## **Stuart Baker**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1494078/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Oscillatory interactions between sensorimotor cortex and the periphery. Current Opinion in Neurobiology, 2007, 17, 649-655.                                                          | 2.0 | 443       |
| 2  | Human Cortical Muscle Coherence Is Directly Related to Specific Motor Parameters. Journal of Neuroscience, 2000, 20, 8838-8845.                                                      | 1.7 | 361       |
| 3  | Changes in descending motor pathway connectivity after corticospinal tract lesion in macaque monkey. Brain, 2012, 135, 2277-2289.                                                    | 3.7 | 285       |
| 4  | Direct and Indirect Connections with Upper Limb Motoneurons from the Primate Reticulospinal Tract.<br>Journal of Neuroscience, 2009, 29, 4993-4999.                                  | 1.7 | 247       |
| 5  | The primate reticulospinal tract, hand function and functional recovery. Journal of Physiology, 2011, 589, 5603-5612.                                                                | 1.3 | 243       |
| 6  | Synchronization in Monkey Motor Cortex During a Precision Grip Task. II. Effect of Oscillatory<br>Activity on Corticospinal Output. Journal of Neurophysiology, 2003, 89, 1941-1953. | 0.9 | 195       |
| 7  | Contributions of descending and ascending pathways to corticomuscular coherence in humans.<br>Journal of Physiology, 2011, 589, 3789-3800.                                           | 1.3 | 192       |
| 8  | Manipulation of peripheral neural feedback loops alters human corticomuscular coherence. Journal of Physiology, 2005, 566, 625-639.                                                  | 1.3 | 149       |
| 9  | Cortico-Cerebellar Coherence During a Precision Grip Task in the Monkey. Journal of Neurophysiology, 2006, 95, 1194-1206.                                                            | 0.9 | 148       |
| 10 | The effect of diazepam on motor cortical oscillations and corticomuscular coherence studied in man. Journal of Physiology, 2003, 546, 931-942.                                       | 1.3 | 146       |
| 11 | Precise Spatiotemporal Repeating Patterns in Monkey Primary and Supplementary Motor Areas Occur<br>at Chance Levels. Journal of Neurophysiology, 2000, 84, 1770-1780.                | 0.9 | 138       |
| 12 | Learning a Novel Myoelectric-Controlled Interface Task. Journal of Neurophysiology, 2008, 100, 2397-2408.                                                                            | 0.9 | 132       |
| 13 | EEG oscillations at 600 Hz are macroscopic markers for cortical spike bursts. Journal of Physiology, 2003, 550, 529-534.                                                             | 1.3 | 128       |
| 14 | Afferent Encoding of Central Oscillations in the Monkey Arm. Journal of Neurophysiology, 2006, 95, 3904-3910.                                                                        | 0.9 | 126       |
| 15 | Convergence of Pyramidal and Medial Brain Stem Descending Pathways Onto Macaque Cervical Spinal<br>Interneurons. Journal of Neurophysiology, 2010, 103, 2821-2832.                   | 0.9 | 117       |
| 16 | Beta-band intermuscular coherence: a novel biomarker of upper motor neuron dysfunction in motor<br>neuron disease. Brain, 2012, 135, 2849-2864.                                      | 3.7 | 110       |
| 17 | Synchrony between Neurons with Similar Muscle Fields in Monkey Motor Cortex. Neuron, 2003, 38, 115-125.                                                                              | 3.8 | 109       |
| 18 | Lack of Evidence for Direct Corticospinal Contributions to Control of the Ipsilateral Forelimb in<br>Monkey, Journal of Neuroscience, 2011, 31, 11208-11219.                         | 1.7 | 99        |

| #  | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Reticulospinal Contributions to Gross Hand Function after Human Spinal Cord Injury. Journal of<br>Neuroscience, 2017, 37, 9778-9784.                                                                                  | 1.7 | 94        |
