nanomaterials. Nanoscale Advances, 2021, 3, 6342-6357.	2.2	23
251	A Triazolylâ€Pyridineâ€Supported Cu ^l Dimer: Tunable Luminescence and Fabrication of Composite Fibers. ChemPlusChem, 2015, 80, 1235-1240.	1.3	22
252	Highly Washable and Reusable Green Nanofibrous Sorbent with Superoleophilicity, Biodegradability, and Mechanical Robustness. ACS Applied Polymer Materials, 2020, 2, 4825-4835.	2.0	22

#	Article	IF	CITATIONS
253	Wound healing properties of magnesium mineralized antimicrobial nanofibre dressings containing chondroitin sulphate – a comparison between blend and core–shell nanofibres. Biomaterials Science, 2020, 8, 3454-3471.	2.6	22
254	A new light triggered approach to develop a micro porous tough hydrogel. RSC Advances, 2017, 7, 27449-27453.	1.7	21
255	Cationic Micelles Based on Polyhedral Oligomeric Silsesquioxanes for Enhanced Gene Transfection. Australian Journal of Chemistry, 2016, 69, 363.	0.5	20
256	Dominant Albumin–Surface Interactions under Independent Control of Surface Charge and Wettability. Langmuir, 2018, 34, 1953-1966.	1.6	20
257	Antimicrobial quaternary ammonium organosilane cross-linked nanofibrous collagen scaffolds for tissue engineering. International Journal of Nanomedicine, 2018, Volume 13, 4473-4492.	3.3	20
258	Utilization of biomass pectin polymer to build high efficiency electrode architectures with sturdy construction and fast charge transfer structure to boost sodium storage performance for NASICON-type cathode. Journal of Materials Chemistry A, 2019, 7, 1548-1555.	5.2	20
259	Mussel-Inspired Durable Antimicrobial Contact Lenses: The Role of Covalent and Noncovalent Attachment of Antimicrobials. ACS Biomaterials Science and Engineering, 2020, 6, 3162-3173.	2.6	20
260	The Efficacy of Plant-Based Ionizers in Removing Aerosol for COVID-19 Mitigation. Research, 2021, 2021, 2173642.	2.8	20
261	The Thermogel Chronicle─From Rational Design of Thermogelling Copolymers to Advanced Thermogel Applications. Accounts of Materials Research, 2021, 2, 881-894.	5.9	20
262	Micellized α-Cyclodextrin-Based Supramolecular Hydrogel Exhibiting pH-Responsive Sustained Release and Corresponding Oscillatory Shear Behavior Analysis. ACS Biomaterials Science and Engineering, 2016, 2, 2185-2195.	2.6	19
263	pHâ€Responsive Poly(dimethylsiloxane) Copolymer Decorated Magnetic Nanoparticles for Remotely Controlled Oilâ€inâ€Water Nanoemulsion Separation. Macromolecular Rapid Communications, 2019, 40, e1800013.	2.0	19
264	Tough hydrogel module towards an implantable remote and controlled release device. Biomaterials Science, 2020, 8, 960-972.	2.6	19
265	Risk assessment of airborne COVID-19 exposure in social settings. Physics of Fluids, 2021, 33, 087118.	1.6	19
266	High molecular weight hyper-branched PCL-based thermogelling vitreous endotamponades. Biomaterials, 2022, 280, 121262.	5.7	19
267	TowardÂthe prevention of coronavirus infection: what role can polymers play?. Materials Today Advances, 2021, 10, 100140.	2.5	18
268	Thermogelling 3D Systems towards Stem Cell-Based Tissue Regeneration Therapies. Molecules, 2018, 23, 553.	1.7	17
269	Surface Migration of Fluorinated-Siloxane Copolymer with Unusual Liquid Crystal Behavior for Highly Efficient Oil/Water Separation. ACS Applied Polymer Materials, 2020, 2, 3612-3620.	2.0	17
270	Engineered bio-adhesive polyhedral oligomeric silsesquioxane hybrid nanoformulation of amphotericin B for prolonged therapy of fungal keratitis. Chemical Engineering Journal, 2021, 421, 129734.	6.6	17

