List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1493275/publications.pdf Version: 2024-02-01

		31902	18606
219	15,533	53	119
papers	citations	h-index	g-index
222	222	222	19686
all docs	docs citations	times ranked	citing authors

7HILL DONC

#	Article	IF	CITATIONS
1	Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: Current development, challenges and prospects. Applied Catalysis B: Environmental, 2016, 194, 169-201.	10.8	1,966
2	Review of selective laser melting: Materials and applications. Applied Physics Reviews, 2015, 2, .	5.5	1,511
3	Application of layered double hydroxides for removal of oxyanions: A review. Water Research, 2008, 42, 1343-1368.	5.3	1,423
4	Composition-Tunable ZnxCd1-xSe Nanocrystals with High Luminescence and Stability. Journal of the American Chemical Society, 2003, 125, 8589-8594.	6.6	534
5	Zinc oxide nanocomb biosensor for glucose detection. Applied Physics Letters, 2006, 88, 233106.	1.5	528
6	Enzymatic glucose biosensor based on ZnO nanorod array grown by hydrothermal decomposition. Applied Physics Letters, 2006, 89, 123902.	1.5	415
7	Mechanical Forceâ€Driven Growth of Elongated Bending TiO ₂ â€based Nanotubular Materials for Ultrafast Rechargeable Lithium Ion Batteries. Advanced Materials, 2014, 26, 6111-6118.	11.1	386
8	Large-Area Synthesis of Monolayer and Few-Layer MoSe ₂ Films on SiO ₂ Substrates. Nano Letters, 2014, 14, 2419-2425.	4.5	376
9	Efficient Ag@AgCl Cubic Cage Photocatalysts Profit from Ultrafast Plasmonâ€Induced Electron Transfer Processes. Advanced Functional Materials, 2013, 23, 2932-2940.	7.8	270
10	Hierarchical TiO ₂ Nanoflakes and Nanoparticles Hybrid Structure for Improved Photocatalytic Activity. Journal of Physical Chemistry C, 2012, 116, 2772-2780.	1.5	262
11	Zinc oxide nanodisk. Applied Physics Letters, 2004, 85, 3878-3880.	1.5	212
12	Stable field emission from hydrothermally grown ZnO nanotubes. Applied Physics Letters, 2006, 88, 213102.	1.5	203
13	Surface–active bismuth ferrite as superior peroxymonosulfate activator for aqueous sulfamethoxazole removal: Performance, mechanism and quantification of sulfate radical. Journal of Hazardous Materials, 2017, 325, 71-81.	6.5	193
14	Ag–AgBr/TiO2/RGO nanocomposite for visible-light photocatalytic degradation of penicillin G. Journal of Materials Chemistry A, 2013, 1, 4718.	5.2	190
15	In situ formation of large-scale Ag/AgCl nanoparticles on layered titanate honeycomb by gas phase reaction for visible light degradation of phenol solution. Applied Catalysis B: Environmental, 2011, 106, 577-585.	10.8	182
16	Growth mechanism of tubular ZnO formed in aqueous solution. Nanotechnology, 2006, 17, 1740-1744.	1.3	177
17	Unravelling the Correlation between the Aspect Ratio of Nanotubular Structures and Their Electrochemical Performance To Achieve Highâ€Rate and Longâ€Life Lithiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2014, 53, 13488-13492.	7.2	172
18	A novel quasi-cubic CuFe ₂ O ₄ –Fe ₂ O ₃ catalyst prepared at low temperature for enhanced oxidation of bisphenol A via peroxymonosulfate activation. Journal of Materials Chemistry A, 2015, 3, 22208-22217.	5.2	169

