
## David Cahen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1494151/publications.pdf Version: 2024-02-01



ΠΑΥΙΟ CAHEN

| #  | Article                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Hybrid organic—inorganic perovskites: low-cost semiconductors with intriguing charge-transport<br>properties. Nature Reviews Materials, 2016, 1, .                                                                                    | 23.3 | 1,173     |
| 2  | How Important Is the Organic Part of Lead Halide Perovskite Photovoltaic Cells? Efficient<br>CsPbBr <sub>3</sub> Cells. Journal of Physical Chemistry Letters, 2015, 6, 2452-2456.                                                    | 2.1  | 938       |
| 3  | Cesium Enhances Long-Term Stability of Lead Bromide Perovskite-Based Solar Cells. Journal of Physical<br>Chemistry Letters, 2016, 7, 167-172.                                                                                         | 2.1  | 833       |
| 4  | Comparison of Electronic Transport Measurements on Organic Molecules. Advanced Materials, 2003, 15, 1881-1890.                                                                                                                        | 11.1 | 823       |
| 5  | Photovoltaic solar cell technologies: analysing the state of the art. Nature Reviews Materials, 2019, 4,<br>269-285.                                                                                                                  | 23.3 | 727       |
| 6  | Nature of Photovoltaic Action in Dye-Sensitized Solar Cells. Journal of Physical Chemistry B, 2000,<br>104, 2053-2059.                                                                                                                | 1.2  | 688       |
| 7  | Electron Energetics at Surfaces and Interfaces: Concepts and Experiments. Advanced Materials, 2003, 15, 271-277.                                                                                                                      | 11.1 | 637       |
| 8  | Interface energetics in organo-metal halide perovskite-based photovoltaic cells. Energy and<br>Environmental Science, 2014, 7, 1377.                                                                                                  | 15.6 | 624       |
| 9  | Physical Chemical Principles of Photovoltaic Conversion with Nanoparticulate, Mesoporous<br>Dye-Sensitized Solar Cells. Journal of Physical Chemistry B, 2004, 108, 8106-8118.                                                        | 1.2  | 584       |
| 10 | Why Lead Methylammonium Tri-Iodide Perovskite-Based Solar Cells Require a Mesoporous Electron<br>Transporting Scaffold (but Not Necessarily a Hole Conductor). Nano Letters, 2014, 14, 1000-1004.                                     | 4.5  | 533       |
| 11 | Elucidating the charge carrier separation and working mechanism of CH3NH3PbI3â^'xClx perovskite solar cells. Nature Communications, 2014, 5, 3461.                                                                                    | 5.8  | 511       |
| 12 | High Open-Circuit Voltage Solar Cells Based on Organic–Inorganic Lead Bromide Perovskite. Journal<br>of Physical Chemistry Letters, 2013, 4, 897-902.                                                                                 | 2.1  | 486       |
| 13 | Advances in Perovskite Solar Cells. Advanced Science, 2016, 3, 1500324.                                                                                                                                                               | 5.6  | 482       |
| 14 | Photoelectrochemical energy conversion and storage using polycrystalline chalcogenide electrodes.<br>Nature, 1976, 261, 403-404.                                                                                                      | 13.7 | 435       |
| 15 | Rain on Methylammonium Lead Iodide Based Perovskites: Possible Environmental Effects of Perovskite<br>Solar Cells. Journal of Physical Chemistry Letters, 2015, 6, 1543-1547.                                                         | 2.1  | 428       |
| 16 | Halide Perovskites: Is It All about the Interfaces?. Chemical Reviews, 2019, 119, 3349-3417.                                                                                                                                          | 23.0 | 404       |
| 17 | Crystallization of Methyl Ammonium Lead Halide Perovskites: Implications for Photovoltaic<br>Applications. Journal of the American Chemical Society, 2014, 136, 13249-13256.                                                          | 6.6  | 388       |
| 18 | Preparation of Single-Phase Films of<br>CH <sub>3</sub> NH <sub>3</sub> Pb(I <sub>1–<i>x</i></sub> Br <sub><i>x</i></sub> ) <sub>3</sub> with<br>Sharp Optical Band Edges. Journal of Physical Chemistry Letters, 2014, 5, 2501-2505. | 2.1  | 385       |

| #  | Article                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Hybrid Organic–Inorganic Perovskites (HOIPs): Opportunities and Challenges. Advanced Materials, 2015, 27, 5102-5112.                                                                                                                                     | 11.1 | 372       |
| 20 | Chemical bath deposited CdS/CdSe-sensitized porous TiO2 solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 181, 306-313.                                                                                                        | 2.0  | 368       |
| 21 | Chloride Inclusion and Hole Transport Material Doping to Improve Methyl Ammonium Lead Bromide<br>Perovskite-Based High Open-Circuit Voltage Solar Cells. Journal of Physical Chemistry Letters, 2014, 5,<br>429-433.                                     | 2.1  | 342       |
| 22 | Tungsten trioxide as a photoanode for a photoelectrochemical cell (PEC). Nature, 1976, 260, 312-313.                                                                                                                                                     | 13.7 | 341       |
| 23 | Valence and Conduction Band Densities of States of Metal Halide Perovskites: A Combined<br>Experimental–Theoretical Study. Journal of Physical Chemistry Letters, 2016, 7, 2722-2729.                                                                    | 2.1  | 333       |
| 24 | Surface Photovoltage Spectroscopy of Dye-Sensitized Solar Cells with TiO2, Nb2O5, and<br>SrTiO3Nanocrystalline Photoanodes:Â Indication for Electron Injection from Higher Excited Dye States.<br>Journal of Physical Chemistry B, 2001, 105, 6347-6352. | 1.2  | 332       |
| 25 | Molecular control over Au/GaAs diodes. Nature, 2000, 404, 166-168.                                                                                                                                                                                       | 13.7 | 331       |
| 26 | Electrocatalytic Electrodes for the Polysulfide Redox System. Journal of the Electrochemical Society, 1980, 127, 544-549.                                                                                                                                | 1.3  | 329       |
| 27 | Low-Temperature Solution-Grown CsPbBr <sub>3</sub> Single Crystals and Their Characterization.<br>Crystal Growth and Design, 2016, 16, 5717-5725.                                                                                                        | 1.4  | 329       |
| 28 | Molecular Adjustment of the Electronic Properties of Nanoporous Electrodes in Dye-Sensitized Solar<br>Cells. Journal of Physical Chemistry B, 2005, 109, 18907-18913.                                                                                    | 1.2  | 327       |
| 29 | Effects of Sodium on Polycrystalline Cu(In,Ga)Se2 and Its Solar Cell Performance. Advanced Materials, 1998, 10, 31-36.                                                                                                                                   | 11.1 | 319       |
| 30 | Stability of CdTe/CdS thin-film solar cells. Solar Energy Materials and Solar Cells, 2000, 62, 295-325.                                                                                                                                                  | 3.0  | 315       |
| 31 | Energetics of molecular interfaces. Materials Today, 2005, 8, 32-41.                                                                                                                                                                                     | 8.3  | 312       |
| 32 | Molecular Engineering of Semiconductor Surfaces and Devices. Accounts of Chemical Research, 2002, 35, 121-128.                                                                                                                                           | 7.6  | 304       |
| 33 | Large-Area, Ensemble Molecular Electronics: Motivation and Challenges. Chemical Reviews, 2017, 117, 4248-4286.                                                                                                                                           | 23.0 | 298       |
| 34 | Understanding how excess lead iodide precursor improves halide perovskite solar cell performance.<br>Nature Communications, 2018, 9, 3301.                                                                                                               | 5.8  | 271       |
| 35 | Mechanical properties of APbX3 (A = Cs or CH3NH3; X= I or Br) perovskite single crystals. MRS<br>Communications, 2015, 5, 623-629.                                                                                                                       | 0.8  | 270       |
| 36 | CsSnBr <sub>3</sub> , A Lead-Free Halide Perovskite for Long-Term Solar Cell Application: Insights on<br>SnF <sub>2</sub> Addition. ACS Energy Letters, 2016, 1, 1028-1033.                                                                              | 8.8  | 259       |

| #  | Article                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Nanocrystalline Mesoporous Strontium Titanate as Photoelectrode Material for Photosensitized<br>Solar Devices:  Increasing Photovoltage through Flatband Potential Engineering. Journal of Physical<br>Chemistry B, 1999, 103, 9328-9332. | 1.2  | 258       |
| 38 | A model for the successful growth of polycrystalline films of CuInSe2 by multisource physical vacuum evaporation. Advanced Materials, 1993, 5, 114-119.                                                                                   | 11.1 | 254       |
| 39 | Tetragonal CH <sub>3</sub> NH <sub>3</sub> PbI <sub>3</sub> is ferroelectric. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E5504-E5512.                                                    | 3.3  | 240       |
| 40 | Stability Issues of Cu(In,Ga)Se2-Based Solar Cells. Journal of Physical Chemistry B, 2000, 104, 4849-4862.                                                                                                                                | 1.2  | 235       |
| 41 | What Remains Unexplained about the Properties of Halide Perovskites?. Advanced Materials, 2018, 30, e1800691.                                                                                                                             | 11.1 | 231       |
| 42 | Molecules on Si: Electronics with Chemistry. Advanced Materials, 2010, 22, 140-159.                                                                                                                                                       | 11.1 | 207       |
| 43 | Are Mobilities in Hybrid Organic–Inorganic Halide Perovskites Actually "High�. Journal of Physical<br>Chemistry Letters, 2015, 6, 4754-4757.                                                                                              | 2.1  | 197       |
| 44 | Molecular Control over Semiconductor Surface Electronic Properties:Â Dicarboxylic Acids on CdTe,<br>CdSe, GaAs, and InP. Journal of the American Chemical Society, 1999, 121, 10545-10553.                                                | 6.6  | 185       |
| 45 | Chemical Modification of Semiconductor Surfaces for Molecular Electronics. Chemical Reviews, 2017, 117, 4624-4666.                                                                                                                        | 23.0 | 181       |
| 46 | Protein bioelectronics: a review of what we do and do not know. Reports on Progress in Physics, 2018, 81, 026601.                                                                                                                         | 8.1  | 180       |
| 47 | Making contact: Connecting molecules electrically to the macroscopic world. Progress in Surface Science, 2008, 83, 217-261.                                                                                                               | 3.8  | 179       |
| 48 | How SnF <sub>2</sub> Impacts the Material Properties of Lead-Free Tin Perovskites. Journal of Physical Chemistry C, 2018, 122, 13926-13936.                                                                                               | 1.5  | 179       |
| 49 | How Polycrystalline Devices Can Outperform Single-Crystal Ones: Thin Film CdTe/CdS Solar Cells.<br>Advanced Materials, 2004, 16, 879-883.                                                                                                 | 11.1 | 176       |
| 50 | Electronic Transport via Proteins. Advanced Materials, 2014, 26, 7142-7161.                                                                                                                                                               | 11.1 | 175       |
| 51 | Oxygenation and air-annealing effects on the electronic properties of Cu(In,Ga)Se2 films and devices.<br>Journal of Applied Physics, 1999, 86, 497-505.                                                                                   | 1.1  | 174       |
| 52 | Defect chemical explanation for the effect of air anneal on CdS/CuInSe2solar cell performance.<br>Applied Physics Letters, 1989, 54, 558-560.                                                                                             | 1.5  | 173       |
| 53 | Temperature-Dependent Optical Band Gap in CsPbBr <sub>3</sub> , MAPbBr <sub>3</sub> , and<br>FAPbBr <sub>3</sub> Single Crystals. Journal of Physical Chemistry Letters, 2020, 11, 2490-2496.                                             | 2.1  | 173       |
| 54 | The Importance of Chemical Bonding to the Contact for Tunneling through Alkyl Chains. Journal of<br>Physical Chemistry B, 2002, 106, 10432-10439.                                                                                         | 1.2  | 169       |

| #  | Article                                                                                                                                                                                                  | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Photovoltaic efficiency limits and material disorder. Energy and Environmental Science, 2012, 5, 6022.                                                                                                   | 15.6 | 166       |
| 56 | Stone Tools, Toolkits, and Human Behavior in Prehistory [and Comments and Reply]. Current<br>Anthropology, 1979, 20, 661-683.                                                                            | 0.8  | 165       |
| 57 | Understanding the Beneficial Role of Grain Boundaries in Polycrystalline Solar Cells from<br>Single-Grain-Boundary Scanning Probe Microscopy. Advanced Functional Materials, 2006, 16, 649-660.          | 7.8  | 165       |
| 58 | The Cooperative Molecular Field Effect. Advanced Functional Materials, 2005, 15, 1571-1578.                                                                                                              | 7.8  | 164       |
| 59 | Photoacoustic measurements of photosynthetic activities in whole leaves. Photochemistry and gas exchange. Biochimica Et Biophysica Acta - Bioenergetics, 1982, 679, 452-465.                             | 0.5  | 162       |
| 60 | Subsurface movements of stone artefacts and their implications for the prehistory of Central Africa.<br>Nature, 1977, 266, 812-815.                                                                      | 13.7 | 159       |
| 61 | Proteins as Electronic Materials: Electron Transport through Solid-State Protein Monolayer<br>Junctions. Journal of the American Chemical Society, 2010, 132, 4131-4140.                                 | 6.6  | 156       |
| 62 | Guide for the perplexed to the Shockley–Queisser model for solar cells. Nature Photonics, 2019, 13,<br>501-505.                                                                                          | 15.6 | 153       |
| 63 | High-Work-Function Molybdenum Oxide Hole Extraction Contacts in Hybrid Organic–Inorganic<br>Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 31491-31499.                            | 4.0  | 151       |
| 64 | Effects of Light and Electron Beam Irradiation on Halide Perovskites and Their Solar Cells. Accounts of Chemical Research, 2016, 49, 347-354.                                                            | 7.6  | 150       |
| 65 | Selfâ€Healing Inside APbBr <sub>3</sub> Halide Perovskite Crystals. Advanced Materials, 2018, 30, 1706273.                                                                                               | 11.1 | 149       |
| 66 | Molecules and Electronic Materials. Advanced Materials, 2002, 14, 789.                                                                                                                                   | 11.1 | 148       |
| 67 | Xâ€ray photoelectron and Auger electron spectroscopic analysis of surface treatments and<br>electrochemical decomposition of CulnSe2photoelectrodes. Journal of Applied Physics, 1985, 57,<br>4761-4771. | 1.1  | 145       |
| 68 | Perovskite cells roll forward. Nature Photonics, 2014, 8, 87-88.                                                                                                                                         | 15.6 | 142       |
| 69 | Photoacoustic detection of photosynthetic oxygen evolution from leaves. Quantitative analysis by<br>phase and amplitude measurements. Biochimica Et Biophysica Acta - Bioenergetics, 1983, 724, 433-446. | 0.5  | 139       |
| 70 | Importance of Monolayer Quality for Interpreting Current Transport through Organic Molecules:Â<br>Alkyls on Oxide-Free Si. Langmuir, 2006, 22, 6915-6922.                                                | 1.6  | 136       |
| 71 | Contacting Organic Molecules by Soft Methods: Towards Molecule-Based Electronic Devices.<br>Accounts of Chemical Research, 2008, 41, 359-366.                                                            | 7.6  | 126       |
| 72 | How Do Electronic Carriers Cross Si-Bound Alkyl Monolayers?. Physical Review Letters, 2005, 95, 266807.                                                                                                  | 2.9  | 124       |