| 20 | Cells in the monkey pontoâ€medullary reticular formation modulate their activity with slow finger movements. Journal of Physiology, 2012, 590, 4011-4027.                                                             | 1.3 | 92        |
| 21 | Cells in somatosensory areas show synchrony with beta oscillations in monkey motor cortex.<br>European Journal of Neuroscience, 2007, 26, 2677-2686.                                                                  | 1.2 | 91        |
| 22 | The sinusoidal probe: a new approach to improve electrode longevity. Frontiers in Neuroengineering, 2014, 7, 10.                                                                                                      | 4.8 | 87        |
| 23 | Measurement of Time-Dependent Changes in the Irregularity of Neural Spiking. Journal of Neurophysiology, 2006, 96, 906-918.                                                                                           | 0.9 | 86        |
| 24 | Reticular formation responses to magnetic brain stimulation of primary motor cortex. Journal of<br>Physiology, 2012, 590, 4045-4060.                                                                                  | 1.3 | 83        |
| 25 | Renshaw Cell Recurrent Inhibition Improves Physiological Tremor by Reducing Corticomuscular Coupling at 10 Hz. Journal of Neuroscience, 2009, 29, 6616-6624.                                                          | 1.7 | 79        |
| 26 | Pathways mediating functional recovery. Progress in Brain Research, 2015, 218, 389-412.                                                                                                                               | 0.9 | 79        |
| 27 | Task-dependent intermanual coupling of 8-Hz discontinuities during slow finger movements. European<br>Journal of Neuroscience, 2003, 18, 453-456.                                                                     | 1.2 | 71        |
| 28 | Digit displacement, not object compliance, underlies task dependent modulations in human corticomuscular coherence. NeuroImage, 2006, 33, 618-627.                                                                    | 2.1 | 70        |
| 29 | Spinal interneuron circuits reduce approximately 10-Hz movement discontinuities by phase<br>cancellation. Proceedings of the National Academy of Sciences of the United States of America, 2010,<br>107, 11098-11103. | 3.3 | 68        |
| 30 | Network oscillations and intrinsic spiking rhythmicity do not covary in monkey sensorimotor areas.<br>Journal of Physiology, 2007, 580, 801-814.                                                                      | 1.3 | 60        |
| 31 | Corticospinal Inputs to Primate Motoneurons Innervating the Forelimb from Two Divisions of Primary Motor Cortex and Area 3a. Journal of Neuroscience, 2016, 36, 2605-2616.                                            | 1.7 | 59        |
| 32 | An Accurate Measure of the Instantaneous Discharge Probability, with Application to Unitary<br>Joint-Event Analysis. Neural Computation, 2000, 12, 647-669.                                                           | 1.3 | 57        |
| 33 | Mechanical Flexibility Reduces the Foreign Body Response to Long-Term Implanted Microelectrodes in<br>Rabbit Cortex. PLoS ONE, 2016, 11, e0165606.                                                                    | 1.1 | 55        |
| 34 | Corticomuscular coherence between motor cortex, somatosensory areas and forearm muscles in the monkey. Frontiers in Systems Neuroscience, 2010, 4, .                                                                  | 1.2 | 54        |
| 35 | The Relationship Between Enhanced Reticulospinal Outflow and Upper Limb Function in Chronic Stroke Patients. Neurorehabilitation and Neural Repair, 2019, 33, 375-383.                                                | 1.4 | 53        |
| 36 | Corticospinal activation confounds cerebellar effects of posterior fossa stimuli. Clinical Neurophysiology, 2009, 120, 2109-2113.                                                                                     | 0.7 | 51        |

| #  | Article                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Determination of Response Latency and Its Application to Normalization of Cross-Correlation Measures. Neural Computation, 2001, 13, 1351-1377.                                              | 1.3 | 46        |