#	Article	IF	CITATIONS
19	Enhanced Arsenic Removal by Hydrothermally Treated Nanocrystalline Mg/Al Layered Double Hydroxide with Nitrate Intercalation. Environmental Science & Technology, 2009, 43, 2537-2543.	4.6	168
20	Performance of magnetic activated carbon composite as peroxymonosulfate activator and regenerable adsorbent via sulfate radical-mediated oxidation processes. Journal of Hazardous Materials, 2015, 284, 1-9.	6.5	158
21	Interface Driven Energy Filtering of Thermoelectric Power in Spark Plasma Sintered Bi ₂ Te _{2.7} Se _{0.3} Nanoplatelet Composites. Nano Letters, 2012, 12, 4305-4310.	4.5	149
22	A Review on Recent Advances in Electrochromic Devices: A Material Approach. Advanced Engineering Materials, 2020, 22, 2000082.	1.6	148
23	Vanadium pentoxide cathode materials for high-performance lithium-ion batteries enabled by a hierarchical nanoflower structure via an electrochemical process. Journal of Materials Chemistry A, 2013, 1, 82-88.	5.2	138
24	A new integrated approach for dye removal from wastewater by polyoxometalates functionalized membranes. Journal of Hazardous Materials, 2016, 301, 462-470.	6.5	137
25	Carbon-Coated Nanophase CaMoO4 as Anode Material for Li Ion Batteries. Chemistry of Materials, 2004, 16, 504-512.	3.2	127
26	Threeâ€Dimensional CdS–Titanate Composite Nanomaterials for Enhanced Visible‣ightâ€Driven Hydrogen Evolution. Small, 2013, 9, 996-1002.	5.2	124
27	Additively manufactured CoCrFeNiMn high-entropy alloy via pre-alloyed powder. Materials and Design, 2019, 168, 107576.	3.3	124
28	Understanding the Role of Nanostructures for Efficient Hydrogen Generation on Immobilized Photocatalysts. Advanced Energy Materials, 2013, 3, 1368-1380.	10.2	122
29	High surface area DPA-hematite for efficient detoxification of bisphenol A via peroxymonosulfate activation. Journal of Materials Chemistry A, 2014, 2, 15836-15845.	5.2	122
30	A novel three-dimensional spherical CuBi ₂ O ₄ consisting of nanocolumn arrays with persulfate and peroxymonosulfate activation functionalities for 1H-benzotriazole removal. Nanoscale, 2015, 7, 8149-8158.	2.8	104
31	Microstructural evolution and its influence on the magnetic properties ofCoFe2O4powders during mechanical milling. Physical Review B, 2006, 74, .	1.1	100
32	Chemical functionalization of graphene oxide for improving mechanical and thermal properties of polyurethane composites. Materials and Design, 2015, 85, 808-814.	3.3	93
33	Ultraviolet emission from a ZnO rod homojunction light-emitting diode. Applied Physics Letters, 2009, 95, .	1.5	91
34	Sorption characteristics and mechanisms of oxyanions and oxyhalides having different molecular properties on Mg/Al layered double hydroxide nanoparticles. Journal of Hazardous Materials, 2010, 179, 818-827.	6.5	82
35	Synthesis of boron nitride nanowires. Applied Physics Letters, 2002, 80, 3611-3613.	1.5	80
36	Synthesis of Nanostructured Silver/Silver Halides on Titanate Surfaces and Their Visible-Light Photocatalytic Performance. ACS Applied Materials & Interfaces, 2012, 4, 438-446.	4.0	77

#	Article	IF	CITATIONS
37	Visible-light plasmonic photocatalyst anchored on titanate nanotubes: a novel nanohybrid with synergistic effects of adsorption and degradation. RSC Advances, 2012, 2, 9406.	1.7	70
38	DNA-directed growth of FePO4 nanostructures on carbon nanotubes to achieve nearly 100% theoretical capacity for lithium-ion batteries. Energy and Environmental Science, 2012, 5, 6919.	15.6	67
39	TEM and STEM analysis on heat-treated and in vitro plasma-sprayed hydroxyapatite/Ti-6Al-4V composite coatings. Biomaterials, 2003, 24, 97-105.	5.7	66
40	Ultraviolet amplified spontaneous emission from self-organized network of zinc oxide nanofibers. Applied Physics Letters, 2005, 86, 011118.	1.5	65
41	Interface and Surface Cation Stoichiometry Modified by Oxygen Vacancies in Epitaxial Manganite Films. Advanced Functional Materials, 2012, 22, 4312-4321.	7.8	65
42	High-permeability pluronic-based TiO2 hybrid photocatalytic membrane with hierarchical porosity: Fabrication, characterizations and performances. Chemical Engineering Journal, 2013, 228, 1030-1039.	6.6	64
43	Effect of coating thickness on microstructure, mechanical properties and fracture behaviour of cold sprayed Ti6Al4V coatings on Ti6Al4V substrates. Surface and Coatings Technology, 2018, 349, 303-317.	2.2	63
44	Self-supporting transition metal chalcogenides on metal substrates for catalytic water splitting. Chemical Engineering Journal, 2021, 421, 129645.	6.6	62
45	Thin-Walled Graphitic Nanocages As a Unique Platform for Amperometric Glucose Biosensor. ACS Applied Materials & Interfaces, 2010, 2, 2481-2484.	4.0	61
46	The Origin of Visible Light Absorption in Chalcogen Element (S, Se, and Te)-Doped Anatase TiO ₂ Photocatalysts. Journal of Physical Chemistry C, 2010, 114, 7063-7069.	1.5	61
47	Efficient Energy Transfer and Enhanced Infrared Emission in Er-Doped ZnO-SiO ₂ Composites. Journal of Physical Chemistry C, 2012, 116, 13458-13462.	1.5	61
48	An Epitaxial Ferroelectric Tunnel Junction on Silicon. Advanced Materials, 2014, 26, 7185-7189.	11.1	61
49	Fabrication of bimetallic Cu/Au nanotubes and their sensitive, selective, reproducible and reusable electrochemical sensing of glucose. Nanoscale, 2015, 7, 11190-11198.	2.8	60
50	Effects of Traverse Scanning Speed of Spray Nozzle on the Microstructure and Mechanical Properties of Cold-Sprayed Ti6Al4V Coatings. Journal of Thermal Spray Technology, 2017, 26, 1484-1497.	1.6	60
51	Ferroelectricity and ferroelectric resistive switching in sputtered Hf0.5Zr0.5O2 thin films. Applied Physics Letters, 2016, 108, .	1.5	57
52	Controllably self-assembled graphene-supported Au@Pt bimetallic nanodendrites as superior electrocatalysts for methanol oxidation in direct methanol fuel cells. Journal of Materials Chemistry A, 2016, 4, 7352-7364.	5.2	57
53	Aligned ZnO nanorods synthesized by a simple hydrothermal reaction. Journal Physics D: Applied Physics, 2006, 39, 1690-1693.	1.3	55
54	An effective analytical model of selective laser melting. Virtual and Physical Prototyping, 2016, 11, 21-26.	5.3	53