| #  | Article                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | What is the Barrier for Tunneling Through Alkyl Monolayers? Results from n- and p-Si–Alkyl/Hg<br>Junctions. Advanced Materials, 2007, 19, 445-450.                                                              | 11.1 | 122       |
| 74 | Assessing Possibilities and Limits for Solar Cells. Advanced Materials, 2011, 23, 2870-2876.                                                                                                                    | 11.1 | 122       |
| 75 | Phase segregation, Cu migration and junction formation in Cu(In,ÂGa)Se2. EPJ Applied Physics, 1999, 6, 131-139.                                                                                                 | 0.3  | 121       |
| 76 | Proteins as Solid-State Electronic Conductors. Accounts of Chemical Research, 2010, 43, 945-953.                                                                                                                | 7.6  | 118       |
| 77 | Interface-Dependent Ion Migration/Accumulation Controls Hysteresis in MAPbI <sub>3</sub> Solar<br>Cells. Journal of Physical Chemistry C, 2016, 120, 16399-16411.                                               | 1.5  | 118       |
| 78 | Copper sulfide as a light absorber in wet-chemical synthesized extremely thin absorber (ETA) solar cells. Energy and Environmental Science, 2009, 2, 220-223.                                                   | 15.6 | 111       |
| 79 | How organic molecules can control electronic devices. Trends in Biotechnology, 2002, 20, 22-29.                                                                                                                 | 4.9  | 106       |
| 80 | Hybrids of Organic Molecules and Flat, Oxide-Free Silicon: High-Density Monolayers, Electronic<br>Properties, and Functionalization. Langmuir, 2012, 28, 9920-9929.                                             | 1.6  | 105       |
| 81 | Effect of Moleculeâ^'Metal Electronic Coupling on Through-Bond Hole Tunneling across<br>Metalâ^'Organic Monolayerâ^'Semiconductor Junctions. Journal of the American Chemical Society, 2002,<br>124, 2886-2887. | 6.6  | 104       |
| 82 | Current routes in polycrystalline CuInSe2 and Cu(In,Ga)Se2 films. Solar Energy Materials and Solar<br>Cells, 2007, 91, 85-90.                                                                                   | 3.0  | 104       |
| 83 | Cu(In,Ga)Se2 Solar Cells: Device Stability Based on Chemical Flexibility. Advanced Materials, 1999, 11, 957-961.                                                                                                | 11.1 | 103       |
| 84 | Electron Tunneling at the TiO2/Substrate Interface Can Determine Dye-Sensitized Solar Cell<br>Performance. Journal of Physical Chemistry B, 2004, 108, 17946-17951.                                             | 1.2  | 103       |
| 85 | Electronic structure of Si(111)-bound alkyl monolayers: Theory and experiment. Physical Review B, 2006, 74, .                                                                                                   | 1.1  | 103       |
| 86 | Controlling Semiconductor/Metal Junction Barriers by Incomplete, Nonideal Molecular Monolayers.<br>Journal of the American Chemical Society, 2006, 128, 6854-6869.                                              | 6.6  | 102       |
| 87 | Soft Contact Deposition onto Molecularly Modified GaAs. Thin Metal Film Flotation: Principles and Electrical Effects. Advanced Functional Materials, 2002, 12, 795-807.                                         | 7.8  | 101       |
| 88 | Updated Assessment of Possibilities and Limits for Solar Cells. Advanced Materials, 2014, 26, 1622-1628.                                                                                                        | 11.1 | 101       |
| 89 | Electronic Transport via Homopeptides: The Role of Side Chains and Secondary Structure. Journal of the American Chemical Society, 2015, 137, 9617-9626.                                                         | 6.6  | 101       |
| 90 | The Dependence of Electron Transfer Efficiency on the Conformational Order in Organic Monolayers.<br>Science, 1994, 263, 948-950.                                                                               | 6.0  | 100       |

| #   | Article                                                                                                                                                                                                                     | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Painted, Polycrystalline Thin Film Photoelectrodes for Photoelectrochemical Solar Cells. Journal of the Electrochemical Society, 1980, 127, 2252-2254.                                                                      | 1.3  | 99        |
| 92  | All-Solid-State, Semiconductor-Sensitized Nanoporous Solar Cells. Accounts of Chemical Research, 2012, 45, 705-713.                                                                                                         | 7.6  | 99        |
| 93  | Polar Ligand Adsorption Controls Semiconductor Surface Potentials. Journal of the American Chemical Society, 1994, 116, 2972-2977.                                                                                          | 6.6  | 98        |
| 94  | Direct evidence for grain-boundary depletion in polycrystalline CdTe from nanoscale-resolved measurements. Applied Physics Letters, 2003, 82, 556-558.                                                                      | 1.5  | 98        |
| 95  | Direct evidence for diffusion and electromigration of Cu in CuInSe2. Journal of Applied Physics, 1997, 82, 4282-4285.                                                                                                       | 1.1  | 96        |
| 96  | Interface redox engineering of Cu(In,Ga)Se 2 – based solar cells: oxygen, sodium, and chemical bath<br>effects. Thin Solid Films, 2000, 361-362, 353-359.                                                                   | 0.8  | 96        |
| 97  | Direct Detection of Low-Concentration NO in Physiological Solutions by a New GaAs-Based Sensor.<br>Chemistry - A European Journal, 2001, 7, 1743-1749.                                                                      | 1.7  | 96        |
| 98  | Synergistic Effect of Charge Generation and Separation in Epitaxially Grown<br>BiOCl/Bi <sub>2</sub> S <sub>3</sub> Nano-Heterostructure. ACS Applied Materials & Interfaces,<br>2018, 10, 15304-15313.                     | 4.0  | 95        |
| 99  | Bacteriorhodopsin as an electronic conduction medium for biomolecular electronics. Chemical Society Reviews, 2008, 37, 2422.                                                                                                | 18.7 | 93        |
| 100 | Electronic structure of the CsPbBr3/polytriarylamine (PTAA) system. Journal of Applied Physics, 2017, 121, .                                                                                                                | 1.1  | 93        |
| 101 | Electroplated CuInS2 and CuInSe2 layers: Preparation and physical and photovoltaic characterization.<br>Thin Solid Films, 1985, 128, 93-106.                                                                                | 0.8  | 91        |
| 102 | Room-temperature detection of mobile impurities in compound semiconductors by transient ion drift.<br>Journal of Applied Physics, 1997, 81, 6684-6691.                                                                      | 1.1  | 91        |
| 103 | Bacteriorhodopsin (bR) as an electronic conduction medium: Current transport through<br>bR-containing monolayers. Proceedings of the National Academy of Sciences of the United States of<br>America, 2006, 103, 8601-8606. | 3.3  | 91        |
| 104 | Light-Induced Increase of Electron Diffusion Length in a p–n Junction Type<br>CH <sub>3</sub> NH <sub>3</sub> PbBr <sub>3</sub> Perovskite Solar Cell. Journal of Physical<br>Chemistry Letters, 2015, 6, 2469-2476.        | 2.1  | 91        |
| 105 | Surface Photovoltage Spectroscopy Study of Organo-Lead Perovskite Solar Cells. Journal of Physical<br>Chemistry Letters, 2014, 5, 2408-2413.                                                                                | 2.1  | 90        |
| 106 | Defect level identification in copper indium selenide (CuInSe2) from photoluminescence studies.<br>Chemistry of Materials, 1990, 2, 286-293.                                                                                | 3.2  | 89        |
| 107 | Simultaneous Control of Surface Potential and Wetting of Solids with Chemisorbed Multifunctional<br>Ligands. Journal of the American Chemical Society, 1997, 119, 5720-5728.                                                | 6.6  | 89        |
| 108 | Energy, the global challenge, and materials. Materials Today, 2008, 11, 16-20.                                                                                                                                              | 8.3  | 87        |

| #   | Article                                                                                                                                                                                                   | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Fine Tuning of Au/SiO2/Si Diodes by Varying Interfacial Dipoles Using Molecular Monolayers. Advanced<br>Materials, 2001, 13, 508-511.                                                                     | 11.1 | 86        |
| 110 | Molecular Electronics at Metal/Semiconductor Junctions. Si Inversion by Sub-Nanometer Molecular<br>Films. Nano Letters, 2009, 9, 2390-2394.                                                               | 4.5  | 86        |
| 111 | Molecular electronic tuning of Si surfaces. Chemical Physics Letters, 1997, 279, 270-274.                                                                                                                 | 1.2  | 84        |
| 112 | Moleculeâ^'Metal Polarization at Rectifying GaAs Interfaces. Journal of Physical Chemistry B, 2003, 107, 6360-6376.                                                                                       | 1.2  | 83        |
| 113 | Controlling the Work Function of GaAs by Chemisorption of Benzoic Acid Derivatives. Journal of Physical Chemistry B, 1997, 101, 2678-2684.                                                                | 1.2  | 82        |
| 114 | Impedance Spectroscopic Indication for Solid State Electrochemical Reaction in<br>(CH <sub>3</sub> NH <sub>3</sub> )PbI <sub>3</sub> Films. Journal of Physical Chemistry Letters, 2016, 7,<br>191-197.   | 2.1  | 81        |
| 115 | Tunneling explains efficient electron transport via protein junctions. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4577-E4583.                           | 3.3  | 81        |
| 116 | Can up- and down-conversion and multi-exciton generation improve photovoltaics?. Solar Energy<br>Materials and Solar Cells, 2008, 92, 1541-1546.                                                          | 3.0  | 80        |
| 117 | Solid-State Electron Transport across Azurin: From a Temperature-Independent to a<br>Temperature-Activated Mechanism. Journal of the American Chemical Society, 2011, 133, 2421-2423.                     | 6.6  | 78        |
| 118 | Factors Affecting the Stability of CdTe/CdS Solar Cells Deduced from Stress Tests at Elevated Temperature. Advanced Functional Materials, 2003, 13, 289-299.                                              | 7.8  | 77        |
| 119 | Tuning electronic transport via hepta-alanine peptides junction by tryptophan doping. Proceedings of the United States of America, 2016, 113, 10785-10790.                                                | 3.3  | 77        |
| 120 | Electroplated cadmium chalcogenide layers: Characterization and use in photoelectrochemical solar cells. Thin Solid Films, 1982, 90, 433-438.                                                             | 0.8  | 76        |
| 121 | Conversion of Single Crystalline Pbl <sub>2</sub> to CH <sub>3</sub> NH <sub>3</sub> Pbl <sub>3</sub> :<br>Structural Relations and Transformation Dynamics. Chemistry of Materials, 2016, 28, 6501-6510. | 3.2  | 76        |
| 122 | Photoacoustic detection of photosynthetic activities in isolated broken chloroplasts. Biochimica Et<br>Biophysica Acta - Bioenergetics, 1980, 593, 330-341.                                               | 0.5  | 75        |
| 123 | Photoelectrochemical Energy Conversion and Storage: The Polycrystalline Cell with Different<br>Storage Modes. Journal of the Electrochemical Society, 1977, 124, 532-534.                                 | 1.3  | 74        |
| 124 | Free energies and enthalpies of possible gas phase and surface reactions for preparation of. Journal of<br>Physics and Chemistry of Solids, 1992, 53, 991-1005.                                           | 1.9  | 74        |
| 125 | Controlling the Work Function of CdSe by Chemisorption of Benzoic Acid Derivatives and Chemical Etching. The Journal of Physical Chemistry, 1995, 99, 8368-8373.                                          | 2.9  | 73        |
| 126 | Electrochemical, solid state, photochemical and technological aspects of photoelectrochemical energy converters. Nature, 1976, 263, 97-100.                                                               | 13.7 | 72        |

| #   | Article                                                                                                                                                                                             | IF            | CITATIONS         |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------|
| 127 | Mode-selective vibrational modulation of charge transport in organic electronic devices. Nature<br>Communications, 2015, 6, 7880.                                                                   | 5.8           | 72                |
| 128 | Structural and Solar Conversion Characteristics of the  ( Cu2Se )  x  ( In2Se3 )â€<br>Electrochemical Society, 1985, 132, 1319-1327.                                                                | ‰1ậ€‰â<br>1.3 | ~'ậ€‰x Syst<br>71 |
| 129 | Perovskite Solar Cells: Do We Know What We Do Not Know?. Journal of Physical Chemistry Letters, 2015, 6, 279-282.                                                                                   | 2.1           | 71                |
| 130 | What Limits the Open-Circuit Voltage of Bromide Perovskite-Based Solar Cells?. ACS Energy Letters, 2019, 4, 1-7.                                                                                    | 8.8           | 71                |
| 131 | Photoacoustic determination of photovoltaic energy conversion efficiency. Applied Physics Letters, 1978, 33, 810-811.                                                                               | 1.5           | 70                |
| 132 | Electrodeposition of CuInSe2 and CuInS2 films. Solar Cells, 1986, 16, 245-254.                                                                                                                      | 0.6           | 70                |
| 133 | Electrical Contacts to Organic Molecular Films by Metal Evaporation:  Effect of Contacting Details.<br>Journal of Physical Chemistry C, 2007, 111, 2318-2329.                                       | 1.5           | 70                |
| 134 | How Important Is the Interfacial Chemical Bond for Electron Transport through Alkyl Chain<br>Monolayers?. Nano Letters, 2006, 6, 2873-2876.                                                         | 4.5           | 68                |
| 135 | What Is the Mechanism of MAPbI <sub>3</sub> p-Doping by I <sub>2</sub> ? Insights from Optoelectronic Properties. ACS Energy Letters, 2017, 2, 2408-2414.                                           | 8.8           | 68                |
| 136 | Photoacoustic spectroscopy of chloroplast membranes; listening to photosynthesis. FEBS Letters, 1978, 91, 339-342.                                                                                  | 1.3           | 67                |
| 137 | Ion migration in chalcopyrite semiconductors. The Journal of Physical Chemistry, 1992, 96, 11009-11017.                                                                                             | 2.9           | 67                |
| 138 | Energy Level and Band Alignment for GaAsâ^'Alkylthiol Monolayerâ^'Hg Junctions from Electrical<br>Transport and Photoemission Experiments. Journal of Physical Chemistry B, 2006, 110, 14363-14371. | 1.2           | 66                |
| 139 | Stable Room-Temperature Molecular Negative Differential Resistance Based on Moleculeâ^ Electrode Interface Chemistry. Journal of the American Chemical Society, 2004, 126, 11648-11657.             | 6.6           | 65                |
| 140 | Deleterious Effect of Negative Capacitance on the Performance of Halide Perovskite Solar Cells. ACS<br>Energy Letters, 2017, 2, 2007-2013.                                                          | 8.8           | 65                |
| 141 | Photo-electrochemical energy conversion: electrocatalytic sulphur electrodes. Journal of Applied<br>Electrochemistry, 1977, 7, 181-182.                                                             | 1.5           | 64                |
| 142 | High efficiencyn d(Se,Te)/S=photoelectrochemical cell resulting from solution chemistry control.<br>Applied Physics Letters, 1985, 46, 608-610.                                                     | 1.5           | 64                |
| 143 | Molecular Length, Monolayer Density, and Charge Transport: Lessons from<br>Al–AlOx/Alkyl–Phosphonate/Hg Junctions. Langmuir, 2012, 28, 404-415.                                                     | 1.6           | 64                |
| 144 | S/Se Substitution in Polycrystalline CdSe Photoelectrodes: Photoelectrochemical Energy Conversion.<br>Journal of the Electrochemical Society, 1978, 125, 1623-1628.                                 | 1.3           | 63                |