| 38 | Muscle responses to transcranial stimulation in man depend on background oscillatory activity.<br>Journal of Physiology, 2007, 583, 567-579.                                                | 1.3 | 46        |
| 39 | Circuits Generating Corticomuscular Coherence Investigated Using a Biophysically Based<br>Computational Model. I. Descending Systems. Journal of Neurophysiology, 2009, 101, 31-41.         | 0.9 | 46        |
| 40 | Different contributions of primary motor cortex, reticular formation, and spinal cord to fractionated muscle activation. Journal of Neurophysiology, 2018, 119, 235-250.                    | 0.9 | 43        |
| 41 | Emergent oscillations in a realistic network: the role of inhibition and the effect of the spatiotemporal distribution of the input. Journal of Computational Neuroscience, 1999, 6, 27-48. | 0.6 | 41        |
| 42 | Central nervous system dysfunction in primary biliary cirrhosis and its relationship to symptoms.<br>Journal of Hepatology, 2010, 53, 1095-1100.                                            | 1.8 | 41        |
| 43 | High-frequency EEG covaries with spike burst patterns detected in cortical neurons. Journal of Neurophysiology, 2011, 105, 2951-2959.                                                       | 0.9 | 41        |
| 44 | Coherence Between Motor Cortical Activity and Peripheral Discontinuities During Slow Finger<br>Movements. Journal of Neurophysiology, 2009, 102, 1296-1309.                                 | 0.9 | 39        |
| 45 | Extensive Cortical Convergence to Primate Reticulospinal Pathways. Journal of Neuroscience, 2021, 41, 1005-1018.                                                                            | 1.7 | 39        |
| 46 | Bilateral representation in the deep cerebellar nuclei. Journal of Physiology, 2008, 586, 1117-1136.                                                                                        | 1.3 | 37        |
| 47 | Cortical, Corticospinal, and Reticulospinal Contributions to Strength Training. Journal of Neuroscience, 2020, 40, 5820-5832.                                                               | 1.7 | 36        |
| 48 | Improvements to the Sensitivity of Gravitational Clustering for Multiple Neuron Recordings. Neural Computation, 2000, 12, 2597-2620.                                                        | 1.3 | 35        |
| 49 | Intermuscular Coherence in Normal Adults: Variability and Changes with Age. PLoS ONE, 2016, 11, e0149029.                                                                                   | 1.1 | 35        |
| 50 | Postural control of arm and fingers through integration of movement commands. ELife, 2020, 9, .                                                                                             | 2.8 | 34        |
| 51 | The effect of carbamazepine on human corticomuscular coherence. NeuroImage, 2004, 22, 333-340.                                                                                              | 2.1 | 33        |
| 52 | Post-spike distance-to-threshold trajectories of neurones in monkey motor cortex. Journal of<br>Physiology, 2004, 555, 831-850.                                                             | 1.3 | 29        |
| 53 | Correlates of a single cortical action potential in the epidural EEG. NeuroImage, 2015, 109, 357-367.                                                                                       | 2.1 | 29        |
| 54 | Classification of Neurons in the Primate Reticular Formation and Changes after Recovery from Pyramidal Tract Lesion. Journal of Neuroscience, 2018, 38, 6190-6206.                          | 1.7 | 28        |

| #  | Article                                                                                                                                                                                        | lF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Spike Timing-Dependent Plasticity in the Long-Latency Stretch Reflex Following Paired Stimulation from a Wearable Electronic Device. Journal of Neuroscience, 2016, 36, 10823-10830.           | 1.7 | 27        |
| 56 | Fractionation of muscle activity in rapid responses to startling cues. Journal of Neurophysiology, 2017, 117, 1713-1719.                                                                       | 0.9 | 27        |
