Christophe Robin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1493814/publications.pdf

Version: 2024-02-01

185998 168136 2,925 56 28 53 citations h-index g-index papers 59 59 59 3546 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Transcriptomics and Metabolomics Analyses Reveal High Induction of the Phenolamide Pathway in Tomato Plants Attacked by the Leafminer Tuta absoluta. Metabolites, 2022, 12, 484.	1.3	9
2	Phenolamides in plants: an update on their function, regulation, and origin of their biosynthetic enzymes. Journal of Experimental Botany, 2021, 72, 2334-2355.	2.4	40
3	Phenolamides: Plant specialized metabolites with a wide range of promising pharmacological and health-promoting interests. Biomedicine and Pharmacotherapy, 2020, 131, 110762.	2.5	34
4	Datura innoxia plants hydroponically-inoculated with Agrobacterium rhizogenes display an enhanced growth and alkaloid metabolism. Plant Science, 2018, 277, 166-176.	1.7	3
5	Multiscale and ageâ€dependent leaf nickel in the Niâ€hyperaccumulator <i>Leptoplax emarginata</i> . Ecological Research, 2018, 33, 723-736.	0.7	6
6	Nitrogen nutrition of tomato plant alters leafminer dietary intake dynamics. Journal of Insect Physiology, 2017, 99, 130-138.	0.9	21
7	Five years investigation of female and male genotypes in périgord black truffle (<i>Tuber) Tj ETQq1 1 0.784314 Microbiology, 2017, 19, 2604-2615.</i>	1 rgBT /Ove	erlock 10 TF5 33
8	Modeling the diversion of primary carbon flux into secondary metabolism under variable nitrate and light/dark conditions. Journal of Theoretical Biology, 2016, 402, 144-157.	0.8	18
9	Nitrogen fixation and growth of Lens culinaris as affected by nickel availability: A pre-requisite for optimization of agromining. Environmental and Experimental Botany, 2016, 131, 1-9.	2.0	40
10	Interrelated responses of tomato plants and the leaf miner <i>Tuta absoluta </i> to nitrogen supply. Plant Biology, 2016, 18, 495-504.	1.8	47
11	Certainties and uncertainties about the life cycle of the Périgord black truffle (Tuber melanosporum) Tj ETQq1 1	1 8.784314	4 rgBT /Over
12	Temporal changes of bacterial communities in the Tuber melanosporum ectomycorrhizosphere during ascocarp development. Mycorrhiza, 2016, 26, 389-399.	1.3	75
13	Tomato response traits to pathogenic Pseudomonas species: Does nitrogen limitation matter?. Plant Science, 2016, 244, 57-67.	1.7	8
14	Study of nitrogen and carbon transfer from soil organic matter to Tuber melanosporum mycorrhizas and ascocarps using 15N and 13C soil labelling and whole-genome oligoarrays. Plant and Soil, 2015, 395, 351-373.	1.8	26
15	Desorption kinetics of PAHs from aged industrial soils for availability assessment. Science of the Total Environment, 2014, 470-471, 639-645.	3.9	99
16	Black truffle <i>â€</i> associated bacterial communities during the development and maturation of <scp><i>T</i></scp> <i>uber melanosporum</i> ascocarps and putative functional roles. Environmental Microbiology, 2014, 16, 2831-2847.	1.8	133
17	Is the C:N ratio a reliable indicator of C allocation to primary and defence-related metabolisms in tomato?. Phytochemistry, 2013, 88, 25-33.	1.4	94
18	Fineâ€scale spatial genetic structure of the black truffle (<i>Tuber melanosporum</i>) investigated with neutral microsatellites and functional mating type genes. New Phytologist, 2013, 199, 176-187.	3.5	83

#	Article	IF	CITATIONS
19	Protozoa stimulate N uptake and growth of arbuscular mycorrhizal plants. Soil Biology and Biochemistry, 2013, 65, 204-210.	4.2	57
20	Litter quality as driving factor for plant nutrition via grazing of protozoa on soil microorganisms. FEMS Microbiology Ecology, 2013, 85, 241-250.	1.3	28
21	Protozoa enhance foraging efficiency of arbuscular mycorrhizal fungi for mineral nitrogen from organic matter in soil to the benefit of host plants. New Phytologist, 2013, 199, 203-211.	3.5	100
22	Carbon Transfer from the Host to Tuber melanosporum Mycorrhizas and Ascocarps Followed Using a 13C Pulse-Labeling Technique. PLoS ONE, 2013, 8, e64626.	1.1	82
23	Ecophysiology of nickel phytoaccumulation: a simplified biophysical approach. Journal of Experimental Botany, 2012, 63, 5815-5827.	2.4	12
24	Influence of repeated short-term nitrogen limitations on leaf phenolics metabolism in tomato. Phytochemistry, 2012, 77, 119-128.	1.4	64
25	Organâ€specific responses of tomato growth and phenolic metabolism to nitrate limitation. Plant Biology, 2012, 14, 760-769.	1.8	39
26	Impact of active transport and transpiration on nickel and cadmium accumulation in the leaves of the Ni-hyperaccumulator Leptoplax emarginata: a biophysical approach. Plant and Soil, 2012, 350, 99-115.	1.8	17
27	Divergent composition but similar function of soil food webs of individual plants: plant species and community effects. Ecology, 2010, 91, 3027-3036.	1.5	204
28	The †trade-off†to between synthesis of primary and secondary compounds in young tomato leaves is altered by nitrate nutrition: experimental evidence and model consistency. Journal of Experimental Botany, 2009, 60, 4301-4314.	2.4	78
29	Net N immobilisation during the biodegradation of mucilage in soil as affected by repeated mineral and organic fertilisation. Nutrient Cycling in Agroecosystems, 2008, 80, 39-47.	1.1	15
30	Nitrogen rhizodeposition assessed by a 15NH3 shoot pulse-labelling of Lolium perenne L. grown on soil exposed to 9 years of CO2 enrichment. Environmental and Experimental Botany, 2008, 63, 410-415.	2.0	8
31	Long-term organic farming fosters below and aboveground biota: Implications for soil quality, biological control and productivity. Soil Biology and Biochemistry, 2008, 40, 2297-2308.	4.2	457
32	Water-soluble carbon in roots of rape and barley: impacts on labile soil organic carbon, arylsulphatase activity and sulphur mineralization. Plant and Soil, 2007, 294, 19-29.	1.8	10
33	Dynamic of the genetic structure of bacterial and fungal communities at different developmental stages of Medicago truncatula Gaertn. cv. Jemalong line J5. New Phytologist, 2006, 170, 165-175.	3.5	213
34	Effects of elevated CO2 concentration on rhizodeposition from Lolium perenne grown on soil exposed to 9 years of CO2 enrichment. Soil Biology and Biochemistry, 2006, 38, 729-736.	4.2	30
35	Short and long-term effects of elevated CO2 on Lolium perenne rhizodeposition and its consequences on soil organic matter turnover and plant N yield. Soil Biology and Biochemistry, 2006, 38, 1178-1187.	4.2	82
36	Defoliation-induced changes in carbon allocation and root soluble carbon concentration in field-grown Lolium perenne plants: do they affect carbon availability, microbes and animal trophic groups in soil?. Functional Ecology, 2005, 19, 886-896.	1.7	48