| #   | Article                                                                                                                                                                                                                                                                                                                                                                                                                 | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Temperature and Force Dependence of Nanoscale Electron Transport <i>via</i> the Cu Protein Azurin.<br>ACS Nano, 2012, 6, 10816-10824.                                                                                                                                                                                                                                                                                   | 7.3  | 63        |
| 146 | Separating Charges at Organic Interfaces: Effects of Disorder, Hot States, and Electric Field. Journal of Physical Chemistry Letters, 2013, 4, 1707-1717.                                                                                                                                                                                                                                                               | 2.1  | 63        |
| 147 | Contacting organic molecules by metal evaporation. Physical Chemistry Chemical Physics, 2004, 6, 4538.                                                                                                                                                                                                                                                                                                                  | 1.3  | 62        |
| 148 | Molecular modification of an ionic semiconductor–metal interface: ZnO/molecule/Au diodes. Applied<br>Physics Letters, 2003, 82, 1051-1053.                                                                                                                                                                                                                                                                              | 1.5  | 61        |
| 149 | nâ€Si–Organic Inversion Layer Interfaces: A Low Temperature Deposition Method for Forming a p–n<br>Homojunction in nâ€Si. Advanced Energy Materials, 2014, 4, 1301724.                                                                                                                                                                                                                                                  | 10.2 | 61        |
| 150 | Platinum bronzes. IV. Preparation, crystal chemistry, and physical properties. Inorganic Chemistry, 1974, 13, 1377-1388.                                                                                                                                                                                                                                                                                                | 1.9  | 60        |
| 151 | Molecular control of a GaAs transistor. Chemical Physics Letters, 1998, 283, 301-306.<br>Voltage-Driven Changes in Molecular Dipoles Yield Negative Differential Resistance at Room                                                                                                                                                                                                                                     | 1.2  | 60        |
| 152 | Temperature We thank Prof. D. Mandler (HU Jerusalem) for making the hanging Hg drop electrode<br>available to us, Prof. A. Shanzer and Ms. R. Lazar for synthesizing and providing the cyclic disulfide<br>molecules, and Prof. J. M. L. Martin (all from the Organic Chemistry department, WIS), for guidance<br>with the dipole moment calculations. We thank the Israel Science Foundation for partial support. Y.S. | 7.2  | 59        |
| 153 | thanks the Clor fund f. Angewandte Chemie - International Edition, 2002, 41, 827.<br>Toward metal-organic insulator-semiconductor solar cells, based on molecular monolayer<br>self-assembly on n-Si. Applied Physics Letters, 2009, 94, 043308.                                                                                                                                                                        | 1.5  | 59        |
| 154 | Temperature-Dependent Solid-State Electron Transport through Bacteriorhodopsin: Experimental<br>Evidence for Multiple Transport Paths through Proteins. Journal of the American Chemical Society,<br>2012, 134, 4169-4176.                                                                                                                                                                                              | 6.6  | 59        |
| 155 | Effect of photoelectrode crystal structure on output stability of Cd(Se,Te)/polysulfide<br>photoelectrochemical cells. Journal of the American Chemical Society, 1980, 102, 5962-5964.                                                                                                                                                                                                                                  | 6.6  | 58        |
| 156 | Band diagram of the polycrystalline CdS/Cu(In,Ga)Se2 heterojunction. Applied Physics Letters, 1995, 67, 1405-1407.                                                                                                                                                                                                                                                                                                      | 1.5  | 58        |
| 157 | Rethinking Transition Voltage Spectroscopy within a Generic Taylor Expansion View. ACS Nano, 2013, 7, 695-706.                                                                                                                                                                                                                                                                                                          | 7.3  | 58        |
| 158 | Controlling electronic properties of CdTe by adsorption of dicarboxylic acid derivatives: Relating molecular parameters to band bending and electron affinity changes. Advanced Materials, 1997, 9, 746-749.                                                                                                                                                                                                            | 11.1 | 56        |
| 159 | Discontinuous Molecular Films Can Control Metal/Semiconductor Junctions. Advanced Materials, 2004, 16, 2145-2151.                                                                                                                                                                                                                                                                                                       | 11.1 | 56        |
| 160 | Pd versus Au as evaporated metal contacts to molecules. Applied Physics Letters, 2005, 86, 042113.                                                                                                                                                                                                                                                                                                                      | 1.5  | 56        |
| 161 | Hg/Molecular Monolayerâ^'Si Junctions: Electrical Interplay between Monolayer Properties and<br>Semiconductor Doping Density. Journal of Physical Chemistry C, 2010, 114, 10270-10279.                                                                                                                                                                                                                                  | 1.5  | 56        |
| 162 | Solid-state electron transport via cytochrome <i>c</i> depends on electronic coupling to electrodes and across the protein. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5556-5561.                                                                                                                                                                                      | 3.3  | 55        |

| #   | Article                                                                                                                                                                                                                     | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 163 | Mobility–Lifetime Products in MAPbI <sub>3</sub> Films. Journal of Physical Chemistry Letters, 2016, 7,<br>5219-5226.                                                                                                       | 2.1  | 55        |
| 164 | When defects become â€~dynamic': halide perovskites: a new window on materials?. Materials Horizons, 2019, 6, 1297-1305.                                                                                                    | 6.4  | 55        |
| 165 | n uInSe2based photoelectrochemical cells: Improved, stable performance in aqueous polyiodide<br>through rational surface and solution modifications. Applied Physics Letters, 1984, 45, 746-748.                            | 1.5  | 54        |
| 166 | Surface passivation of polycrystalline, chalcogenide based photovoltaic cells. Solar Cells, 1991, 30, 53-59.                                                                                                                | 0.6  | 54        |
| 167 | Insights into Solid-State Electron Transport through Proteins from Inelastic Tunneling Spectroscopy:<br>The Case of Azurin. ACS Nano, 2015, 9, 9955-9963.                                                                   | 7.3  | 54        |
| 168 | Deep Defect States in Wide-Band-Gap ABX <sub>3</sub> Halide Perovskites. ACS Energy Letters, 2019, 4,<br>1150-1157.                                                                                                         | 8.8  | 54        |
| 169 | Electronic effects of ion mobility in semiconductors: Semionic behaviour of CuInSe2. Journal of<br>Physics and Chemistry of Solids, 1995, 56, 1165-1191.                                                                    | 1.9  | 53        |
| 170 | Real-Time Electronic Monitoring of Adsorption Kinetics:Â Evidence for Two-Site Adsorption Mechanism<br>of Dicarboxylic Acids on GaAs(100). Journal of Physical Chemistry B, 1998, 102, 3307-3309.                           | 1.2  | 53        |
| 171 | Protein Electronics: Chemical Modulation of Contacts Control Energy Level Alignment in<br>Gold-Azurin-Gold Junctions. Journal of the American Chemical Society, 2018, 140, 13317-13326.                                     | 6.6  | 53        |
| 172 | Room-Temperature, Electric Field-Induced Creation of Stable Devices in CulnSe2 Crystals. Science, 1992, 258, 271-274.                                                                                                       | 6.0  | 52        |
| 173 | Thiol-Terminated Monolayers on Oxide-Free Si:Â Assembly of Semiconductorâ^'Alkylâ^'Sâ^'Metal Junctions.<br>Langmuir, 2007, 23, 3236-3241.                                                                                   | 1.6  | 52        |
| 174 | EBIC investigations of junction activity and the role of oxygen in CdS/CuInSe2 devices. Solar Cells, 1986, 16, 495-519.                                                                                                     | 0.6  | 51        |
| 175 | Assemblies of "Hinged―Ironâ^'Porphyrins as Potential Oxygen Sensors. Journal of the American<br>Chemical Society, 2000, 122, 1116-1122.                                                                                     | 6.6  | 51        |
| 176 | Charge transport across metal/molecular (alkyl) monolayer-Si junctions is dominated by the LUMO<br>level. Physical Review B, 2012, 85, .                                                                                    | 1.1  | 51        |
| 177 | Marked changes in electron transport through the blue copper protein azurin in the solid state upon<br>deuteration. Proceedings of the National Academy of Sciences of the United States of America, 2013,<br>110, 507-512. | 3.3  | 51        |
| 178 | Ternary Chalcogenideâ€Based Photoelectrochemical Cells: II . The Polysulfide System. Journal of the<br>Electrochemical Society, 1982, 129, 1506-1512.                                                                       | 1.3  | 50        |
| 179 | Stabilizing CdTe/CdS Solar Cells with Cu-Containing Contacts to p-CdTe. Advanced Materials, 2001, 13, 1495-1499.                                                                                                            | 11.1 | 50        |
| 180 | Laplace current deep level transient spectroscopy measurements of defect states in methylammonium<br>lead bromide single crystals. Journal of Applied Physics, 2017, 122, .                                                 | 1.1  | 50        |

| #   | Article                                                                                                                                                                                                                                              | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 181 | Eppur si Muove: Proton Diffusion in Halide Perovskite Single Crystals. Advanced Materials, 2020, 32, e2002467.                                                                                                                                       | 11.1 | 50        |
| 182 | Frontier Orbital Model of Semiconductor Surface Passivation: Dicarboxylic Acids on n- and p-GaAs.<br>Advanced Materials, 2000, 12, 33-37.                                                                                                            | 11.1 | 46        |
| 183 | Nanometer-scale electronic and microstructural properties of grain boundaries in Cu(In,Ga)Se2. Thin Solid Films, 2011, 519, 7341-7346.                                                                                                               | 0.8  | 46        |
| 184 | Filled and empty states of alkanethiol monolayer on Au (111): Fermi level asymmetry and implications for electron transport. Chemical Physics Letters, 2011, 511, 344-347.                                                                           | 1.2  | 46        |
| 185 | Mixed and partial oxidation states. Photoelectron spectroscopic evidence. Chemical Physics Letters, 1973, 18, 108-111.                                                                                                                               | 1.2  | 44        |
| 186 | Photo acoustic in life sciences. Journal of Proteomics, 1980, 3, 293-310.                                                                                                                                                                            | 2.4  | 44        |
| 187 | Novel NO Biosensor Based on the Surface Derivatization of GaAs by "Hinged―Iron porphyrins.<br>Angewandte Chemie - International Edition, 2000, 39, 4496-4500.                                                                                        | 7.2  | 44        |
| 188 | Molecular Monolayer-Mediated Control over Semiconductor Surfaces:  Evidence for Molecular<br>Depolarization of Silane Monolayers on Si/SiOx. Journal of the American Chemical Society, 2003, 125,<br>4730-4731.                                      | 6.6  | 44        |
| 189 | Redox activity distinguishes solid-state electron transport from solution-based electron transfer in<br>a natural and artificial protein: cytochrome C and hemin-doped human serum albumin. Physical<br>Chemistry Chemical Physics, 2013, 15, 17142. | 1.3  | 44        |
| 190 | Development of Photosystem II Complex during Greening of Chlamydomonas reinhardi y-1. Plant<br>Physiology, 1976, 58, 257-267.                                                                                                                        | 2.3  | 43        |
| 191 | Photoelectrochemistry of the CuInS2/Sn2â <sup>~,</sup> system. Solar Energy Materials and Solar Cells, 1981, 4, 169-177.                                                                                                                             | 0.4  | 43        |
| 192 | Photoacoustic photocalorimetry and spectroscopy of Halobacterium halobium purple membranes.<br>Biophysical Journal, 1982, 37, 405-415.                                                                                                               | 0.2  | 43        |
| 193 | Ternary Chalcogenideâ€Based Photoelectrochemical Cells: IV . Further Characterization of the<br>Polysulfide Systems. Journal of the Electrochemical Society, 1985, 132, 1062-1070.                                                                   | 1.3  | 43        |
| 194 | Electronically active layers and interfaces in polycrystalline devices: Cross-section mapping of CdS/CdTe solar cells. Applied Physics Letters, 2003, 83, 4924-4926.                                                                                 | 1.5  | 43        |
| 195 | Electronic Current Transport through Molecular Monolayers: Comparison between Hg/Alkoxy and Alkyl Monolayer/Si(100) Junctions. Advanced Materials, 2008, 20, 3931-3936.                                                                              | 11.1 | 43        |
| 196 | Structure Matters: Correlating temperature dependent electrical transport through alkyl monolayers with vibrational and photoelectron spectroscopies. Chemical Science, 2012, 3, 851-862.                                                            | 3.7  | 43        |
| 197 | Electrodeposition of Cuî—,Inî—,S layers and their photoelectrochemical characterization. Solar Energy<br>Materials and Solar Cells, 1984, 10, 41-45.                                                                                                 | 0.4  | 42        |
| 198 | Analysis of light emitting polymer electrochemical cells. Journal of Applied Physics, 1997, 82, 3147-3151.                                                                                                                                           | 1.1  | 42        |

| #   | Article                                                                                                                                                                                                                                                                    | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 199 | CH3NH3PbBr3 is not pyroelectric, excluding ferroelectric-enhanced photovoltaic performance. APL<br>Materials, 2016, 4, .                                                                                                                                                   | 2.2  | 42        |
| 200 | Coherent Electron Transport across a 3 nm Bioelectronic Junction Made of Multi-Heme Proteins.<br>Journal of Physical Chemistry Letters, 2020, 11, 9766-9774.                                                                                                               | 2.1  | 42        |
| 201 | Ternary chalcogenide-based photoelectrochemical cells. 6. Is there a thermodynamic explanation for<br>the output stability of copper indium sulfide (CuInS2) and copper indium selenide (CuInSe2)<br>photoanodes?. The Journal of Physical Chemistry, 1985, 89, 2818-2827. | 2.9  | 41        |
| 202 | n uInSe2/polysulfide photoelectrochemical solar cells. Applied Physics Letters, 1982, 40, 727-728.                                                                                                                                                                         | 1.5  | 40        |
| 203 | Photoluminescence studies of CuInSe2: Identification of intrinsic defect levels. Progress in Crystal Growth and Characterization, 1984, 10, 365-370.                                                                                                                       | 0.8  | 40        |
| 204 | Dopant Electromigration in Semiconductors. Advanced Materials, 1997, 9, 861-876.                                                                                                                                                                                           | 11.1 | 40        |
| 205 | Bacteriorhodopsin-Monolayer-Based Planar Metal-Insulator-Metal Junctions via Biomimetic Vesicle<br>Fusion: Preparation, Characterization, and Bio-optoelectronic Characteristics. Advanced Functional<br>Materials, 2007, 17, 1417-1428.                                   | 7.8  | 40        |
| 206 | Ambient organic molecular passivation of Si yields near-ideal, Schottky-Mott limited, junctions. AIP<br>Advances, 2012, 2, .                                                                                                                                               | 0.6  | 40        |
| 207 | O2 and organic semiconductors: Electronic effects. Organic Electronics, 2013, 14, 966-972.                                                                                                                                                                                 | 1.4  | 40        |
| 208 | Morphology-, synthesis- and doping-independent tuning of ZnO work function using phenylphosphonates. Physical Chemistry Chemical Physics, 2014, 16, 8310.                                                                                                                  | 1.3  | 40        |
| 209 | Spectroscopy and energetics of the purple membrane of Halobacterium halobium. FEBS Letters, 1978, 91, 131-134.                                                                                                                                                             | 1.3  | 39        |
| 210 | Tuning of Au/n-GaAs Diodes with Highly Conjugated Molecules. Journal of Physical Chemistry B, 2001, 105, 12011-12018.                                                                                                                                                      | 1.2  | 39        |
| 211 | Effect of Moleculeâ~'Molecule Interaction on the Electronic Properties of Molecularly Modified Si/SiOxSurfaces. Journal of Physical Chemistry B, 2004, 108, 664-672.                                                                                                       | 1.2  | 39        |
| 212 | Electron Transfer Proteins as Electronic Conductors: Significance of the Metal and Its Binding Site in the Blue Cu Protein, Azurin. Advanced Science, 2015, 2, 1400026.                                                                                                    | 5.6  | 39        |
| 213 | Can we use <i>time-resolved</i> measurements to get <i>steady-state</i> transport data for halide<br>perovskites?. Journal of Applied Physics, 2018, 124, .                                                                                                                | 1.1  | 39        |
| 214 | Direct evidence for heme-assisted solid-state electronic conduction in multi-heme <i>c</i> -type<br>cytochromes. Chemical Science, 2018, 9, 7304-7310.                                                                                                                     | 3.7  | 39        |
| 215 | Na effects on CuInSe2: Distinguishing bulk from surface phenomena. Journal of Applied Physics, 2002, 91, 4205-4212.                                                                                                                                                        | 1.1  | 36        |
| 216 | Mono-Fluorinated Alkyne-Derived SAMs on Oxide-Free Si(111) Surfaces: Preparation, Characterization and Tuning of the Si Workfunction. Langmuir, 2013, 29, 570-580.                                                                                                         | 1.6  | 36        |