#	Article	IF	CITATIONS
271	Gene Delivery by Functional Inorganic Nanocarriers. Recent Patents on DNA & Gene Sequences, 2012, 6, 108-114.	0.7	16
272	POSS-based hybrid cationic copolymers with low aggregation potential for efficient gene delivery. RSC Advances, 2015, 5, 71322-71328.	1.7	16
273	Biomimetic Poly(Poly(ε-caprolactone)-Polytetrahydrofuran urethane) Based Nanofibers Enhanced Chondrogenic Differentiation and Cartilage Regeneration. Journal of Biomedical Nanotechnology, 2019, 15, 1005-1017.	0.5	16
274	Konjac glucomannan biopolymer as a multifunctional binder to build a solid permeable interface on Na ₃ V ₂ (PO ₄) ₃ /C cathodes for high-performance sodium ion batteries. Journal of Materials Chemistry A, 2021, 9, 9864-9874.	5.2	16
275	The Translational Application of Hydrogel for Organoid Technology: Challenges and Future Perspectives. Macromolecular Bioscience, 2021, 21, e2100191.	2.1	16
276	A bio-functional polymer that prevents retinal scarring through modulation of NRF2 signalling pathway. Nature Communications, 2022, 13, 2796.	5.8	16
277	Micellization and Thermogelation of Poly(ether urethane)s Comprising Poly(ethylene glycol) and Poly(propylene glycol). Macromolecular Symposia, 2010, 296, 161-169.	0.4	15
278	Recent Advances in New Copolymer Hydrogelâ€Formed Contact Lenses for Ophthalmic Drug Delivery. ChemNanoMat, 2021, 7, 564-579.	1.5	15
279	SARS-CoV-2 in wastewater: From detection to evaluation. Materials Today Advances, 2022, 13, 100211.	2.5	15
280	Antioxidant Thermogelling Formulation for Burn Wound Healing. Chemistry - an Asian Journal, 2022, 17, .	1.7	15
281	Network Structure and Congo Red Dye Removal Characteristics of New Temperature-Responsive Hydrogels. Separation Science and Technology, 2015, 50, 64-71.	1.3	14
282	Quarternized Short Polyethylenimine Shows Good Activity against Drugâ€Resistant Bacteria. Macromolecular Materials and Engineering, 2017, 302, 1700186.	1.7	14
283	Self-Healable, Fast Responsive Poly(ï‰-Pentadecalactone) Thermogelling System for Effective Liver Cancer Therapy. Frontiers in Chemistry, 2019, 7, 683.	1.8	14
284	Preparation of mixed micelles carrying folates and stable radicals through PLA stereocomplexation for drug delivery. Materials Science and Engineering C, 2020, 108, 110464.	3.8	14
285	Four-Dimensional (4D) Printing: Applying Soft Adaptive Materials to Additive Manufacturing. Journal of Molecular and Engineering Materials, 2017, 05, 1740003.	0.9	13
286	Incorporation of Polycaprolactone to Cyclodextrinâ€Based Nanocarrier for Potent Gene Delivery. Macromolecular Materials and Engineering, 2018, 303, 1800255.	1.7	13
287	Catalysts developed from waste plastics: a versatile system for biomass conversion. Materials Today Chemistry, 2021, 21, 100524.	1.7	13
288	Biomaterials by design: Harnessing data for future development. Materials Today Bio, 2021, 12, 100165.	2.6	13

#	Article	IF	CITATIONS
289	An Injectable Double-Network Hydrogel for Cell Encapsulation. Australian Journal of Chemistry, 2016, 69, 388.	0.5	12
290	Engineering luminescent pectin-based hydrogel for highly efficient multiple sensing. International Journal of Biological Macromolecules, 2021, 166, 869-875.	3.6	12
291	Cyclodextrin-Based Hybrid Polymeric Complex to Overcome Dual Drug Resistance Mechanisms for Cancer Therapy. Polymers, 2021, 13, 1254.	2.0	12
