Marc Montminy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1494190/publications.pdf

Version: 2024-02-01

62 papers

18,033 citations

42 h-index 60 g-index

67 all docs

67 docs citations

67 times ranked

22174 citing authors

#	Article	IF	CITATIONS
1	Crtc modulates fasting programs associated with 1-C metabolism and inhibition of insulin signaling. Proceedings of the National Academy of Sciences of the United States of America, $2021,118,.$	3.3	5
2	Transcriptional co-activator regulates melanocyte differentiation and oncogenesis by integrating cAMP and MAPK/ERK pathways. Cell Reports, 2021, 35, 109136.	2.9	21
3	Activation of the adipocyte CREB/CRTC pathway in obesity. Communications Biology, 2021, 4, 1214.	2.0	14
4	The CREB coactivator CRTC2 promotes oncogenesis in LKB1-mutant non–small cell lung cancer. Science Advances, 2019, 5, eaaw6455.	4.7	30
5	Mitogenic Signals Stimulate the CREB Coactivator CRTC3 through PP2A Recruitment. IScience, 2019, 11, 134-145.	1.9	16
6	Adaptive Transcriptional Responses by CRTC Coactivators in Cancer. Trends in Cancer, 2019, 5, 111-127.	3.8	14
7	CREB Promotes Beta Cell Gene Expression by Targeting Its Coactivators to Tissue-Specific Enhancers. Molecular and Cellular Biology, 2019, 39, .	1.1	29
8	The KLDpT activation loop motif is critical for MARK kinase activity. PLoS ONE, 2019, 14, e0225727.	1.1	3
9	14â€3â€3 proteins mediate inhibitory effects of <scp>cAMP</scp> on saltâ€inducible kinases (<scp>SIK</scp> s). FEBS Journal, 2018, 285, 467-480.	2.2	49
10	cAMP-inducible coactivator CRTC3 attenuates brown adipose tissue thermogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5289-E5297.	3.3	22
11	CREB coactivators CRTC2 and CRTC3 modulate bone marrow hematopoiesis. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11739-11744.	3.3	15
12	Analysis of a cAMP regulated coactivator family reveals an alternative phosphorylation motif for AMPK family members. PLoS ONE, 2017, 12, e0173013.	1.1	27
13	Neuronal energy-sensing pathway promotes energy balance by modulating disease tolerance. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3307-14.	3.3	35
14	The CREB/CRTC2 pathway modulates autoimmune disease by promoting Th17 differentiation. Nature Communications, 2015, 6, 7216.	5.8	42
15	CREB pathway links PGE2 signaling with macrophage polarization. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15642-15647.	3.3	225
16	Role of the cAMP Pathway in Glucose and Lipid Metabolism. Handbook of Experimental Pharmacology, 2015, 233, 29-49.	0.9	96
17	ATF3 mediates inhibitory effects of ethanol on hepatic gluconeogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2699-2704.	3.3	31
18	Feedback Inhibition of CREB Signaling Promotes Beta Cell Dysfunction in Insulin Resistance. Cell Reports, 2015, 10, 1149-1157.	2.9	55

#	Article	lF	CITATIONS
19	Hepatic Insulin Resistance Following Chronic Activation of the CREB Coactivator CRTC2. Journal of Biological Chemistry, 2015, 290, 25997-26006.	1.6	26
20	Combinatorial regulation of a signal-dependent activator by phosphorylation and acetylation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17116-17121.	3.3	20
21	Leptin-Mediated Increases in Catecholamine Signaling Reduce Adipose Tissue Inflammation via Activation of Macrophage HDAC4. Cell Metabolism, 2014, 19, 1058-1065.	7.2	98
22	PRMT5 modulates the metabolic response to fasting signals. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8870-8875.	3.3	70
23	Glucagon regulates gluconeogenesis through KAT2B- and WDR5-mediated epigenetic effects. Journal of Clinical Investigation, 2013, 123, 4318-4328.	3.9	73
24	Wylie Vale: Neuroendocrine master. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 3604-3605.	3.3	35
25	Mechanism of CREB recognition and coactivation by the CREB-regulated transcriptional coactivator CRTC2. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20865-20870.	3.3	74
26	Inositol-1,4,5-trisphosphate receptor regulates hepatic gluconeogenesis in fasting and diabetes. Nature, 2012, 485, 128-132.	13.7	169
27	Class IIa Histone Deacetylases Are Hormone-Activated Regulators of FOXO and Mammalian Glucose Homeostasis. Cell, 2011, 145, 607-621.	13.5	486
28	A Hormone-Dependent Module Regulating Energy Balance. Cell, 2011, 145, 596-606.	13.5	219
29	CREB and the CRTC co-activators: sensors for hormonal and metabolic signals. Nature Reviews Molecular Cell Biology, 2011, 12, 141-151.	16.1	849
30	mTOR links incretin signaling to HIF induction in pancreatic beta cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16876-16882.	3.3	62
31	CRTC3 links catecholamine signalling to energy balance. Nature, 2010, 468, 933-939.	13.7	128
32	Cryptochrome mediates circadian regulation of cAMP signaling and hepatic gluconeogenesis. Nature Medicine, 2010, 16, 1152-1156.	15.2	465
33	Targeted disruption of the CREB coactivator Crtc2 increases insulin sensitivity. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3087-3092.	3.3	137
34	The CREB coactivator CRTC2 links hepatic ER stress and fasting gluconeogenesis. Nature, 2009, 460, 534-537.	13.7	252
35	Reply to: "Mouse fertility is not dependent on the CREB coactivator Crtc1― Nature Medicine, 2009, 15, 991-991.	15.2	0
36	Adipocyte CREB Promotes Insulin Resistance in Obesity. Cell Metabolism, 2009, 9, 277-286.	7.2	157