| #   | Article                                                                                                                                                                                                                                                     | IF               | CITATIONS               |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------|
| 217 | Photoelectrochemical cells using polycrystalline and thin film MoS2 electrodes. Solar Energy<br>Materials and Solar Cells, 1981, 5, 403-416.                                                                                                                | 0.4              | 35                      |
| 218 | Simultaneous detection of photosynthetic energy storage and oxygen evolution in leaves by<br>photothermal radiometry and photoacoustics. Biochimica Et Biophysica Acta - Bioenergetics, 1983, 722,<br>182-189.                                              | 0.5              | 35                      |
| 219 | Effects of Ag/Cu substitution in YBa2Cu3O7 superconductors. Materials Research Bulletin, 1987, 22, 1581-1588.                                                                                                                                               | 2.7              | 35                      |
| 220 | Electron Transport via Cytochrome C on Si–H Surfaces: Roles of Fe and Heme. Journal of the American<br>Chemical Society, 2013, 135, 6300-6306.                                                                                                              | 6.6              | 35                      |
| 221 | Impact of SnF <sub>2</sub> Addition on the Chemical and Electronic Surface Structure of CsSnBr <sub>3</sub> . ACS Applied Materials & Interfaces, 2020, 12, 12353-12361.                                                                                    | 4.0              | 35                      |
| 222 | Effect of Molecular Binding to a Semiconductor on Metal/Molecule/Semiconductor Junction Behavior. Journal of Physical Chemistry B, 2005, 109, 9622-9630.                                                                                                    | 1.2              | 34                      |
| 223 | Radiation Damage to Alkyl Chain Monolayers on Semiconductor Substrates Investigated by Electron Spectroscopy. Journal of Physical Chemistry B, 2006, 110, 21826-21832.                                                                                      | 1.2              | 34                      |
| 224 | Effect of Surface Etching and Morphology on the Stability of CdSe /  S  x  =  Photoele<br>Journal of the Electrochemical Society, 1981, 128, 2325-2330.                                                                                                     | ctrochemi<br>1.3 | cal <sub>3</sub> Çells. |
| 225 | A two junction, four terminal photovoltaic device for enhanced light to electric power conversion using a low-cost dichroic mirror. Journal of Renewable and Sustainable Energy, 2009, 1, 013106.                                                           | 0.8              | 33                      |
| 226 | Substituent Variation Drives Metal/Monolayer/Semiconductor Junctions from Strongly Rectifying to Ohmic Behavior. Advanced Materials, 2013, 25, 702-706.                                                                                                     | 11.1             | 33                      |
| 227 | Odd–Even Effect in Molecular Electronic Transport via an Aromatic Ring. Langmuir, 2014, 30,<br>13596-13605.                                                                                                                                                 | 1.6              | 33                      |
| 228 | Ternary Chalcogenideâ€Based Photoelectrochemical Cells: V . Surface Analyses of the Polysulfide<br>Interface by Xâ€Ray Photoelectron Spectroscopy; Absence of Se/S Exchange in the System. Journal of the<br>Electrochemical Society, 1985, 132, 1070-1076. | 1.3              | 32                      |
| 229 | Energetics of CdSe Quantum Dots Adsorbed on TiO <sub>2</sub> . Journal of Physical Chemistry C, 2011, 115, 13236-13241.                                                                                                                                     | 1.5              | 32                      |
| 230 | Revisiting Electrochemical Reduction of CO <sub>2</sub> on Cu Electrode: Where Do We Stand about the Intermediates?. Journal of Physical Chemistry C, 2018, 122, 18528-18536.                                                                               | 1.5              | 32                      |
| 231 | Photoacoustic calorimetry of concentrated fluorescent solutions. The Journal of Physical Chemistry, 1980, 84, 3384-3389.                                                                                                                                    | 2.9              | 31                      |
| 232 | Tuning Electronic Properties of Semiconductors by Adsorption of [60]Fullerene Carboxylic Acid Derivatives. Advanced Materials, 2002, 14, 802.                                                                                                               | 11.1             | 31                      |
| 233 | Doping Molecular Monolayers: Effects on Electrical Transport Through Alkyl Chains on Silicon.<br>Advanced Functional Materials, 2008, 18, 2102-2113.                                                                                                        | 7.8              | 31                      |
| 234 | Doping Human Serum Albumin with Retinoate Markedly Enhances Electron Transport across the<br>Protein. Journal of the American Chemical Society, 2012, 134, 18221-18224.                                                                                     | 6.6              | 31                      |

| #   | Article                                                                                                                                                                     | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 235 | Are Defects in Lead-Halide Perovskites Healed, Tolerated, or Both?. ACS Energy Letters, 2021, 6, 4108-4114.                                                                 | 8.8  | 31        |
| 236 | Photoelectrochemical solar cells: Interpretation of cell performance using electrochemical determination of photoelectrode properties. Thin Solid Films, 1982, 91, 349-356. | 0.8  | 30        |
| 237 | 40 Years of Inversion Layer Solar Cells: From MOS to Conducting Polymer/Inorganic Hybrids. IEEE<br>Journal of Photovoltaics, 2013, 3, 1443-1459.                            | 1.5  | 30        |
| 238 | Solid-State Protein Junctions: Cross-Laboratory Study Shows Preservation of Mechanism at Varying Electronic Coupling. IScience, 2020, 23, 101099.                           | 1.9  | 30        |
| 239 | Ternary chalcogenide-based photoelectrochemical cells III. n-CuIn5S8/aqueous polysulfide. Solar<br>Energy Materials and Solar Cells, 1984, 11, 57-74.                       | 0.4  | 29        |
| 240 | Temperature-Dependent Electronic Transport through Alkyl Chain Monolayers:  Evidence for a<br>Molecular Signature. Journal of Physical Chemistry C, 2008, 112, 3969-3974.   | 1.5  | 29        |
| 241 | Aluminum oxide–n-Si field effect inversion layer solar cells with organic top contact. Applied Physics<br>Letters, 2012, 101, 233901.                                       | 1.5  | 29        |
| 242 | The pursuit of stability in halide perovskites: the monovalent cation and the key for surface and bulk self-healing. Materials Horizons, 2021, 8, 1570-1586.                | 6.4  | 29        |
| 243 | Platinum bronzes. II. Crystal structures of calcium platinum oxide (CaPt2O4) and cadmium platinum oxide (Cd0.3Pt3O4). Inorganic Chemistry, 1974, 13, 110-115.               | 1.9  | 28        |
| 244 | Solid-State Electron Transport via the Protein Azurin is Temperature-Independent Down to 4 K.<br>Journal of Physical Chemistry Letters, 2020, 11, 144-151.                  | 2.1  | 28        |
| 245 | Pitfalls and prospects of optical spectroscopy to characterize perovskite-transport layer interfaces.<br>Applied Physics Letters, 2020, 116, .                              | 1.5  | 28        |
| 246 | Frequency-dependent photoacoustic signals from leaves and their relation to photosynthesis. FEBS<br>Letters, 1981, 129, 44-46.                                              | 1.3  | 27        |
| 247 | Photoacoustic cell for reflection and transition measurements. Review of Scientific Instruments, 1981, 52, 1306-1310.                                                       | 0.6  | 27        |
| 248 | CdS induced homojunction formation in crystallinepâ€CuInSe2. Applied Physics Letters, 1987, 50, 158-160.                                                                    | 1.5  | 27        |
| 249 | Ohmic contacts to p-CuInSe2 crystals. Journal of Electronic Materials, 1993, 22, 275-280.                                                                                   | 1.0  | 27        |
| 250 | Controlling surfaces and interfaces of semiconductors using organic molecules. Optical Materials, 1998, 9, 394-400.                                                         | 1.7  | 27        |
| 251 | Bacteriorhodopsin Monolayers for Optoelectronics: Orientation and Photoelectric Response on Solid Supports. Advanced Materials, 2005, 17, 1023-1027.                        | 11.1 | 27        |
| 252 | Effect of Doping on Electronic Transport through Molecular Monolayer Junctions. Journal of the<br>American Chemical Society, 2007, 129, 7494-7495.                          | 6.6  | 27        |

| #   | Article                                                                                                                                                                                              | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 253 | Electrical Transport and Photoemission Experiments of Alkylphosphonate Monolayers on GaAs.<br>Journal of Physical Chemistry C, 2009, 113, 3313-3321.                                                 | 1.5 | 27        |
| 254 | A New Route to Nondestructive Top-Contacts for Molecular Electronics on Si: Pb Evaporated on Organic Monolayers. Journal of Physical Chemistry Letters, 2013, 4, 426-430.                            | 2.1 | 27        |
| 255 | Plasmonics Yields Efficient Electron Transport via Assembly of Shell-Insulated Au Nanoparticles.<br>IScience, 2018, 8, 213-221.                                                                      | 1.9 | 27        |
| 256 | Structure and properties of Ni0.25Pt3O4. New platinum bronze. Inorganic Chemistry, 1972, 11, 2311-2315.                                                                                              | 1.9 | 26        |
| 257 | Space charge effects on dopant diffusion coefficient measurements in semiconductors. Journal of Applied Physics, 1998, 83, 4678-4682.                                                                | 1.1 | 26        |
| 258 | Controlling Au/n-GaAs junctions by partial molecular monolayers. Physica Status Solidi (A)<br>Applications and Materials Science, 2006, 203, 3438-3451.                                              | 0.8 | 26        |
| 259 | Nondestructive Contact Deposition for Molecular Electronics: Si-Alkyl//Au Junctions. Journal of Physical Chemistry C, 2010, 114, 12769-12776.                                                        | 1.5 | 26        |
| 260 | Conjugated Cofactor Enables Efficient Temperature-Independent Electronic Transport Across â^1⁄46 nm<br>Long Halorhodopsin. Journal of the American Chemical Society, 2015, 137, 11226-11229.         | 6.6 | 26        |
| 261 | A Solidâ€ <b>S</b> tate Protein Junction Serves as a Biasâ€Induced Current Switch. Angewandte Chemie -<br>International Edition, 2019, 58, 11852-11859.                                              | 7.2 | 26        |
| 262 | Effect of Chemical Bond Type on Electron Transport in GaAsâ^'Chemical Bondâ^'Alkyl/Hg Junctions.<br>Journal of the American Chemical Society, 2007, 129, 734-735.                                    | 6.6 | 25        |
| 263 | Effect of Molecule–Surface Reaction Mechanism on the Electronic Characteristics and Photovoltaic<br>Performance of Molecularly Modified Si. Journal of Physical Chemistry C, 2013, 117, 22351-22361. | 1.5 | 25        |
| 264 | Photosynthetic chromatic transitions and Emerson enhancement effects in intact leaves studied by photoacoustics. FEBS Letters, 1982, 150, 142-146.                                                   | 1.3 | 24        |
| 265 | Photoacoustic study of the green alga Trebouxia in the lichen Ramalina duriaei in vivo.<br>Photosynthesis Research, 1984, 5, 297-306.                                                                | 1.6 | 24        |
| 266 | Effect of air annealing on the electronic properties of CdSCu(In,Ga)Se2 solar cells. Solar Energy<br>Materials and Solar Cells, 1996, 43, 73-78.                                                     | 3.0 | 24        |
| 267 | Effect of chemical treatments on nm-scale electrical characteristics of polycrystalline thin film<br>Cu(In,Ga)Se2 surfaces. Solar Energy Materials and Solar Cells, 2014, 120, 500-505.              | 3.0 | 24        |
| 268 | Nanoscale Electron Transport and Photodynamics Enhancement in Lipid-Depleted Bacteriorhodopsin<br>Monomers. ACS Nano, 2014, 8, 7714-7722.                                                            | 7.3 | 24        |
| 269 | Transistor configuration yields energy level control in protein-based junctions. Nanoscale, 2018, 10, 21712-21720.                                                                                   | 2.8 | 24        |
| 270 | Simple setup for single and differential photoacoustic spectroscopy. Review of Scientific Instruments, 1978, 49, 1206-1209.                                                                          | 0.6 | 23        |

| #   | Article                                                                                                                                                                                                                         | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 271 | Transient photocurrents and conversion losses in polysulfide-based photoelectrochemical cells.<br>Journal of the American Chemical Society, 1979, 101, 3969-3971.                                                               | 6.6  | 23        |
| 272 | Slurry painted CulnS2 and Culn5S8 layers: Preparation and photoelectrochemical characterization.<br>Solar Energy Materials and Solar Cells, 1985, 12, 211-219.                                                                  | 0.4  | 23        |
| 273 | Ga Composition Dictates Macroscopic Photovoltaic and Nanoscopic Electrical Characteristics of Cu(In \$_{1-X}\$Ga\$_X\$)Se \$_2\$ Thin Films via Grain-Boundary-Type Inversion. IEEE Journal of Photovoltaics, 2012, 2, 191-195. | 1.5  | 23        |
| 274 | Type-inversion as a working mechanism of high voltage MAPbBr <sub>3</sub> (Cl)-based halide perovskite solar cells. Physical Chemistry Chemical Physics, 2017, 19, 5753-5762.                                                   | 1.3  | 23        |
| 275 | Control over Selfâ€Doping in High Band Gap Perovskite Films. Advanced Energy Materials, 2018, 8,<br>1800398.                                                                                                                    | 10.2 | 23        |
| 276 | Controlling Space Charge of Oxide-Free Si by in Situ Modification of Dipolar Alkyl Monolayers.<br>Journal of Physical Chemistry C, 2012, 116, 11434-11443.                                                                      | 1.5  | 22        |
| 277 | On the influence of multiple cations on the in-gap states and phototransport properties of iodide-based halide perovskites. Physical Chemistry Chemical Physics, 2018, 20, 24444-24452.                                         | 1.3  | 22        |
| 278 | Platinum bronzes III. A reinvestigation of the composition of Adams' catalyst (1). Journal of Catalysis, 1973, 31, 369-371.                                                                                                     | 3.1  | 21        |
| 279 | Factors influencing output stability of Cd-chalcogenide/polysulfide photoelectrochemical cells.<br>Solar Energy Materials and Solar Cells, 1981, 4, 373-381.                                                                    | 0.4  | 21        |
| 280 | Quantitative separation of mechanisms for power dissipation in solar cells by photoacoustic and photovoltaic measurements. Journal of Applied Physics, 1989, 66, 1832-1841.                                                     | 1.1  | 21        |
| 281 | Local temperature increases during electricâ€fieldâ€induced transistor formation in CuInSe2. Applied<br>Physics Letters, 1994, 65, 427-429.                                                                                     | 1.5  | 21        |
| 282 | Electron transfer in hybrid molecular solid-state devices. Synthetic Metals, 1996, 76, 245-248.                                                                                                                                 | 2.1  | 21        |
| 283 | Surface photovoltage measurements in liquids. Review of Scientific Instruments, 1999, 70, 4032-4036.                                                                                                                            | 0.6  | 21        |
| 284 | Molecular Adsorption-Mediated Control over the Electrical Characteristics of Polycrystalline<br>CdTe/CdS Solar Cells. ChemPhysChem, 2005, 6, 277-285.                                                                           | 1.0  | 21        |
| 285 | Thiophene-modified perylenediimide as hole transporting material in hybrid lead bromide perovskite<br>solar cells. Journal of Materials Chemistry A, 2015, 3, 20305-20312.                                                      | 5.2  | 21        |
| 286 | Sample cells for photoacoustic measurements. Analytical Chemistry, 1979, 51, 1865-1867.                                                                                                                                         | 3.2  | 20        |
| 287 | n-CuInSe2 photoelectrochemical cells. Solar Cells, 1986, 16, 529-548.                                                                                                                                                           | 0.6  | 20        |
| 288 | Electrolyte Electroreflectance Study of Surface Optimization of n â€â€‰CuInSe2 in Photoelectrochemical<br>Solar Cells. Journal of the Electrochemical Society, 1986, 133, 107-112.                                              | 1.3  | 20        |