292	Effective design of barrier enclosure to contain aerosol emissions from COVIDâ€19 patients. Indoor Air, 2021, 31, 1639-1644.	2.0	12
293	Microscopically tuning the graphene oxide framework for membrane separations: a review. Nanoscale Advances, 2021, 3, 5265-5276.	2.2	12
294	Polymeric Matrix-Based Nanoplatforms toward Tumor Therapy and Diagnosis. , 2022, 4, 21-48.		12
295	Fabricating Dual-Functional Plasmonic–Magnetic Au@MgFe ₂ O ₄ Nanohybrids for Photothermal Therapy and Magnetic Resonance Imaging. ACS Omega, 2022, 7, 2031-2040.	1.6	12
296	THERMOGELLING COPOLYMERS FOR MEDICAL APPLICATIONS. Journal of Molecular and Engineering Materials, 2013, 01, 1330002.	0.9	11
297	Unprecedented Acidâ€Promoted Polymerization and Gelation of Acrylamide: A Serendipitous Discovery. Chemistry - an Asian Journal, 2018, 13, 1797-1804.	1.7	11
298	The effective treatment of multi-drug resistant tumors with self-assembling alginate copolymers. Polymer Chemistry, 2019, 10, 278-286.	1.9	11
299	Pearl Powder—An Emerging Material for Biomedical Applications: A Review. Materials, 2021, 14, 2797.	1.3	11
300	Precise Synthesis of PSâ€PLA Janus Star‣ike Copolymer. Macromolecular Rapid Communications, 2019, 40, e1800217.	2.0	10
301	Efficacy of Water-Soluble Pearl Powder Components Extracted by a CO2 Supercritical Extraction System in Promoting Wound Healing. Materials, 2021, 14, 4458.	1.3	10
302	Supramolecular Soft Biomaterials for Biomedical Applications. Series in Bioengineering, 2015, , 107-125.	0.3	10
303	Hofmeister effects of anions on self-assembled thermogels. Materials Today Chemistry, 2022, 23, 100674.	1.7	10
304	Cationic Poly([R]â€3â€hydroxybutyrate) Copolymers as Antimicrobial Agents. Macromolecular Bioscience, 2019, 19, e1800466.	2.1	9
305	Going Beyond Traditional Applications? The Potential of Hydrogels. Small Methods, 2019, 3, 1800270.	4.6	9
306	Zinc diethyldithiocarbamate as a catalyst for synthesising biomedically-relevant thermogelling polyurethanes. Materials Advances, 2020, 1, 3221-3232.	2.6	9

#	Article	IF	CITATIONS
307	Recent developments of temperatureâ€responsive polymers for ophthalmic applications. Journal of Polymer Science, 0, , .	2.0	9
308	Potential of Recycled Silicon and Silicon-Based Thermoelectrics for Power Generation. Crystals, 2022, 12, 307.	1.0	9
309	Influence of multiple stimuli on the lower critical solution temperature of new cationic poly(<i>N</i> â€acryloylâ€ <i>N</i> â€êêethylpiperazineâ€ <i>coâ€N</i> â€isopropylacrylamide) solutions. Journal Polymer Science, Part B: Polymer Physics, 2013, 51, 1175-1183.	af.4	8
310	Enhanced transfection of a macromolecular lignin-based DNA complex with low cellular toxicity. Bioscience Reports, 2018, 38, .	1.1	8
311	Protective Action of Linear Polyethylenimine against <i>Staphylococcus aureus</i> Colonization and Exaggerated Inflammation <i>in Vitro</i> and <i>in Vivo</i> . ACS Infectious Diseases, 2019, 5, 1411-1422.	1.8	8
312	Supramolecular thermogels from branched PCL-containing polyurethanes. RSC Advances, 2020, 10, 39109-39120.	1.7	8
313	Enhanced drug retention by anthracene crosslinked nanocomposites for bimodal imaging-guided phototherapy. Nanoscale, 2021, 13, 14713-14722.	2.8	8
314	PEGylated antibody in organic media. Journal of Bioscience and Bioengineering, 2011, 111, 564-568.	1.1	7
315	Halide Saltâ€Catalyzed Crosslinked Polyurethanes for Supercapacitor Gel Electrolyte Applications. ChemSusChem, 2021, 14, 3237-3243.	3.6	7