#	Article	IF	CITATIONS
37	A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange. Nature, 2008, 456, 269-273.	13.7	481
38	The Creb1 coactivator Crtc1 is required for energy balance and fertility. Nature Medicine, 2008, 14, 1112-1117.	15.2	185
39	The Insulin-Regulated CREB Coactivator TORC Promotes Stress Resistance in Drosophila. Cell Metabolism, 2008, 7, 434-444.	7.2	87
40	Hepatic Glucose Sensing via the CREB Coactivator CRTC2. Science, 2008, 319, 1402-1405.	6.0	274
41	SIK1 is a class II HDAC kinase that promotes survival of skeletal myocytes. Nature Medicine, 2007, 13, 597-603.	15.2	235
42	Cooperative interactions between CBP and TORC2 confer selectivity to CREB target gene expression. EMBO Journal, 2007, 26, 2880-2889.	3.5	148
43	Insulin modulates gluconeogenesis by inhibition of the coactivator TORC2. Nature, 2007, 449, 366-369.	13.7	354
44	The TORC family of CREB coactivators: Regulators of energy balance. FASEB Journal, 2007, 21, A45.	0.2	0
45	The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature, 2005, 437, 1109-1114.	13.7	888
46	CREB: the unindicted cancer co-conspirator. Trends in Cell Biology, 2005, 15, 457-459.	3.6	120
47	Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4459-4464.	3.3	878
48	The Kinase LKB1 Mediates Glucose Homeostasis in Liver and Therapeutic Effects of Metformin. Science, 2005, 310, 1642-1646.	6.0	1,704
49	Identification of small-molecule antagonists that inhibit an activator:coactivator interaction. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 17622-17627.	3.3	180
50	PGC-1 promotes insulin resistance in liver through PPAR-α-dependent induction of TRB-3. Nature Medicine, 2004, 10, 530-534.	15.2	499
51	The CREB Coactivator TORC2 Functions as a Calcium- and cAMP-Sensitive Coincidence Detector. Cell, 2004, 119, 61-74.	13.5	581
52	TORCs. Molecular Cell, 2003, 12, 413-423.	4.5	564
53	cAMP promotes pancreatic Â-cell survival via CREB-mediated induction of IRS2. Genes and Development, 2003, 17, 1575-1580.	2.7	491
54	Transcriptional regulation by the phosphorylation-dependent factor CREB. Nature Reviews Molecular Cell Biology, 2001, 2, 599-609.	16.1	2,257

#	Article	IF	CITATIONS
55	CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature, 2001, 413, 179-183.	13.7	1,238
56	Chromatin-Dependent Cooperativity between Constitutive and Inducible Activation Domains in CREB. Molecular and Cellular Biology, 2001, 21, 7892-7900.	1.1	90
57	Mutations in NEUROD1 are associated with the development of type 2 diabetes mellitus. Nature Genetics, 1999, 23, 323-328.	9.4	551
58	Regulatory factor linked to late-onset diabetes?. Nature, 1998, 392, 560-560.	13.7	144
59	TRANSCRIPTIONAL REGULATION BY CYCLIC AMP. Annual Review of Biochemistry, 1997, 66, 807-822.	5.0	926
60	Role of CBP/P300 in nuclear receptor signalling. Nature, 1996, 383, 99-103.	13.7	899
61	Protein-kinase-A-dependent activator in transcription factor CREB reveals new role for CREM repressers. Nature, 1993, 364, 821-824.	13.7	165
62	Trying on a new pair of SH2s. Science, 1993, 261, 1694-1695.	6.0	45