Xiaozhou He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1493381/publications.pdf

Version: 2024-02-01

430874 454955 34 920 18 30 h-index citations g-index papers 34 34 34 397 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Universal scaling of temperature variance in Rayleigh–B©nard convection near the transition to the ultimate state. Journal of Fluid Mechanics, 2022, 931, .	3.4	9
2	Collective effect of thermal plumes on temperature fluctuations in a closed Rayleigh–Bénard convection cell. Journal of Fluid Mechanics, 2022, 934, .	3.4	8
3	Heat transport in horizontally periodic and confined Rayleigh-Bénard convection with no-slip and free-slip plates. Theoretical and Applied Mechanics Letters, 2022, 12, 100330.	2.8	3
4	Aspect Ratio Dependence of Heat Transfer in a Cylindrical Rayleigh-Bénard Cell. Physical Review Letters, 2022, 128, 084501.	7.8	23
5	Heat transport and temperature boundary-layer profiles in closed turbulent Rayleigh–Bénard convection with slippery conducting surfaces. Journal of Fluid Mechanics, 2022, 943, .	3.4	6
6	A model for universal spatial variations of temperature fluctuations in turbulent Rayleigh-Bénard convection. Theoretical and Applied Mechanics Letters, 2021, 11, 100237.	2.8	7
7	Thermal boundary-layer structure in laminar horizontal convection. Journal of Fluid Mechanics, 2021, 915, .	3.4	5
8	Mean velocity and temperature profiles in turbulent Rayleigh–Bénard convection at low Prandtl numbers. Journal of Fluid Mechanics, 2021, 918, .	3.4	19
9	Aspect ratio dependence of the ultimate-state transition in turbulent thermal convection. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30022-30023.	7.1	6
10	He <i>etÂal.</i> Reply:. Physical Review Letters, 2020, 124, 229402.	7.8	7
11	Turbulent temperature fluctuations in a closed Rayleigh–Bénard convection cell. Journal of Fluid Mechanics, 2019, 874, 263-284.	3.4	23
12	Boundary layer fluctuations in turbulent Rayleigh–Bénard convection. Journal of Fluid Mechanics, 2018, 840, 408-431.	3.4	23
13	Bulk temperature and heat transport in turbulent Rayleigh–Bénard convection of fluids with temperature-dependent properties. Journal of Fluid Mechanics, 2018, 851, 374-390.	3.4	27
14	Dynamic heterogeneity and conditional statistics of non-Gaussian temperature fluctuations in turbulent thermal convection. Physical Review Fluids, 2018, 3, .	2.5	11
15	Ultimate-state transition of turbulent Rayleigh-Bénard convection. Physical Review Fluids, 2017, 2, .	2.5	9
16	Azimuthal diffusion of the large-scale-circulation plane, and absence of significant non-Boussinesq effects, in turbulent convection near the ultimate-state transition. Journal of Fluid Mechanics, 2016, 791, .	3.4	21
17	Boundary layer fluctuations and their effects on mean and variance temperature profiles in turbulent Rayleigh-BÃ \odot nard convection. Physical Review Fluids, 2016, 1, .	2.5	31
18	Reynolds numbers and the elliptic approximation near the ultimate state of turbulent Rayleigh–Bénard convection. New Journal of Physics, 2015, 17, 063028.	2.9	21

#	Article	IF	CITATIONS
19	Logarithmic temperature profiles of turbulent Rayleigh–B©nard convection in the classical and ultimate state for a Prandtl number of 0.8. Journal of Fluid Mechanics, 2014, 758, 436-467.	3.4	48
20	Test of the anomalous scaling of passive temperature fluctuations in turbulent Rayleigh–Bénard convection with spatial inhomogeneity. Journal of Fluid Mechanics, 2014, 753, 104-130.	3.4	8
21	Space-time correlations in turbulent Rayleigh-Bénard convection. Acta Mechanica Sinica/Lixue Xuebao, 2014, 30, 457-467.	3.4	10
22	Logarithmic Spatial Variations and Universalfâ^'1Power Spectra of Temperature Fluctuations in Turbulent Rayleigh-Bénard Convection. Physical Review Letters, 2014, 112, 174501.	7.8	23
23	Scaling behavior in turbulent Rayleigh-BÃ \odot nard convection revealed by conditional structure functions. Physical Review E, 2013, 87, 013005.	2.1	12
24	Comment on "Effect of Boundary Layers Asymmetry on Heat Transfer Efficiency in Turbulent Rayleigh-Bénard Convection at Very High Rayleigh Numbers― Physical Review Letters, 2013, 110, 199401.	7.8	16
25	Heat transport by turbulent Rayleigh–Bénard convection for <i>Pr</i> à‰f 0.8 and 3 × 10 ¹² ≲ <i>Ra</i> ≲ 10 ¹⁵ : aspect ratio Γ = 0.50. New Journal of Physics, 2012, 14,	103 012.	56
26	Heat transport by turbulent Rayleigh–Bénard convection for <i>Pr</i> â‰ f 0.8 and 4 × 10 ¹¹ ≲ <i>Ra</i> ≲ 2 × 10 ¹⁴ : ultimate-state transition for aspect ratio Γ = 1.00. Journal of Physics, 2012, 14, 063030.	New	47
27	Logarithmic Temperature Profiles in Turbulent Rayleigh-Bénard Convection. Physical Review Letters, 2012, 109, 114501.	7.8	89
28	Transition to the Ultimate State of Turbulent Rayleigh-Bénard Convection. Physical Review Letters, 2012, 108, 024502.	7.8	190
29	Kraichnan's random sweeping hypothesis in homogeneous turbulent convection. Physical Review E, 2011, 83, 037302.	2.1	27
30	Locally averaged thermal dissipation rate in turbulent thermal convection: A decomposition into contributions from different temperature gradient components. Physics of Fluids, 2011, 23, .	4.0	22
31	Small-scale turbulent fluctuations beyond Taylor's frozen-flow hypothesis. Physical Review E, 2010, 81, 065303.	2.1	45
32	Statistics of the locally averaged thermal dissipation rate in turbulent Rayleigh–Bénard convection. Journal of Turbulence, 2010, 11, N35.	1.4	10
33	Measurements of the thermal dissipation field in turbulent Rayleigh-Bénard convection. Physical Review E, 2009, 79, 026306.	2.1	32
34	Measured Thermal Dissipation Field in Turbulent Rayleigh-Bénard Convection. Physical Review Letters, 2007, 98, 144501.	7.8	26