| #   | Article                                                                                                                                                                              | IF     | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------|
| 289 | Free energies and enthalpies of possible gas phase and surface reactions for preparation of CuInSe2.<br>Journal of Physics and Chemistry of Solids, 1991, 52, 947-961.               | 1.9    | 20        |
| 290 | Room temperature, local tailoring of electronic properties of Hg0.3Cd0.7Te by applying an external electric field. Applied Physics Letters, 1992, 61, 2428-2430.                     | 1.5    | 20        |
| 291 | Engineering the interface energetics of solar cells by grafting molecular properties onto semiconductors. Journal of Chemical Sciences, 1997, 109, 487-496.                          | 0.7    | 20        |
| 292 | Hydrolysis Improves Packing Density of Bromine-Terminated Alkyl-Chain, Siliconâ^'Carbon Monolayers<br>Linked to Silicon. Journal of Physical Chemistry C, 2009, 113, 6174-6181.      | 1.5    | 20        |
| 293 | Electronic Contact Deposition onto Organic Molecular Monolayers: Can We Detect Metal<br>Penetration?. Advanced Functional Materials, 2010, 20, 2181-2188.                            | 7.8    | 20        |
| 294 | Fabrication of Reproducible, Integration ompatible Hybrid Molecular/Si Electronics. Small, 2014, 10, 5151-5160.                                                                      | 5.2    | 20        |
| 295 | Defects in halide perovskites: The lattice as a boojum?. MRS Bulletin, 2020, 45, 478-484.                                                                                            | 1.7    | 20        |
| 296 | New Pb-Free Stable Sn–Ge Solid Solution Halide Perovskites Fabricated by Spray Deposition. ACS<br>Applied Energy Materials, 2022, 5, 3638-3646.                                      | 2.5    | 20        |
| 297 | The stability of K2[Pt(CN)4]ClO·3·x.H2O in wet and dry atmosphere. Solid State Communications, 1973, 12, 1091-1094.                                                                  | 0.9    | 19        |
| 298 | Materials aspects of photo-electrochemical systems. Solar Energy Materials and Solar Cells, 1979, 1, 343-355.                                                                        | 0.4    | 19        |
| 299 | Photoacoustic calorimetry of Halobacterium halobium photocycle. Biochemical and Biophysical<br>Research Communications, 1980, 97, 200-206.                                           | 1.0    | 19        |
| 300 | Molecular field effect passivation: Quinhydrone/methanol treatment of n-Si(100). Journal of Applied Physics, 2013, 113, .                                                            | 1.1    | 19        |
| 301 | Halide perovskite dynamics at work: Large cations at 2D-on-3D interfaces are mobile. Proceedings of the United States of America, 2022, 119, e2114740119.                            | 3.3    | 19        |
| 302 | Dependence of photoacoustic signal on optical absorption coefficient in optically dense liquids.<br>Analytical Chemistry, 1981, 53, 1426-1432.                                       | 3.2    | 18        |
| 303 | Photoacoustic calorimetry of photovoltaic cells: Use of phase shifts to indicate thermal loss mechanisms. Applied Physics Letters, 1985, 46, 446-448.                                | 1.5    | 18        |
| 304 | Impedance Study of Surface Optimization of n â€â€‰CuInSe2 in Photoelectrochemical Solar Cells. Journal c<br>the Electrochemical Society, 1986, 133, 112-116.                         | of 1.3 | 18        |
| 305 | Thermodynamic Stability of p/n Junctions. The Journal of Physical Chemistry, 1995, 99, 14486-14493.                                                                                  | 2.9    | 18        |
| 306 | Substitutional-interstitial silver diffusion and drift in bulk (cadmium,mercury) telluride: Results and mechanistic implications. Journal of Electronic Materials, 1997, 26, 97-105. | 1.0    | 18        |

| #   | Article                                                                                                                                                                                              | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 307 | Self-Repairing Energy Materials: <i>Sine Qua Non</i> for a Sustainable Future. Accounts of Chemical Research, 2017, 50, 573-576.                                                                     | 7.6  | 18        |
| 308 | Interface Electrostatics Dictates the Electron Transport via Bioelectronic Junctions. ACS Applied Materials & amp; Interfaces, 2018, 10, 41599-41607.                                                | 4.0  | 18        |
| 309 | Protein Binding and Orientation Matter: Bias-Induced Conductance Switching in a Mutated Azurin<br>Junction. Journal of the American Chemical Society, 2020, 142, 19217-19225.                        | 6.6  | 18        |
| 310 | Minimum doping densities for p–n junctions. Nature Energy, 2020, 5, 973-975.                                                                                                                         | 19.8 | 18        |
| 311 | Halide Diffusion in MAPbX <sub>3</sub> : Limits to Topotaxy for Halide Exchange in Perovskites.<br>Chemistry of Materials, 2020, 32, 4223-4231.                                                      | 3.2  | 18        |
| 312 | Conformation-dependent charge transport through short peptides. Nanoscale, 2021, 13, 3002-3009.                                                                                                      | 2.8  | 18        |
| 313 | What Can We Learn from Protein-Based Electron Transport Junctions?. Journal of Physical Chemistry Letters, 2021, 12, 11598-11603.                                                                    | 2.1  | 18        |
| 314 | Light-induced beneficial ion accumulation for high-performance quasi-2D perovskite solar cells.<br>Energy and Environmental Science, 2022, 15, 2499-2507.                                            | 15.6 | 18        |
| 315 | Valence band photoelectron spectra of platinum cyanides. Chemical Physics Letters, 1973, 22, 489-494.                                                                                                | 1.2  | 17        |
| 316 | Development and Repair of Photosystem II Activity in Normal and Chloramphenicol-treated Euglena<br>gracilis Cells. Plant Physiology, 1978, 62, 1-5.                                                  | 2.3  | 17        |
| 317 | Effect of Metalâ^'Molecule Contact Roughness on Electronic Transport: Bacteriorhodopsin-Based,<br>Metal–Insulator–Metal Planar Junctions. Langmuir, 2008, 24, 5622-5626.                             | 1.6  | 17        |
| 318 | Changes in Surface Crystallinity and Morphology of CdS and CdSe Photoelectrodes upon Use in Polysulfide Electrolyte. Journal of the Electrochemical Society, 1981, 128, 1484-1488.                   | 1.3  | 16        |
| 319 | Electrodeposited layers of CuInS2, CuIn5S8 and CuInSe2. Progress in Crystal Growth and Characterization, 1984, 10, 345-351.                                                                          | 0.8  | 16        |
| 320 | Photoelectrochemical test for photovoltaic activity of p-CuInSe2 films. Solar Cells, 1985, 14, 109-121.                                                                                              | 0.6  | 16        |
| 321 | Energy balance analysis of photovoltaic cells by voltage-dependent modulation photocalorimetry.<br>IEEE Transactions on Electron Devices, 1990, 37, 498-508.                                         | 1.6  | 16        |
| 322 | Ionic Displacements and Piezoelectric Constants of AgGaS2 from X-Ray Diffraction of a Crystal in an External Electric Field. Journal of Solid State Chemistry, 1993, 105, 520-527.                   | 1.4  | 16        |
| 323 | Electronic band structure and ensemble effect in monolayers of linear molecules investigated by photoelectron spectroscopy. Physical Review B, 2009, 79, .                                           | 1.1  | 16        |
| 324 | Ultrafast Charge Carrier Relaxation in Inorganic Halide Perovskite Single Crystals Probed by<br>Two-Dimensional Electronic Spectroscopy. Journal of Physical Chemistry Letters, 2019, 10, 5414-5421. | 2.1  | 16        |

David Cahen

| #   | Article                                                                                                                                                                                                | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 325 | Characterization of yttrium barium (copper,silver)oxide YBa2(Cu,Ag)O7 superconductors. Inorganic<br>Chemistry, 1987, 26, 3653-3655.                                                                    | 1.9  | 15        |
| 326 | Aggregate structure in CuBSe2/Mo films (B=In,Ga): Its relation to their electrical activity. Journal of Applied Physics, 1989, 66, 3554-3559.                                                          | 1.1  | 15        |
| 327 | Quantitatively controlled, room temperature reduction of YBa2Cu3O7â^'x by electrochemical methods.<br>Solid State Ionics, 1989, 32-33, 1137-1142.                                                      | 1.3  | 15        |
| 328 | The use of photothermal radiometry in assessing leaf photosynthesis: I. General properties and correlation of energy storage to P700 redox state. Photosynthesis Research, 1991, 29, 87-96.            | 1.6  | 15        |
| 329 | n- And p-type post-growth self-doping of CdTe single crystals. Journal of Crystal Growth, 2000, 214-215, 1155-1157.                                                                                    | 0.7  | 15        |
| 330 | Contact-free photovoltage measurements of photoabsorbers using a Kelvin probe. Journal of Applied<br>Physics, 2004, 96, 1556-1562.                                                                     | 1.1  | 15        |
| 331 | Si–C-bound alkyl chains on oxide-free Si: towards versatile solution preparation of electronic transport quality monolayers. Physical Chemistry Chemical Physics, 2011, 13, 1293-1296.                 | 1.3  | 15        |
| 332 | Can fluorine-doped tin Oxide, FTO, be more like indium-doped tin oxide, ITO? Reducing FTO surface roughness by introducing additional SnO2 coating. MRS Communications, 2018, 8, 1358-1362.            | 0.8  | 15        |
| 333 | Origin of the anomalous Pb-Br bond dynamics in formamidinium lead bromide perovskites. Physical<br>Review B, 2020, 101, .                                                                              | 1.1  | 14        |
| 334 | The relation between performance and stability of Cd-chalcogenide/polysulfide photoelectrochemical cells. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1983, 143, 103-112. | 0.3  | 13        |
| 335 | Optical characterization of polycrystalline CuInSe2 films on scattering substrates by fourier transform photothermal deflection spectroscopy. Thin Solid Films, 1985, 128, 11-20.                      | 0.8  | 13        |
| 336 | Dopant accumulation during substitutional–interstitial diffusion in semiconductors. Applied Physics<br>Letters, 1997, 70, 613-615.                                                                     | 1.5  | 13        |
| 337 | Fabrication of sub-μm bipolar transistor structures by scanning probe microscopy. Applied Physics<br>Letters, 1998, 73, 1868-1870.                                                                     | 1.5  | 13        |
| 338 | Synchrotron X-ray Diffraction Evidence for Native Defects in the Photovoltaic Semiconductor CuInSe2. Advanced Materials, 2000, 12, 366-370.                                                            | 11.1 | 13        |
| 339 | Effect of Doping Density on the Charge Rearrangement and Interface Dipole at the Molecule–Silicon<br>Interface. Journal of Physical Chemistry C, 2013, 117, 22422-22427.                               | 1.5  | 13        |
| 340 | Protein Electronic Conductors: Hemin–Substrate Bonding Dictates Transport Mechanism and<br>Efficiency across Myoglobin. Angewandte Chemie - International Edition, 2015, 54, 12379-12383.              | 7.2  | 13        |
| 341 | Electrochemical reduction of CO <sub>2</sub> : Two―or threeâ€electrode configuration. International<br>Journal of Energy Research, 2020, 44, 548-559.                                                  | 2.2  | 13        |
| 342 | Injected currentâ€related distortion of photothermal signals from a photovoltaic cell. Applied Physics<br>Letters, 1986, 49, 1351-1353.                                                                | 1.5  | 12        |

| #   | Article                                                                                                                                                                                                         | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 343 | Atomic radii in ternary adamantines. Journal of Physics and Chemistry of Solids, 1988, 49, 103-111.                                                                                                             | 1.9  | 12        |
| 344 | Electron stimulated desorption of oxygen from, and subsequent type conversion of, thinâ€film<br>pâ€CuInSe2. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1989, 7, 230-233.           | 0.9  | 12        |
| 345 | Chemical diffusion coefficient of oxygen in polycrystalline YBa2Cu3O7â^x at room temperature.<br>Physica C: Superconductivity and Its Applications, 1991, 174, 273-279.                                         | 0.6  | 12        |
| 346 | Junction electroluminescence from microscopic diode structures in CuInSe2, prepared by electric field-assisted doping. Advanced Materials, 1995, 7, 45-48.                                                      | 11.1 | 12        |
| 347 | Diffusion of Ag in Cd-rich mercury, cadmium telluride Cd Hg1â^'Te (x = 0.55–0.8). Journal of Crystal<br>Growth, 1996, 159, 1148-1151.                                                                           | 0.7  | 12        |
| 348 | Electronic effects of ion mobility in semiconductors: Mixed electronic–ionic behavior and device creation in Si:Li. Journal of Applied Physics, 1996, 80, 2749-2762.                                            | 1.1  | 12        |
| 349 | Selective Electroless Deposition of Metal Clusters on Solid‣upported Bacteriorhodopsin:<br>Applications to Orientation Labeling and Electrical Contacts. Small, 2008, 4, 2271-2278.                             | 5.2  | 12        |
| 350 | Towards nanometer-spaced silicon contacts to proteins. Nanotechnology, 2016, 27, 115302.                                                                                                                        | 1.3  | 12        |
| 351 | Metal to Halide Perovskite (HaP): An Alternative Route to HaP Coating, Directly from Pb <sup>(0)</sup><br>or Sn <sup>(0)</sup> Films. Chemistry of Materials, 2017, 29, 8620-8629.                              | 3.2  | 12        |
| 352 | Direct Probing of Gap States and Their Passivation in Halide Perovskites by High-Sensitivity, Variable<br>Energy Ultraviolet Photoelectron Spectroscopy. Journal of Physical Chemistry C, 2021, 125, 5217-5225. | 1.5  | 12        |
| 353 | Doping of copper indium selenide (CuInSe2) crystals: evidence for influence of thermal defects.<br>Chemistry of Materials, 1989, 1, 202-207.                                                                    | 3.2  | 11        |
| 354 | Electric-field-induced room-temperature doping in CulnSe2. Advanced Materials, 1992, 4, 741-745.                                                                                                                | 11.1 | 11        |
| 355 | Band edge shifts ofpâ€ŧype copper indium diselenide electrodes in aqueous electrolytes. Applied Physics<br>Letters, 1993, 62, 519-521.                                                                          | 1.5  | 11        |
| 356 | Determination of undoped CdTe(111) surface polarity by surface photovoltage spectroscopy. Applied Surface Science, 1994, 74, 201-206.                                                                           | 3.1  | 11        |
| 357 | Low Resistance Contacts to p-CulnSe2 and p-CdTe Crystals. Journal of Electronic Materials, 1997, 26, 893-897.                                                                                                   | 1.0  | 11        |
| 358 | Growth of single CuInSe2 crystals by the traveling heater method and their characterization. Journal of Crystal Growth, 1999, 197, 177-185.                                                                     | 0.7  | 11        |
| 359 | Gold-Nanoparticle-Enhanced Current Transport through Nanometer-Scale Insulating Layers.<br>Angewandte Chemie - International Edition, 2006, 45, 6325-6328.                                                      | 7.2  | 11        |
| 360 | Photocontrol of Electrical Conductance with a Nonsymmetrical Azobenzene Dithiol. Synlett, 2013, 24, 2370-2374.                                                                                                  | 1.0  | 11        |