| 57 | Epidural and transcutaneous spinal cord stimulation facilitates descending inputs to upper-limb motoneurons in monkeys. Journal of Neural Engineering, 2021, 18, 046011.                       | 1.8 | 27        |
| 58 | Both Corticospinal and Reticulospinal Tracts Control Force of Contraction. Journal of Neuroscience, 2022, 42, 3150-3164.                                                                       | 1.7 | 27        |
| 59 | Modulation and transmission of peripheral inputs in monkey cuneate and external cuneate nuclei.<br>Journal of Neurophysiology, 2011, 106, 2764-2775.                                           | 0.9 | 26        |
| 60 | Spinal Commissural Connections to Motoneurons Controlling the Primate Hand and Wrist. Journal of Neuroscience, 2013, 33, 9614-9625.                                                            | 1.7 | 26        |
| 61 | Degraded EEG decoding of wrist movements in absence of kinaesthetic feedback. Human Brain Mapping,<br>2015, 36, 643-654.                                                                       | 1.9 | 26        |
| 62 | Only the Fastest Corticospinal Fibers Contribute to $\hat{I}^2$ Corticomuscular Coherence. Journal of Neuroscience, 2021, 41, 4867-4879.                                                       | 1.7 | 26        |
| 63 | Different Contributions of the Corpus Callosum and Cerebellum to Motor Coordination in Monkey.<br>Journal of Neurophysiology, 2007, 98, 2962-2973.                                             | 0.9 | 24        |
| 64 | Slow orthostatic tremor in multiple sclerosis. Movement Disorders, 2009, 24, 1550-1553.                                                                                                        | 2.2 | 24        |
| 65 | The Corticospinal Discrepancy: Where are all the Slow Pyramidal Tract Neurons?. Cerebral Cortex, 2019, 29, 3977-3981.                                                                          | 1.6 | 24        |
| 66 | Corticomuscular coherence during bilateral isometric arm voluntary activity in healthy humans.<br>Journal of Neurophysiology, 2012, 107, 2154-2162.                                            | 0.9 | 23        |
| 67 | Differences between Han Chinese and Caucasians in transcranial magnetic stimulation parameters.<br>Experimental Brain Research, 2014, 232, 545-553.                                            | 0.7 | 22        |
| 68 | Non-invasive vagus nerve stimulation improves clinical and molecular biomarkers of Parkinson's<br>disease in patients with freezing of gait. Npj Parkinson's Disease, 2021, 7, 46.             | 2.5 | 22        |
| 69 | Different phase delays of peripheral input to primate motor cortex and spinal cord promote cancellation at physiological tremor frequencies. Journal of Neurophysiology, 2014, 111, 2001-2016. | 0.9 | 21        |
| 70 | Multimodal stimuli modulate rapid visual responses during reaching. Journal of Neurophysiology,<br>2019, 122, 1894-1908.                                                                       | 0.9 | 21        |
| 71 | Precise Burst Synchrony in the Superior Colliculus of the Awake Cat during Moving Stimulus<br>Presentation. Journal of Neuroscience, 2001, 21, 615-627.                                        | 1.7 | 20        |
| 72 | Classification of Cortical Neurons by Spike Shape and the Identification of Pyramidal Neurons.<br>Cerebral Cortex, 2021, 31, 5131-5138.                                                        | 1.6 | 19        |

| #  | Article                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | â€~Pooled coherence' can overestimate the significance of coupling in the presence of inter-experiment<br>variability. Journal of Neuroscience Methods, 2000, 96, 171-172. | 1.3 | 18        |
| 74 | A multiple regression model of normal central and peripheral motor conduction times. Muscle and Nerve, 2015, 51, 706-712.                                                  | 1.0 | 17        |
| 75 | Beta-Adrenergic Modulation of Tremor and Corticomuscular Coherence in Humans. PLoS ONE, 2012, 7, e49088.                                                                   | 1.1 | 17        |