316	A topical gel for extended ocular drug release. Nature Biomedical Engineering, 2020, 4, 1024-1025.	11.6	6
317	Cationic Lignin-Based Hyperbranched Polymers to Circumvent Drug Resistance in <i>Pseudomonas</i> Keratitis. ACS Biomaterials Science and Engineering, 2021, 7, 4659-4668.	2.6	6
318	Synergistic UV protection effects of the lignin nanodiamond complex. Materials Today Chemistry, 2021, 22, 100574.	1.7	6
319	Hydrogels for Stem Cell Fate Control and Delivery in Regenerative Medicine. Series in Bioengineering, 2015, , 187-214.	0.3	6
320	Biomass Hyaluronic Acid to Construct High‣oading Electrode with Fast Na ⁺ Transport Structure for Na ₃ V ₂ (PO ₄) ₃ Sodiumâ€ion Batteries. Batteries and Supercaps, 2022, 5, .	2.4	6
321	Lignin and Its Properties. Sustainable Chemistry Series, 2018, , 1-28.	0.1	5
322	Reinforcement of aligned cellulose fibers by lignin-polyester copolymers. Materials Today Chemistry, 2020, 18, 100358.	1.7	5
323	AuNPs Decorated PLA Stereocomplex Micelles for Synergetic Photothermal and Chemotherapy. Macromolecular Bioscience, 2021, 21, e2100062.	2.1	5
324	N95 respirator decontamination: a study in reusability. Materials Today Advances, 2021, 11, 100148.	2.5	5

#	Article	IF	CITATIONS
325	Pectin As a Rheology Modifier: Recent Reports on Its Origin, Structure, Commercial Production and Gelling Mechanism. RSC Polymer Chemistry Series, 2016, , 205-226.	0.1	5
326	Carbon Precursor from Lignin: Methods and Applications. Sustainable Chemistry Series, 2018, , 121-152.	0.1	5
327	Branched PCL-Based Thermogelling Copolymers: Controlling Polymer Architecture to Tune Drug Release Profiles. Frontiers in Bioengineering and Biotechnology, 2022, 10, 864372.	2.0	5
328	Research Advances of Injectable Functional Hydrogel Materials in the Treatment of Myocardial Infarction. Gels, 2022, 8, 423.	2.1	5
329	Encapsulation of Vitamin C with its Protection from Oxidation by Poly(Vinyl Alcohol). Journal of Molecular and Engineering Materials, 2017, 05, 1750013.	0.9	4
330	A New Potent Antimicrobial Metalloporphyrin. Chemistry - an Asian Journal, 2021, 16, 1007-1015.	1.7	4
331	Research Progress on Natural Compounds Exerting an Antidepressant Effect through Anti-inflammatory. Current Medicinal Chemistry, 2022, 29, 934-956.	1.2	4
332	Towards Cyclodextrin-Based Supramolecular Materials. RSC Polymer Chemistry Series, 2016, , 154-177.	0.1	4
333	Chemical Modification of Lignin. Sustainable Chemistry Series, 2018, , 81-120.	0.1	4
334	Design and development of multilayer cotton masks via machine learning. Materials Today Advances, 2021, 12, 100178.	2.5	4
335	Antioxidative and Antiâ€UV Lignin Carrier for Peptide Delivery. Macromolecular Chemistry and Physics, 2022, 223, 2100364.	1.1	4
336	CHAPTER 8. Hydrogels for Biomedical Applications. Monographs in Supramolecular Chemistry, 2012, , 167-209.	0.2	3
337	Injectable Hydrogels for Cartilage Regeneration. Gels Horizons: From Science To Smart Materials, 2018, , 315-337.	0.3	3
338	Exploring Reusability of Disposable Face Masks: Effects of Disinfection Methods on Filtration Efficiency, Breathability, and Fluid Resistance. Global Challenges, 2021, 5, 2100030.	1.8	3
339	Degradation Behaviour of Biodegradable Thermogels. Biomaterials Science Series, 2018, , 113-132.	0.1	3
340	A Global Analysis of the Personal Care Market. RSC Polymer Chemistry Series, 2016, , 1-17.	0.1	3
341	Novel MII (M = Mn, Fe, Co, Ni) Coordination Assemblies Based on 2-(((1-(Pyridin-n-ylmethyl)-1H-1,2,3-triazol-4-yl)methyl)thio)pyridine Ligands. Australian Journal of Chemistry, 2016, 69, 645.	0.5	2