| #   | Article                                                                                                                                                                                                            | IF             | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------|
| 361 | The Effect of AIR-Pollution and Bisulfite Treatment in the Lichen Ramalina Duriaei Studied by Photoacoustics. , 1984, , 251-254.                                                                                   |                | 11        |
| 362 | 2D Pbâ€Halide Perovskites Can Selfâ€Heal Photodamage Better than 3D Ones. Advanced Functional<br>Materials, 2022, 32, .                                                                                            | 7.8            | 11        |
| 363 | Stone Age Typology: Another Approach. Current Anthropology, 1971, 12, 211-215.                                                                                                                                     | 0.8            | 10        |
| 364 | A four probe cell for rapid resistivity measurements. Review of Scientific Instruments, 1973, 44, 1567-1568.                                                                                                       | 0.6            | 10        |
| 365 | Development of Photosystem II Activity in Chlamydomonas reinhardi Mutants. Plant Physiology, 1977,<br>60, 845-849.                                                                                                 | 2.3            | 10        |
| 366 | Controlled room-temperature reduction of YBa2Cu3O7â^'x: A synthetic route to metastable superconducting phases. Materials Letters, 1989, 7, 411-414.                                                               | 1.3            | 10        |
| 367 | Photoelectrochemical characterization of CuGaSe2 and Cu(Ga, In)Se2 films. Solar Cells, 1990, 28, 57-67.                                                                                                            | 0.6            | 10        |
| 368 | Improvement of Cu(Ga,In)Se/sub 2/ based solar cells by etching the absorber. , 0, , .                                                                                                                              |                | 10        |
| 369 | Room-temperature electrochemical reduction of YBa2Cu3O7 –x. Solid-state and solution chemical results. Journal of Materials Chemistry, 1991, 1, 339-346.                                                           | 6.7            | 10        |
| 370 | Low temperature device creation in Si via fast Li electromigration. Applied Physics Letters, 1995, 66, 709-711.                                                                                                    | 1.5            | 10        |
| 371 | Electric signal transfer through nm-thick molecular bilayers. Materials Science and Engineering C, 2002, 19, 339-343.                                                                                              | 3.8            | 10        |
| 372 | Chemical compositional non-uniformity and its effects on CIGS solar cell performance at the nm-scale. Solar Energy Materials and Solar Cells, 2012, 98, 78-82.                                                     | 3.0            | 10        |
| 373 | Lead Sequestration from Halide Perovskite Solar Cells with a Low-Cost Thiol-Containing Encapsulant.<br>ACS Applied Materials & Interfaces, 2022, 14, 29766-29772.                                                  | 4.0            | 10        |
| 374 | Activation analysis of forwardâ€biased CdSâ€electrolyte diode. Applied Physics Letters, 1981, 38, 458-460.                                                                                                         | 1.5            | 9         |
| 375 | Ternary Chalcogenideâ€Based Photoelectrochemical Cells: VIII . Solution Composition Effects in<br>Aqueous Polysulfide and Aqueous Polyiodide Cells. Journal of the Electrochemical Society, 1987, 134,<br>592-600. | 1.3            | 9         |
| 376 | Correlation of acoustically detected thermal waves with injected and photogenerated currents in a photovoltaic cell. IEEE Transactions on Electron Devices, 1987, 34, 457-458.                                     | 1.6            | 9         |
| 377 | n â€â€‰AgInSe2 / Polyiodide and â€Polysulfide Photoelectrochemical Cells. Journal of the Electrocl<br>Society, 1988, 135, 104-108.                                                                                 | nemical<br>1.3 | 9         |
| 378 | Band diagram and band line-up of the polycrystalline CdS/Cu(In,Ga)Se2 heterojunction and its response to air annealing. AIP Conference Proceedings, 1996, , .                                                      | 0.3            | 9         |

| #   | Article                                                                                                                                                                                                                  | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 379 | Junction sharpness in fieldâ€induced transistor structures in CuxAg1â^'xInSe2. Journal of Applied Physics,<br>1996, 79, 7370-7372.                                                                                       | 1.1  | 9         |
| 380 | Low temperature, postgrowth self-doping of CdTe single crystals due to controlled deviation from stoichiometry. Journal of Applied Physics, 2000, 88, 3976.                                                              | 1.1  | 9         |
| 381 | Electronic structure of dipeptides in the gas-phase and as an adsorbed monolayer. Physical Chemistry<br>Chemical Physics, 2018, 20, 6860-6867.                                                                           | 1.3  | 9         |
| 382 | Unprecedented efficient electron transport across Au nanoparticles with up to 25-nm insulating SiO2-shells. Scientific Reports, 2019, 9, 18336.                                                                          | 1.6  | 9         |
| 383 | Two-dimensional perovskite solar cells with high luminescence and ultra-low open-circuit voltage<br>deficit. Journal of Materials Chemistry A, 2020, 8, 22175-22180.                                                     | 5.2  | 9         |
| 384 | Effect of photoelectrochemical etching on charge collection efficiency in CdS: An electron beam induced current study. Journal of Applied Physics, 1983, 54, 4676-4678.                                                  | 1.1  | 8         |
| 385 | Selfâ€restoration of pâ€n junctions in (Hg,Cd)Te. Applied Physics Letters, 1995, 67, 3132-3134.                                                                                                                          | 1.5  | 8         |
| 386 | Ion Potential Diagrams for Electrochromic Devices. Journal of the Electrochemical Society, 1998, 145, 4212-4218.                                                                                                         | 1.3  | 8         |
| 387 | Bulk changes in semiconductors using scanning probe microscopy:  nm-size fabricated structures.<br>Physical Review B, 1999, 59, 10877-10884.                                                                             | 1.1  | 8         |
| 388 | Monitoring electron redistribution in molecules during adsorption. Chemical Physics Letters, 2002, 354, 349-353.                                                                                                         | 1.2  | 8         |
| 389 | The effect of structural order on solar cell parameters, as illustrated in a SiC-organic junction model. Energy and Environmental Science, 2013, 6, 3272.                                                                | 15.6 | 8         |
| 390 | Effect of binding group on hybridization across the silicon/aromatic-monolayer interface. Journal of<br>Electron Spectroscopy and Related Phenomena, 2015, 204, 149-158.                                                 | 0.8  | 8         |
| 391 | Effect of Low Pressure on Tetragonal to Cubic Phase Transition of Methylammonium Lead Iodide<br>Perovskite. Journal of Physical Chemistry Letters, 2020, 11, 1473-1476.                                                  | 2.1  | 8         |
| 392 | Single-Crystal Growth and Thermal Stability of<br>(CH <sub>3</sub> NH <sub>3</sub> ) <sub>1–<i>x</i></sub> Cs <sub><i>x</i></sub> PbBr <sub>3</sub> .<br>Crystal Growth and Design, 2020, 20, 4366-4374.                 | 1.4  | 8         |
| 393 | Photoelectrochemical performance of the n-CdSe/aqueous polysulfide system at room- and sub-zero<br>ambient temperatures. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1981,<br>130, 373-379. | 0.3  | 7         |
| 394 | Chalcopyrite-type ternaries as photoelectrodes in wet solar cells. Nuovo Cimento Della Societa<br>Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1983, 2,<br>2039-2043.    | 0.4  | 7         |
| 395 | Photosynthetic Parameters in Ramalina Duriaei, in Vivo, Studied by Photoacoustics. , 1985, , 9-22.                                                                                                                       |      | 7         |
| 396 | Dielectric Properties of the Interfacial Layer on n â€â€‰CulnSe2 in Photoelectrochemical Solar Cells.<br>Journal of the Electrochemical Society, 1986, 133, 930-934.                                                     | 1.3  | 7         |

| #   | Article                                                                                                                                                            | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 397 | Effects of chemical and electrochemical etching on polycrystalline thin films of CuGaSe2. Journal of<br>Electronic Materials, 1989, 18, 531-536.                   | 1.0  | 7         |
| 398 | Percolation-Controlled Semiconductor Doping. Chemistry of Materials, 1998, 10, 2596-2598.                                                                          | 3.2  | 7         |
| 399 | Post-growth, In doping of CdTe single crystals via vapor phase. Journal of Crystal Growth, 1999, 197, 106-112.                                                     | 0.7  | 7         |
| 400 | Calculation and experimental characterization of the defect physics in CuInSe 2. Thin Solid Films, 2000, 361-362, 446-449.                                         | 0.8  | 7         |
| 401 | When, Why and Where are CdTe/CdS Solar Cells Stable?. Materials Research Society Symposia<br>Proceedings, 2001, 668, 1.                                            | 0.1  | 7         |
| 402 | Chemically induced enhancement of the opto-electronic response of Halobacterium purple membrane monolayer. Chemical Communications, 2006, , 1310.                  | 2.2  | 7         |
| 403 | Enhanced Electronic Conductance across Bacteriorhodopsin, Induced by Coupling to Pt<br>Nanoparticles. Journal of Physical Chemistry Letters, 2010, 1, 3072-3077.   | 2.1  | 7         |
| 404 | Effect of Internal Heteroatoms on Level Alignment at Metal/Molecular Monolayer/Si Interfaces.<br>Journal of Physical Chemistry C, 2018, 122, 3312-3325.            | 1.5  | 7         |
| 405 | Reply to â€~Ideal solar cell efficiencies'. Nature Photonics, 2021, 15, 165-166.                                                                                   | 15.6 | 7         |
| 406 | Photoelectrochemistry of Hydrogenated Amorphous Silicon (a‣i:H). Journal of the Electrochemical<br>Society, 1980, 127, 1209-1211.                                  | 1.3  | 6         |
| 407 | Photoacoustic Calorimetry of Purple Membrane. Biophysical Journal, 1982, 37, 4-6.                                                                                  | 0.2  | 6         |
| 408 | Computer Simulation of the Photoacoustic Signal of Photovoltaic Cells. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1986, 33, 622-629. | 1.7  | 6         |
| 409 | Sample modulation photoacoustic measurements. Solar Cells, 1988, 25, 155-162.                                                                                      | 0.6  | 6         |
| 410 | Interaction of Oxygen with Native Chemical Defects in CuInSe2 Thin Films. Materials Research Society<br>Symposia Proceedings, 1989, 148, 451.                      | 0.1  | 6         |
| 411 | Electrothermal measurements: A calorimetric method to examine power dissipation in photovoltaic devices. Journal of Applied Physics, 1990, 67, 4338-4344.          | 1.1  | 6         |
| 412 | Tuning the Electronic Properties of Silicon via Molecular Self-Assembly. ACS Symposium Series, 1998, ,<br>57-66.                                                   | 0.5  | 6         |
| 413 | Energy limitations on materials availability. MRS Bulletin, 2012, 37, 412-416.                                                                                     | 1.7  | 6         |
| 414 | Interface Modification by Simple Organic Salts Improves Performance of Planar Perovskite Solar<br>Cells. Advanced Materials Interfaces, 2016, 3, 1600506.          | 1.9  | 6         |

| #   | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 415 | Room Temperature Tailoring of Electrical Properties of Ternary and Multinary Chalcogenide<br>Semiconductors. Japanese Journal of Applied Physics, 1993, 32, 660.                                                             | 0.8 | 6         |
| 416 | Comment on: Preparation and characterization of chemically deposited CuInS2 thin films. Solar Energy Materials and Solar Cells, 1987, 15, 225-226.                                                                           | 0.4 | 5         |
| 417 | Electrochemical preparation and properties of oxygen deficient YBa2Cu3O7â^'x. Physica C:<br>Superconductivity and Its Applications, 1988, 153-155, 1457-1458.                                                                | 0.6 | 5         |
| 418 | Heat flow measurements for solar cell analysis. Solar Cells, 1989, 27, 247-258.                                                                                                                                              | 0.6 | 5         |
| 419 | Qualitative modelling of mixed ionic/electronic devices with ion potential level diagrams. Ionics, 1996, 2, 143-154.                                                                                                         | 1.2 | 5         |
| 420 | Evidence for thermodynamically stable p/n junction, formed by Ag doping of (Hg,Cd)Te. Journal of Crystal Growth, 1996, 161, 90-93.                                                                                           | 0.7 | 5         |
| 421 | Electric field-induced junctions in epitaxial layers of CuInSe2. Applied Physics Letters, 2001, 79, 2919-2921.                                                                                                               | 1.5 | 5         |
| 422 | Cadmium Mixed Chalcogenides and Layers of Cadmium (Mixed) Chalcogenides on Metallic Substrates.<br>Inorganic Syntheses, 2007, , 80-85.                                                                                       | 0.3 | 5         |
| 423 | A novel method for investigating electrical breakdown enhancement by nm-sized features. Nanoscale, 2012, 4, 3128.                                                                                                            | 2.8 | 5         |
| 424 | Electron transport via a soluble photochromic photoreceptor. Physical Chemistry Chemical Physics, 2016, 18, 25671-25675.                                                                                                     | 1.3 | 5         |
| 425 | Backbone-Constrained Peptides: Temperature and Secondary Structure Affect Solid-State Electron<br>Transport. Journal of Physical Chemistry B, 2019, 123, 10951-10958.                                                        | 1.2 | 5         |
| 426 | Pin-Hole-Free, Homogeneous, Pure CsPbBr3 Films on Flat Substrates by Simple Spin-Coating<br>Modification. Frontiers in Energy Research, 2020, 8, .                                                                           | 1.2 | 5         |
| 427 | Inelastic Electron Tunneling Spectroscopic Analysis of Biasâ€Induced Structural Changes in a<br>Solidâ€State Protein Junction. Small, 2021, 17, e2008218.                                                                    | 5.2 | 5         |
| 428 | Cu(In,Ga)Se2 Solar Cells: Device Stability Based on Chemical Flexibility. , 1999, 11, 957.                                                                                                                                   |     | 5         |
| 429 | Ion Mobility in Chalcogenide Semiconductors; Room Temperature Creation of Bipolar Junction Transistor. , 1993, , 121-141.                                                                                                    |     | 5         |
| 430 | Optimizing Thin Film Chalcogenide-Based Solar Cells via Chemical Surface Treatments. , 1991, , 927-930.                                                                                                                      |     | 5         |
| 431 | Prospect of making XPS a high-throughput analytical method illustrated for a<br>Cu <sub><i>x</i></sub> Ni <sub>1â°<i>x</i></sub> O <sub><i>y</i></sub> combinatorial material library.<br>RSC Advances, 2022, 12, 7996-8002. | 1.7 | 5         |
| 432 | Photoelectrochemical solar cells: Temperature control by cell design and its effects on the performance of cadmium chalcogenide-polysulphide systems. Solar Cells, 1983, 9, 229-245.                                         | 0.6 | 4         |