| 76 | Long-latency Responses to a Mechanical Perturbation of the Index Finger Have a Spinal Component.<br>Journal of Neuroscience, 2020, 40, 3933-3948.                          | 1.7 | 16        |
| 77 | Quantifying Neural Coding of Event Timing. Journal of Neurophysiology, 2009, 101, 402-417.                                                                                 | 0.9 | 15        |
| 78 | Nonâ€invasive assessment of superficial and deep layer circuits in human motor cortex. Journal of<br>Physiology, 2019, 597, 2975-2991.                                     | 1.3 | 15        |
| 79 | Slow orthostatic tremor can persist when walking backward. Movement Disorders, 2010, 25, 795-797.                                                                          | 2.2 | 14        |
| 80 | Spasms after spinal cord injury show low-frequency intermuscular coherence. Journal of Neurophysiology, 2018, 120, 1765-1771.                                              | 0.9 | 14        |
| 81 | Evidence for Subcortical Plasticity after Paired Stimulation from a Wearable Device. Journal of Neuroscience, 2021, 41, 1418-1428.                                         | 1.7 | 14        |
| 82 | Ipsilateral Motor Evoked Potentials as a Measure of the Reticulospinal Tract in Age-Related Strength<br>Changes. Frontiers in Aging Neuroscience, 2021, 13, 612352.        | 1.7 | 14        |
| 83 | Blocking central pathways in the primate motor system using high-frequency sinusoidal current.<br>Journal of Neurophysiology, 2015, 113, 1670-1680.                        | 0.9 | 13        |
| 84 | Convergent Spinal Circuits Facilitating Human Wrist Flexors. Journal of Neuroscience, 2018, 38,<br>3929-3938.                                                              | 1.7 | 13        |
| 85 | A hierarchy of corticospinal plasticity in human hand and forearm muscles. Journal of Physiology, 2019, 597, 2729-2739.                                                    | 1.3 | 13        |
| 86 | Aging and Strength Training Influence Knee Extensor Intermuscular Coherence During Low- and<br>High-Force Isometric Contractions. Frontiers in Physiology, 2018, 9, 1933.  | 1.3 | 13        |
| 87 | Induction of plasticity in the human motor system by motor imagery and transcranial magnetic stimulation. Journal of Physiology, 2020, 598, 2385-2396.                     | 1.3 | 13        |
| 88 | Suppression of Enhanced Physiological Tremor via Stochastic Noise: Initial Observations. PLoS ONE, 2014, 9, e112782.                                                       | 1.1 | 11        |
| 89 | Abnormal Blink Reflex and Intermuscular Coherence in Writer's Cramp. Frontiers in Neurology, 2018, 9, 517.                                                                 | 1.1 | 11        |
| 90 | A Novel Wearable Device for Motor Recovery of Hand Function in Chronic Stroke Survivors.<br>Neurorehabilitation and Neural Repair, 2020, 34, 600-608.                      | 1.4 | 11        |

Stuart Baker

| #   | Article                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Coding of digit displacement by cell spiking and network oscillations in the monkey sensorimotor cortex. Journal of Neurophysiology, 2012, 108, 3342-3352.                                    | 0.9 | 9         |
| 92  | The man who could not walk backward: An unusual presentation of neuroferritinopathy. Movement<br>Disorders, 2011, 26, 362-364.                                                                | 2.2 | 8         |
| 93  | Design and Microfabrication Considerations for Reliable Flexible Intracortical Implants. Frontiers in Mechanical Engineering, 2016, 2, .                                                      | 0.8 | 8         |
| 94  | Slowed Movement Stopping in Parkinson's Disease and Focal Dystonia is Improved by Standard<br>Treatment. Scientific Reports, 2019, 9, 19504.                                                  | 1.6 | 8         |
| 95  | Startling stimuli increase maximal motor unit discharge rate and rate of force development in humans. Journal of Neurophysiology, 2022, 128, 455-469.                                         | 0.9 | 8         |
| 96  | Plastic Changes in Human Motor Cortical Output Induced by Random but not Closed-Loop Peripheral<br>Stimulation: the Curse of Causality. Frontiers in Human Neuroscience, 2016, 10, 590.       | 1.0 | 7         |