342	CHAPTER 2. Polymers for Personal Care – Natural Protein-Based Polymers. RSC Polymer Chemistry Series, 2016, , 18-36.	0.1	2

#	Article	IF	CITATIONS
343	CHAPTER 4. Natural Rheological Modifiers for Personal Care. RSC Polymer Chemistry Series, 2016, , 60-89.	0.1	2
344	CHAPTER 6. Four-Dimensional (4D) Printing in Consumer Applications. RSC Polymer Chemistry Series, 2016, , 108-116.	0.1	2
345	Silicones: The Future for Beauty and Everyday Care. RSC Polymer Chemistry Series, 2016, , 135-153.	0.1	2
346	Facile Synthesis of Iron Oxide Nanozymes for Synergistically Colorimetric and Magnetic Resonance Detection Strategy. Journal of Biomedical Nanotechnology, 2021, 17, 582-594.	0.5	2
347	Versatile and Extendable Boronate-Based Tunable Hydrogel Networks for Patterning Applications. ACS Applied Polymer Materials, 2022, 4, 5091-5102.	2.0	2
348	Editorial (Hot Topic: Recent Strategies in Gene Delivery). Recent Patents on DNA & Gene Sequences, 2012, 6, 81-81.	0.7	1
349	Showcasing the young talents of IMRE. Materials Science and Engineering C, 2014, 45, 599.	3.8	1
350	Drug Delivery: Longâ€Term Realâ€Time In Vivo Drug Release Monitoring with AIE Thermogelling Polymer (Small 7/2017). Small, 2017, 13, .	5.2	1
351	Supramolecular Gelators in a Biomedical Context. , 2017, , 213-225.		1
352	Soft Materials Research at IMRE. Macromolecular Rapid Communications, 2019, 40, 1800914.	2.0	1
353	CHAPTER 5. Antibacterial Polymers. RSC Polymer Chemistry Series, 2016, , 90-107.	0.1	1
354	CHAPTER 3. Supramolecular Hydrogels. Monographs in Supramolecular Chemistry, 2012, , 39-71.	0.2	1
355	From Bench to Bedside—An Example of an In Situ Hydrogel in In Vivo Applications. Series in Bioengineering, 2015, , 215-226.	0.3	1
356	CHAPTER 3. Polyacrylates for Personal Care. RSC Polymer Chemistry Series, 2016, , 37-59.	0.1	1
357	Lowâ€Threshold Amplified Spontaneous Emission from Air‣table CsPbBr 3 Perovskite Films Containing Trace Amounts of Polyethylene Oxide. ChemPlusChem, 2021, 86, 1537-1543.	1.3	1
358	From the Ground Upâ \in "Materials Science in Singapore. Advanced Materials, 2022, 34, .	11.1	1
359	Celebrating 50 Years of Chemistry in Singapore. ChemPlusChem, 2015, 80, 1192-1194.	1.3	0
360	Magnetic Anisotropic Particles: Synthesis and Applications. , 2017, , 123-178.		0

#	Article	IF	CITATIONS
361	Response to †Comment on: "Use of biomaterials for sustained delivery of anti-VEGF to treat retinal diseasesâ€â€™. Eye, 2021, 35, 1026-1027.	1.1	0
362	Kombucha SCOBY Waste as a Catalyst Support. Chemistry - an Asian Journal, 2021, 16, 2939-2946.	1.7	0
363	Natural polymer towards lustrous multicolored silk: Hermetical encapsulation and understanding of colorants via controlled de/recrystallization process. Polymer, 2021, 233, 124163.	1.8	0
364	CHAPTER 11. Outlook. Monographs in Supramolecular Chemistry, 2012, , 253-255.	0.2	0
365	CHAPTER 12. Perspectives on the Development of the Personal Care Industry. RSC Polymer Chemistry Series, 2016, , 227-231.	0.1	0
366	CHAPTER 10. Thermogelling Polymers: A Cutting Edge Rheology Modifier. RSC Polymer Chemistry Series, 2016, , 178-204.	0.1	0
367	CHAPTER 7. Nanoparticle Safety in Cosmetics. RSC Polymer Chemistry Series, 2016, , 117-134.	0.1	0
368	Recent progress in the use of thermogelling polymers for treatment of ophthalmic conditions. Progress in Biomedical Engineering, 0, , .	2.8	0