| #   | Article                                                                                                                                                                                                                                                                                                   | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 433 | n-Cu-In-chalcogenide-based photoelectrochemical cells. Progress in Crystal Growth and<br>Characterization, 1984, 10, 263-270.                                                                                                                                                                             | 0.8  | 4         |
| 434 | Characterization of Molecular Modified Surface States by Wavelength- and Time-Dependent<br>Two-Photon Photoemission Spectroscopy. Journal of Physical Chemistry B, 1997, 101, 4085-4089.                                                                                                                  | 1.2  | 4         |
| 435 | Chemical Limit to Semiconductor Device Miniaturization. Electrochemical and Solid-State Letters, 1999, 2, 154.                                                                                                                                                                                            | 2.2  | 4         |
| 436 | Enhancing the Tunability of the Open-Circuit Voltage of Hybrid Photovoltaics with Mixed Molecular Monolayers. ACS Applied Materials & amp; Interfaces, 2014, 6, 2317-2324.                                                                                                                                | 4.0  | 4         |
| 437 | CsPbBr <sub>3</sub> and CH <sub>3</sub> NH <sub>3</sub> PbBr <sub>3</sub> promote visible-light photo-reactivity. Physical Chemistry Chemical Physics, 2018, 20, 16847-16852.                                                                                                                             | 1.3  | 4         |
| 438 | FTO Darkening Rate as a Qualitative, High-Throughput Mapping Method for Screening Li-Ionic Conduction in Thin Solid Electrolytes. ACS Combinatorial Science, 2020, 22, 18-24.                                                                                                                             | 3.8  | 4         |
| 439 | Response to Comment on "Eppur si Muove: Proton Diffusion in Halide Perovskite Single Crystalsâ€<br>Measure What is Measurable, and Make Measurable What is Not So: Discrepancies between Proton<br>Diffusion in Halide Perovskite Single Crystals and Thin Films. Advanced Materials, 2021, 33, e2102822. | 11.1 | 4         |
| 440 | In Operando, Photovoltaic, and Microscopic Evaluation of Recombination Centers in Halide<br>Perovskite-Based Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 34171-34179.                                                                                                                      | 4.0  | 4         |
| 441 | Molecular Approach to Surface Control of Chalcogenide Semiconductors. Japanese Journal of<br>Applied Physics, 1993, 32, 730.                                                                                                                                                                              | 0.8  | 4         |
| 442 | Photoacoustic figure of merit for photothermal energy conversion efficiency. Optics Communications, 1981, 39, 243-246.                                                                                                                                                                                    | 1.0  | 3         |
| 443 | Simulations of frequency-dependent photoacoustic magnitude signals and their implications for bacteriorhodopsin photocycle energetics. Biophysical Chemistry, 1984, 20, 249-259.                                                                                                                          | 1.5  | 3         |
| 444 | II-IV-V2 chalcopyrite-type photoelectrodes: The CdSnP2 aqueous polysulfide system. Progress in Crystal<br>Growth and Characterization, 1984, 10, 321-327.                                                                                                                                                 | 0.8  | 3         |
| 445 | Quantitative analyses of power loss mechanisms in semiconductor devices by thermal wave calorimetry. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1989, 122, 127-131.                                                                              | 2.6  | 3         |
| 446 | New aspects of phase segregation and junction formation in CulnSe/sub 2/. , 0, , .                                                                                                                                                                                                                        |      | 3         |
| 447 | Lateral Thermal Diffusion Effects on Photothermal Signals from Photovoltaic Cells. Israel Journal of Chemistry, 1998, 38, 223-229.                                                                                                                                                                        | 1.0  | 3         |
| 448 | Materials research and the â€~energy crisis'. Materials Today, 2008, 11, 64.                                                                                                                                                                                                                              | 8.3  | 3         |
| 449 | Hybrid photovoltaic junctions: metal/molecular organic insulator/semiconductor MOIS solar cells.<br>Proceedings of SPIE, 2008, , .                                                                                                                                                                        | 0.8  | 3         |
| 450 | Power Dissipation Mechanisms in Photovoltaic Cells. Springer Series in Optical Sciences, 1988, , 247-251.                                                                                                                                                                                                 | 0.5  | 3         |

| #   | Article                                                                                                                                                                                            | IF           | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|
| 451 | Solar Energy Conversion and Storage by a Photoelectrochemical Storage Cell. , 1978, , 1302-1308.                                                                                                   |              | 3         |
| 452 | Photoelectrochemical Activity of n â€â€‰AgInSe2 / Polyiodide Junctions. Journal of the Electroche<br>Society, 1986, 133, 1533-1534.                                                                | mical<br>1.3 | 2         |
| 453 | Electrochemical room temperature reduction and reoxydation of thin films and pellets of YBa2Cu3O7â^'x. Physica C: Superconductivity and Its Applications, 1993, 209, 305-306.                      | 0.6          | 2         |
| 454 | Voltage-driven doping of mixed ionic electronic semiconductors. Solid State Ionics, 1996, 83, 29-33.                                                                                               | 1.3          | 2         |
| 455 | Ion potential diagrams as guidelines for stability and performance of electrochromic devices. Ionics, 1997, 3, 420-426.                                                                            | 1.2          | 2         |
| 456 | Ultra-low concentration phase separation in solids: Ag in (Cd, Hg)Te. Europhysics Letters, 1999, 45, 201-207.                                                                                      | 0.7          | 2         |
| 457 | Covalent Attachment of Bacteriorhodopsin Monolayer to Bromoâ€ŧerminated Solid Supports:<br>Preparation, Characterization, and Protein Stability. Chemistry - an Asian Journal, 2008, 3, 1146-1155. | 1.7          | 2         |
| 458 | Human resources for future alternative-energy research. Nature Materials, 2008, 7, 93-93.                                                                                                          | 13.3         | 2         |
| 459 | Proteins as "dopable" bio-electronic materials. AIP Conference Proceedings, 2013, , .                                                                                                              | 0.3          | 2         |
| 460 | CHAPTER 17. Real World Efficiency Limits: the Shockley–Queisser Model as a Starting Point. RSC Energy and Environment Series, 0, , 547-566.                                                        | 0.2          | 2         |
| 461 | Protein Electronic Conductors: Hemin–Substrate Bonding Dictates Transport Mechanism and Efficiency across Myoglobin. Angewandte Chemie, 2015, 127, 12556-12560.                                    | 1.6          | 2         |
| 462 | Making the science of interfaces work for semiconductor electronics. Journal Physics D: Applied Physics, 2016, 49, 391001.                                                                         | 1.3          | 2         |
| 463 | Electronic Transport Through Organophosphonate-Grafted Bacteriorhodopsin Films on Titanium<br>Nitride. , 2021, , .                                                                                 |              | 2         |
| 464 | Photoacoustics as a Probe for Photosynthetic O2 Evolution and Energy Storage in an Intact Leaf —<br>Distribution of Excitation Energy between PSII and PSI. , 1984, , 331-334.                     |              | 2         |
| 465 | Photocalorimetric Investigations of Energy Conversion Processes Using Photoacoustic Detection. ,<br>1984, , 242-270.                                                                               |              | 2         |
| 466 | Electrochemical, Room Temperature Reduction, Oxidation and Microscopic Patterning of Multinary<br>Cuprate Superconductors. Japanese Journal of Applied Physics, 1993, 32, 683.                     | 0.8          | 2         |
| 467 | Valence band photoelectron spectra of platinum cyanides. Chemical Physics Letters, 1973, 22, 489-494.                                                                                              | 1.2          | 2         |
| 468 | Surface Interactions of Oxygen Suffice to Pâ€Dope the Halide Perovskites. Advanced Materials<br>Interfaces, 2022, 9, .                                                                             | 1.9          | 2         |