| 97  | In vitro characterization of intrinsic properties and local synaptic inputs to pyramidal neurons in macaque primary motor cortex. European Journal of Neuroscience, 2018, 48, 2071-2083.      | 1.2 | 7         |
| 98  | Family visitation policies, facilities, and support in Australia and New Zealand intensive care units: A multicentre, registry-linked survey. Australian Critical Care, 2022, 35, 375-382.    | 0.6 | 7         |
| 99  | Effect of central lesions on a spinal circuit facilitating human wrist flexors. Scientific Reports, 2018, 8, 14821.                                                                           | 1.6 | 6         |
| 100 | Descending Inputs to Spinal Circuits Facilitating and Inhibiting Human Wrist Flexors. Frontiers in<br>Human Neuroscience, 2018, 12, 147.                                                      | 1.0 | 5         |
| 101 | Stop Signal Reaction Time measured with a portable device validates optimum STN-DBS programming.<br>Brain Stimulation, 2020, 13, 1609-1611.                                                   | 0.7 | 5         |
| 102 | Deafferented controllers: a fundamental failure mechanism in cortical neuroprosthetic systems.<br>Frontiers in Behavioral Neuroscience, 2015, 9, 186.                                         | 1.0 | 4         |
| 103 | Plastic changes in primate motor cortex following paired peripheral nerve stimulation. Journal of Neurophysiology, 2021, 125, 458-475.                                                        | 0.9 | 4         |
| 104 | Electrical cross-sectional imaging of human motor units in vivo. Clinical Neurophysiology, 2022, 136,<br>82-92.                                                                               | 0.7 | 4         |
| 105 | Standard intensities of transcranial alternating current stimulation over the motor cortex do not entrain corticospinal inputs to motor neurons. Journal of Physiology, 2023, 601, 3187-3199. | 1.3 | 4         |
| 106 | Comparing Stop Signal Reaction Times in Alzheimer's and Parkinson's Disease. Canadian Journal of<br>Neurological Sciences, 2021, , 1-10.                                                      | 0.3 | 3         |
| 107 | Information theoretic analysis of proprioceptive encoding during finger flexion in the monkey sensorimotor system. Journal of Neurophysiology, 2015, 113, 295-306.                            | 0.9 | 3         |
| 108 | Spatial and Temporal Arrangement of Recurrent Inhibition in the Primate Upper Limb. Journal of Neuroscience, 2021, 41, 1443-1454.                                                             | 1.7 | 3         |

| #   | Article                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Reply from C. L. Witham and S. N. Baker. Journal of Physiology, 2012, 590, 2531-2533.                                                                                                     | 1.3 | 2         |
| 110 | Timing Intervals Using Population Synchrony and Spike Timing Dependent Plasticity. Frontiers in Computational Neuroscience, 2016, 10, 123.                                                | 1.2 | 2         |
| 111 | Effects of Diazepam on Reaction Times to Stop and Go. Frontiers in Human Neuroscience, 2020, 14, 567177.                                                                                  | 1.0 | 2         |
| 112 | Pre-Synaptic Inhibition of Afferent Feedback in the Macaque Spinal Cord Does Not Modulate with Cycles of Peripheral Oscillations Around 10 Hz. Frontiers in Neural Circuits, 2015, 9, 76. | 1.4 | 1         |
| 113 | A Re-evaluation of Whether Non-monosynaptic Homonymous H Reflex Facilitation Tests Propriospinal<br>Circuits. Frontiers in Systems Neuroscience, 2021, 15, 641816.                        | 1.2 | 1         |
| 114 | Bridging scales: from cortical single-neuron bursting to macroscopic high-frequency EEG. BMC Neuroscience, 2009, 10, .                                                                    | 0.8 | 0         |
| 115 | Influence of alphaxalone on motor somatosensory evoked potentials in a female rhesus macaque<br>(Macaca mulatta). Laboratory Animals, 2021, 55, 363-366.                                  | 0.5 | 0         |