#	Article	IF	CITATIONS
37	Nitrogen fixation and growth of annual Medicago–Sinorhizobium associations at low temperature. European Journal of Agronomy, 2005, 22, 267-275.	1.9	7
38	How does nitrogen availability alter rhizodeposition in Lolium multiflorum Lam. during vegetative growth?. Plant and Soil, 2005, 269, 181-191.	1.8	52
39	Influence of maize mucilage on the diversity and activity of the denitrifying community. Environmental Microbiology, 2004, 6, 301-312.	1.8	108
40	Overwintering of Trifolium repens L. and Succeeding Growth: Results from a Common Protocol carried out at Twelve European Sites. Annals of Botany, 2001, 88, 669-682.	1.4	21
41	Overwintering and Growing Season Dynamics of Trifolium repens L. in Mixture with Lolium perenne L.: A Model Approach to Plant-environment Interactions. Annals of Botany, 2001, 88, 683-702.	1.4	25
42	Vegetative Storage Proteins in White Clover (Trifolium repens L.): Quantitative and Qualitative Features. Annals of Botany, 2001, 88, 789-795.	1.4	22
43	Phytochrome Mediated Effects on Leaves of White Clover: Consequences for Light Interception by the Plant under Competition for Light. Annals of Botany, 2001, 88, 737-743.	1.4	21
44	Growth potential of buds of two contrasting cultivars of white clover during winter and early spring. Journal of Agricultural Science, 2001, 136, 215-220.	0.6	2
45	Branching responses of a plagiotropic clonal herb to localised incidence of light simulating that reflected from vegetation. Oecologia, 2001, 127, 185-190.	0.9	19
46	Title is missing!. Plant and Soil, 2001, 228, 179-189.	1.8	21
47	Growth and nitrogen fixation of annual Medicago-Rhizobium associations during winter in Mediterranean region. European Journal of Agronomy, 2001, 15, 221-229.	1.9	8
48	Continuous monitoring of rhizosphere respiration after labelling of plant shoots with 14CO2. Plant and Soil, 1999, 212, 189-199.	1.8	46
49	14C-assimilate partitioning within white clover plant–soil system: effects of photoperiod/temperature treatments and defoliation. European Journal of Agronomy, 1999, 11, 13-21.	1.9	29
50	Cold acclimation in white clover subjected to chilling and frost: Changes in water and carbohydrates status. European Journal of Agronomy, 1997, 6, 225-233.	1.9	29
51	Effect of light quality (red: far-red ratio) and defoliation treatments applied at a single phytomer on axillary bud outgrowth in Trifolium repens L Oecologia, 1994, 100, 236-242.	0.9	40
52	Effect of Light Quality (Red:Far-red Ratio) at the Apical Bud of the Main Stolon on Morphogenesis of Trifolium repens L Annals of Botany, 1994, 74, 119-123.	1.4	58
53	Effet d'un déficit hydrique sur le trÃʿfle blanc (Trifolium repens L) I. RÃ1e d'un apport de potassium. Agronomy for Sustainable Development, 1990, 10, 9-14.	0.8	2
54	Effect of potassium on the tolerance to PEG-induced water stress of two white clover varieties (Trifolium repens L.). Plant and Soil, 1989, 120, 153-158.	1.8	23

#	Article	lF	CITATIONS
55	Étude de l'influence de la ramification du stolon sur la distribution des assimilats chez le trèfle blanc (Trifolium repens L.). Agronomy for Sustainable Development, 1989, 9, 849-857.	0.8	3
56	RÃ1e de la position de la feuille dans l'assimilation et le transport du carbone chez le trÃ ⁻ fle blanc (Trifolium repens L.). Agronomy for Sustainable Development, 1987, 7, 599-605.	0.8	12