| 440UNESCO. Nature, 1975, 253, 8545.1371450Photoacoustics in photobiology. Trends in Biochemical Sciences, 1979, 4, N240.3.71471Lafin des ages de la piere et le debut de l'age du fer en Afrique centrale. African Economic History,0.11472The structure and composition of the CdSe-(Oxidized titanium) interface: An Investigation by<br>transmission electron microscopy and electron diffraction. Thin Solid Films, 1984, 112, 349-358.0.81473Photoelectrochemical characterization of CuCaSe/sizub 21 and CuCaS. In Selar cells, 1988, y.11474Calorimetric separation and determinance, 1988, y.11475Calorimetric separation and determination of conversion losses in solar cells, 1988, y.0.11476Earnetical Implications for solar cell performance, 1988, s.0.11477Calorimetric separation and determination of conversion losses in solar cells, 1988, y.0.11478Earnetical Implications for solar cell performance, 1988, s.0.11479Controlled los Migration Tuning of Semiconductor Electrical Properties. Defect and Diffusion<br>5003, 431 432, 284-288.0.11479Direct solar energy conversion with photovoltaic Conversion with Nanoparticulate, Mesoporous<br>2003, 431 432, 284-288.0.11479Direct solar energy conversion with photovoltaic devices, 0, 216-237.11470Estery Quarterly. News and analysis on materials solutions to energy challenges. MRS Builetin, 2011, 111471The Big Pictureade Accepting Diverse Views on E                                                                                                                                               | #   | Article                                                                                                                                           | IF   | CITATIONS |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 171       La fin des ages de la pierre et le debut de l'age du fer en Afrique centrale. African Economic History.       0.1       1         172       The structure and composition of the CdSe-(Oxidized titanium) interface: An investigation by<br>transmission electron microscopy and electron diffraction. Thin Solid Films, 1984, 112, 349-558.       0.8       1         172       The structure and composition of the CdSe-(Oxidized titanium) interface: An investigation by<br>transmission electron microscopy and electron diffraction. Thin Solid Films, 1984, 112, 349-558.       0.8       1         173       Chemical Implications for solar cell performance., 1986,       1         174       Calorimetric separation and determination of conversion losses in solar cells., 1988,       1         175       Society Symposia Proceedings, 1998, 548, 667.       0.1       1         176       Can percelation control doping, diffusion and phase segregation in (Hg.Cd)Te7. Journal of Crystal<br>Crowth, 1999, 197, 537-541.       0.7       1         177       Controlled on Migration I uning of Semiconductor Electrical Properties. Defect and Diffusion<br>Proum, 2001, 191, 61-98.       0.8       1         178       Extended stable junction regions in CulhSe2 thin films by electric field application. Thin Solid Films,<br>2003, 431-432, 284-288.       0.3       1         179       Physical Chemical Sectoring Conversion with Nanoparticulate, Mesoporous       0.3       1         179       P                                                | 469 | UNESCO. Nature, 1975, 253, 85-85.                                                                                                                 | 13.7 | 1         |
| 1979, 66.       0.1       1         472       The structure and composition of the CdSe (Oxidized titanium) interface: An investigation by<br>transmission electron microscopy and electron diffraction. Thin Solid Films, 1984, 112, 349-358.       0.8       1         472       The structure and composition of the CdSe (Oxidized titanium) interface: An investigation by<br>transmission electron microscopy and electron diffraction. Thin Solid Films, 1988, 112, 349-358.       0.8       1         473       Photoelectrochemical characterization of CuCaSe(sub 2) and Cu(Ca, In)Se(sub 2) films and defect       1         474       Calorimetric separation and determination of conversion losses in solar cells., 1988,       1         475       Society Symposia Proceedings, 1998, 548, 687.       0.1       1         476       Can percolation control doping, diffusion and phase segregation in (Hg,Cd)Te?. Journal of Crystal       0.7       1         477       Form, 2001, 191, 61. 98.       0.4       1         478       Extended stable junction regions in CuInSe2 thin films by electric field application. Thin Solid Films, 2003, 431-432, 244-288.       0.1       1         479       Direct solar energy conversion with photovoltaic devices, 0, 216-237.       1       1         480       Direct solar energy conversion with photovoltaic devices, 0, 216-237.       1.3       1         482       The Big Picture8C*Accepting Diverse Views on Energy and Sustainab                                                                             | 470 | Photoacoustics in photobiology. Trends in Biochemical Sciences, 1979, 4, N240.                                                                    | 3.7  | 1         |
| 47/2       transmission electron microscopy and electron diffraction. Thin Solid Films, 1984, 112, 349-358.       0.8       1         470       Photoelectrochemical characterization of CuCaSe/Sub 2/ and Cu(Ca,In)Se/Sub 2/ films and defect       1         471       Calorimetric separation and determination of conversion losses in solar cells., 1988, , .       1         472       Light Emitting Electrochemical Cells as Mixed Ionic Electronic Conductors. Materials Research       0.1       1         473       Soletty Symposia Proceedings, 1998, 548, 687.       0.1       1         474       Can percolation control doping, diffusion and phase segregation in (Hg.Cd)Te?. Journal of Crystal       0.7       1         476       Can percolation control doping, diffusion and phase segregation in (Hg.Cd)Te?. Journal of Crystal       0.7       1         477       Controlled Ion Migration Tuning of Semiconductor Electrical Properties. Defect and Diffusion       0.4       1         478       Extended stable junction regions in CulnSe2 thin films by electric field application. Thin Solid Films, 2003, 431-432, 284-288.       0.1       1         479       Physical Chemical Principles of Photovoltaic Conversion with Nanoparticulate, Mesoporous       0.1       1         470       Direct solar energy conversion with photovoltaic devices. , 0, 216-237.       1       1         480       Direct solar energy conversion with photovoltaic devices                                                                                          | 471 |                                                                                                                                                   | 0.1  | 1         |
| 1773       chemical implications for solar cell performance., 1988,       1         1774       Calorimetric separation and determination of conversion losses in solar cells., 1988,       1         1775       Society Symposia Proceedings, 1998, 548, 687.       0.1       1         1776       Can percolation control doping, diffusion and phase segregation in (Hg,Cd)Te?. Journal of Crystal       0.7       1         1777       Fortrolled Ion Migration Tuning of Semiconductor Electrical Properties. Defect and Diffusion       0.4       1         178       Extended stable junction regions in CulnSe2 thin films by electric field application. Thin Solid Films,       0.8       1         179       Physical Chemical Principles of Photovoltaic Conversion with Nanoparticulate, Mesoporous       0.1       1         179       Direct solar energy conversion with photovoltaic devices 0, , 216-237.       1         1890       Direct solar energy conversion with photovoltaic devices 0, , 216-237.       1         1891       Energy Quarterly: News and analysis on materials solutions to energy challenges. MRS Bulletin, 2011, 1.7       1         1892       The Big Picture&CrAccepting Diverse Views on Energy and Sustainability. MRS Energy & Sustainability, 201       1.3         1893       New insights into the nanostructure of innovative thin film solar cells galaned by postron annihilation spectroscopy. Joural of Physics: Conference Series, 2017, 791, 012021.       <                                                                   | 472 |                                                                                                                                                   | 0.8  | 1         |
| 475Ught Emitting Electrochemical Cells as Mixed Ionic Electronic Conductors. Materials Research0.11476Can percolation control doping, diffusion and phase segregation in (Hg,Cd)Te?. Journal of Crystal0.71477Controlled Ion Migration Tuning of Semiconductor Electrical Properties. Defect and Diffusion0.41478Extended stable junction regions in CulnSe2 thin films by electric field application. Thin Solid Films,<br>2003, 431-432, 284-288.0.81479Physical Chemical Principles of Photovoltaic Conversion with Nanoparticulate, Mesoporous<br>Dy-Sensitzed Solar Cells. Cheminform, 2004, 35, no.0.11480Direct solar energy conversion with photovoltaic devices. , 0, 216-237.11481Energy Quarterly: News and analysis on materials solutions to energy challenges. MRS Bulletin, 2011,<br>36, 677-677.1.71482The Big PictureaeC"Accepting Diverse Views on Energy and Sustainability. MRS Energy & Sustainability.<br>2016, 3, 1.1.31483New insights into the nanostructure of Innovative thin film solar cells gained by positron<br>annhihation spectroscopy. Journal of Physics. Conference Series, 2017, 791, 012021.0.31484A SolidaeEtate Protein Junction Serves as a BiasaeEnduced Current Switch. Angewandte Chemie, 2019, 131, 16, 61                                                                                                                                                                                                                                                                                                                                   | 473 |                                                                                                                                                   |      | 1         |
| 473       Society Symposia Proceedings, 1998, 548, 687.       0.1       1         476       Can percolation control doping, diffusion and phase segregation in (Hg,Cd)Te?. Journal of Crystal<br>Crowth, 1999, 197, 537-541.       0.7       1         477       Controlled Ion Migration Tuning of Semiconductor Electrical Properties. Defect and Diffusion<br>Forum, 2001, 191, 61-98.       0.4       1         478       Extended stable junction regions in CulnSe2 thin films by electric field application. Thin Solid Films,<br>2003, 431-432, 284-288.       0.8       1         479       Physical Chemical Principles of Photovoltaic Conversion with Nanoparticulate, Mesoporous<br>Dye-Sensitized Solar Cells. ChemInform, 2004, 35, no.       0.1       1         480       Direct solar energy conversion with photovoltaic devices. , 0, 216-237.       1       1         481       Energy Quarterly: News and analysis on materials solutions to energy challenges. MRS Bulletin, 2011,<br>36, 677-677.       1.7       1         482       The Big Pictureã€"Accepting Diverse Views on Energy and Sustainability. MRS Energy & Sustainability,<br>2016, 3, 1.       1.3       1         483       New insights into the nanostructure of innovative thin film solar cells gained by positron<br>annihilation spectroscopy. Journal of Physics: Conference Series, 2017, 791, 012021.       0.3       1         484       ASolidă€6tate Protein Junction Serves as a Biasã€hduced Current Switch. Angewandte Chemie, 2019, 131,<br>11978-11985.       1.6       1     < | 474 | Calorimetric separation and determination of conversion losses in solar cells. , 1988, , .                                                        |      | 1         |
| 478       Growth, 1999, 197, 537-541.       0.7       1         477       Controlled Ion Migration Tuning of Semiconductor Electrical Properties. Defect and Diffusion       0.4       1         477       Forum, 2001, 191, 61-98.       0.4       1         478       Extended stable junction regions in CulnSe2 thin films by electric field application. Thin Solid Films, 2003, 431-432, 284-288.       0.8       1         479       Physical Chemical Principles of Photovoltaic Conversion with Nanoparticulate, Mesoporous Dye-Sensitized Solar Cells. Cheminform, 2004, 35, no.       0.1       1         480       Direct solar energy conversion with photovoltaic devices. , 0, , 216-237.       1       1         481       Energy Quarterly: News and analysis on materials solutions to energy challenges. MRS Bulletin, 2011, 36, 677-677.       1       1         482       The Big Pictureáe <sup>er</sup> Accepting Diverse Views on Energy and Sustainability. MRS Energy & Sustainability, 2016, 3, 1.       1         483       New insights into the nanostructure of innovative thin film solar cells gained by positron annihilation spectroscopy. Journal of Physics: Conference Series, 2017, 791, 012021.       0.3       1         484       A SolidáeEstate Protein Junction Serves as a BiasâEnduced Current Switch. Angewandte Chemie, 2019, 131, 1.6       1                                                                                                                                                                                            | 475 |                                                                                                                                                   | 0.1  | 1         |
| 477Forum, 2001, 191, 61-98.0.41478Extended stable junction regions in CuInSe2 thin films by electric field application. Thin Solid Films,<br>2003, 431-432, 284-288.0.81479Physical Chemical Principles of Photovoltaic Conversion with Nanoparticulate, Mesoporous<br>Dye-Sensitized Solar Cells. Cheminform, 2004, 35, no.0.11480Direct solar energy conversion with photovoltaic devices. , 0, , 216-237.1481Energy Quarterly: News and analysis on materials solutions to energy challenges. MRS Bulletin, 2011,<br>36, 677-677.1.7482The Big Pictureâ€"Accepting Diverse Views on Energy and Sustainability. MRS Energy & Sustainability,<br>2016, 3, 1.1.31483New insights into the nanostructure of innovative thin film solar cells gained by positron<br>annihilation spectroscopy. Journal of Physics: Conference Series, 2017, 791, 012021.0.31484A Solidá€Etate Protein Junction Serves as a Biasâ€Enduced Current Switch. Angewandte Chemie, 2019, 131,<br>11978-11985.1.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 476 | Can percolation control doping, diffusion and phase segregation in (Hg,Cd)Te?. Journal of Crystal<br>Growth, 1999, 197, 537-541.                  | 0.7  | 1         |
| 478       2003, 431-432, 284-288.       0.1       1         479       Physical Chemical Principles of Photovoltaic Conversion with Nanoparticulate, Mesoporous       0.1       1         479       Direct solar energy conversion with photovoltaic devices., 0, 216-237.       1         480       Direct solar energy conversion with photovoltaic devices., 0, 216-237.       1         481       Energy Quarterly: News and analysis on materials solutions to energy challenges. MRS Bulletin, 2011, 1.7       1         482       The Big Picture–Accepting Diverse Views on Energy and Sustainability. MRS Energy & Sustainability, 2016, 3, 1.       1.3       1         483       New insights into the nanostructure of innovative thin film solar cells gained by positron annihilation spectroscopy. Journal of Physics: Conference Series, 2017, 791, 012021.       0.3       1         484       A Solidâ€Etate Protein Junction Serves as a Biasâ€Induced Current Switch. Angewandte Chemie, 2019, 131, 1.6       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 477 | Controlled Ion Migration Tuning of Semiconductor Electrical Properties. Defect and Diffusion Forum, 2001, 191, 61-98.                             | 0.4  | 1         |
| 479       Dye-Sensitized Solar Cells. ChemInform, 2004, 35, no.       0.1       1         480       Direct solar energy conversion with photovoltaic devices. , 0, , 216-237.       1         481       Energy Quarterly: News and analysis on materials solutions to energy challenges. MRS Bulletin, 2011,<br>36, 677-677.       1.7       1         482       The Big Picture–Accepting Diverse Views on Energy and Sustainability. MRS Energy & Sustainability,<br>2016, 3, 1.       1.3       1         483       New insights into the nanostructure of innovative thin film solar cells gained by positron<br>annihilation spectroscopy. Journal of Physics: Conference Series, 2017, 791, 012021.       0.3       1         484       A Solid tate Protein Junction Serves as a Biasâ€Induced Current Switch. Angewandte Chemie, 2019, 131,<br>11978-11985.       1.6       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 478 | Extended stable junction regions in CuInSe2 thin films by electric field application. Thin Solid Films, 2003, 431-432, 284-288.                   | 0.8  | 1         |
| 481Energy Quarterly: News and analysis on materials solutions to energy challenges. MRS Bulletin, 2011,<br>36, 677-677.1.71482The Big Picture–Accepting Diverse Views on Energy and Sustainability. MRS Energy & Sustainability,<br>2016, 3, 1.1.31483New insights into the nanostructure of innovative thin film solar cells gained by positron<br>annihilation spectroscopy. Journal of Physics: Conference Series, 2017, 791, 012021.0.31484A Solid tate Protein Junction Serves as a Biasâ€induced Current Switch. Angewandte Chemie, 2019, 131,<br>11978-11985.1.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 479 | Physical Chemical Principles of Photovoltaic Conversion with Nanoparticulate, Mesoporous<br>Dye-Sensitized Solar Cells. ChemInform, 2004, 35, no. | 0.1  | 1         |
| 481       36, 677-677.       1.7       1         482       The Big Picture–Accepting Diverse Views on Energy and Sustainability. MRS Energy & Sustainability,<br>2016, 3, 1.       1.3       1         483       New insights into the nanostructure of innovative thin film solar cells gained by positron<br>annihilation spectroscopy. Journal of Physics: Conference Series, 2017, 791, 012021.       0.3       1         484       A Solid tate Protein Junction Serves as a Biasâ€induced Current Switch. Angewandte Chemie, 2019, 131,<br>11978-11985.       1.6       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 480 | Direct solar energy conversion with photovoltaic devices. , 0, , 216-237.                                                                         |      | 1         |
| 482       2016, 3, 1.       1.3       1         483       New insights into the nanostructure of innovative thin film solar cells gained by positron annihilation spectroscopy. Journal of Physics: Conference Series, 2017, 791, 012021.       0.3       1         484       A Solidâ€State Protein Junction Serves as a Biasâ€Induced Current Switch. Angewandte Chemie, 2019, 131, 1.6       1.6       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 481 |                                                                                                                                                   | 1.7  | 1         |
| <ul> <li>annihilation spectroscopy. Journal of Physics: Conference Series, 2017, 791, 012021.</li> <li>A Solidâ€State Protein Junction Serves as a Biasâ€Induced Current Switch. Angewandte Chemie, 2019, 131, 1.6 1</li> <li>11978-11985.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 482 |                                                                                                                                                   | 1.3  | 1         |
| <sup>484</sup> 11978-11985.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 483 |                                                                                                                                                   | 0.3  | 1         |
| Frontier Orbital Model of Semiconductor Surface Passivation: Dicarboxylic Acids on n- and n-GaAs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 484 | A Solid‣tate Protein Junction Serves as a Biasâ€Induced Current Switch. Angewandte Chemie, 2019, 131,<br>11978-11985.                             | 1.6  | 1         |
| <sup>485</sup> 2000, 12, 33. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 485 | Frontier Orbital Model of Semiconductor Surface Passivation: Dicarboxylic Acids on n- and p-GaAs. , 2000, 12, 33.                                 |      | 1         |

Photoacoustic Methods Applied to Biological Systems. , 1982, , 21-32.

1

| #   | Article                                                                                                                                                                                                                                     | IF         | CITATIONS      |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------|
| 487 | Low Frequency, Photothermal Measurement of Transport Properties of Crystalline Solar Cells.<br>Springer Series in Optical Sciences, 1992, , 403-405.                                                                                        | 0.5        | 1              |
| 488 | Aggregate Structure and Adhesion Problems in Culn(Ga)Se2 Films. Springer Proceedings in Physics, 1991, , 451-456.                                                                                                                           | 0.1        | 1              |
| 489 | Polycrystalline CdSe-Based Photoelectrochemical Cells with Storage Capability. , 1978, , 869-870.                                                                                                                                           |            | 1              |
| 490 | Absorption corrections: procedures for checking crystal shape, crystal orientation, and computer absorption programs: erratum. Journal of Applied Crystallography, 1973, 6, 244-244.                                                        | 1.9        | 0              |
| 491 | Additions and Corrections - Effect of Photoelectrode Crystal Structure on Output Stability of<br>Cd(Se,Te)/Polysulfide Photoelectrochemical Cells. Journal of the American Chemical Society, 1981, 103,<br>3614-3614.                       | 6.6        | Ο              |
| 492 | Photoacoustic calorimetry of purple membrane. Journal of Photochemistry and Photobiology, 1981, 17, 41.                                                                                                                                     | 0.6        | 0              |
| 493 | Cat's Cradle and Iceâ€Nine. Physics Today, 1986, 39, 11-13.                                                                                                                                                                                 | 0.3        | Ο              |
| 494 | Research and demonstration activities in photovoltaics in Israel. Solar Cells, 1989, 26, 61-72.                                                                                                                                             | 0.6        | 0              |
| 495 | Nomarski contrast microscopy of CuBSe/sub 2//Mo (B=In, Ga) films. , 0, , .                                                                                                                                                                  |            | Ο              |
| 496 | Room Temperature Tailoring of Electrical Properties of Semi- and Superconductors via Controlled<br>Ion Migration. Materials Science Forum, 1994, 152-153, 187-192.                                                                          | 0.3        | 0              |
| 497 | Electric field-induced fabrication of microscopic Si-based optoelectronic devices for 1.55 and 1.16 μm IR<br>electroluminescence. Materials Science and Engineering B: Solid-State Materials for Advanced<br>Technology, 2001, 81, 113-115. | 1.7        | Ο              |
| 498 | Assessing possibilities & amp; limits for thin film solar cells. , 2010, , .                                                                                                                                                                |            | 0              |
| 499 | Hybrid, chemically passivated n-type silicon/PEDOT:PSS semiconductor-insulator-semiconductor solar cell. , 2011, , .                                                                                                                        |            | Ο              |
| 500 | The route towards low-cost solution-processed high Voc solar cells. , 2014, , .                                                                                                                                                             |            | 0              |
| 501 | Making the sustainable energy colloquy quantitative and accessible to all. MRS Energy & Sustainability, 2016, 3, 1.                                                                                                                         | 1.3        | 0              |
| 502 | Innenrücktitelbild: A Solid‧tate Protein Junction Serves as a Biasâ€Induced Current Switch (Angew.) Tj ETQ                                                                                                                                  | q0 0 0 rgE | BT /Qverlock 1 |
|     |                                                                                                                                                                                                                                             |            |                |

503 MOLECULAR CONTROLLED SEMICONDUCTOR RESISTOR AS A SENSOR FOR METAL IONS. , 2000, , .

504 Chalcopyrite Single Crystals: Growth. , 2001, , 1131-1136.

| #   | Article                                                                                                                                                  | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 505 | The Importance of Solution Kinetics in Photoelectrochemical Phenomena. , 1986, , 335-341.                                                                |     | 0         |
| 506 | Photothermal Energy Balance Analysis of Photvoltaic Cells. Springer Series in Optical Sciences, 1990, ,<br>389-396.                                      | 0.5 | 0         |
| 507 | Photothermal Measurement of Minority Carrier Diffusion in Devices. , 1991, , 653-656.                                                                    |     | 0         |
| 508 | Evidence for thermodynamically stable p/n junction, formed by Ag doping of (Hg,Cd) Te. , 1996, , 90-93.                                                  |     | 0         |
| 509 | Plasmonics Yields Surprisingly Efficient Electron Transport Via Assembly of Shell-Insulated Au<br>Nanoparticles. SSRN Electronic Journal, 0, , .         | 0.4 | 0         |
| 510 | Probing electron-phonon couplings in halide perovskites crystals by temperature-dependent ultrafast two-dimensional electronic spectroscopy. , 2020, , . |     | 0         |
| 511 | How Can Halide Perovskites Have such Low Defect Densities?. , 0, , .                                                                                     |     | 0         |