#	Article	IF	CITATIONS
55	DNAâ€Directed Growth of Pd Nanocrystals on Carbon Nanotubes towards Efficient Oxygen Reduction Reactions. Chemistry - A European Journal, 2012, 18, 15693-15698.	1.7	51
56	Rational design of hierarchically-structured CuBi ₂ O ₄ composites by deliberate manipulation of the nucleation and growth kinetics of CuBi ₂ O ₄ for environmental applications. Nanoscale, 2016, 8, 2046-2054.	2.8	51
57	Hierarchical layered titanate microspherulite: formation by electrochemical spark discharge spallation and application in aqueous pollutant treatment. Journal of Materials Chemistry, 2010, 20, 10169.	6.7	48
58	Preparation, characterization and properties of polycaprolactone diol-functionalized multi-walled carbon nanotube/thermoplastic polyurethane composite. Composites Part A: Applied Science and Manufacturing, 2015, 70, 8-15.	3.8	47
59	A SnO ₂ Nanoparticle/Nanobelt and Si Heterojunction Light-Emitting Diode. Journal of Physical Chemistry C, 2010, 114, 18390-18395.	1.5	46
60	Solution-Processable Barium Titanate and Strontium Titanate Nanoparticle Dielectrics for Low-Voltage Organic Thin-Film Transistors. Chemistry of Materials, 2009, 21, 3153-3161.	3.2	45
61	Oxidation behavior of Mo-Si-B alloys at medium-to-high temperatures. Journal of Materials Science and Technology, 2021, 60, 113-127.	5.6	45
62	Nanostructured Single-Crystalline Twin Disks of Zinc Oxide. Crystal Growth and Design, 2007, 7, 541-544.	1.4	44
63	Formation of antimony sulfide powders and thin films from single-source antimony precursors. Journal of Materials Chemistry, 2008, 18, 5399.	6.7	44
64	Ferroelectricity emerging in strained (111)-textured ZrO2 thin films. Applied Physics Letters, 2016, 108, .	1.5	44
65	Hierarchically-structured Co–CuBi 2 O 4 and Cu–CuBi 2 O 4 for sulfanilamide removal via peroxymonosulfate activation. Catalysis Today, 2017, 280, 2-7.	2.2	44
66	Ultrafast Synthesis of Layered Titanate Microspherulite Particles by Electrochemical Spark Discharge Spallation. Chemistry - A European Journal, 2010, 16, 7704-7708.	1.7	43
67	Surface Eu-Treated ZnO Nanowires with Efficient Red Emission. Journal of Physical Chemistry C, 2010, 114, 18081-18084.	1.5	43
68	Synthesis of Fivefold Stellate Polyhedral Gold Nanoparticles with {110}â€Facets via a Seedâ€Mediated Growth Method. Small, 2013, 9, 705-710.	5.2	43
69	Temperature and Chemical Bondingâ€Directed Selfâ€Assembly of Cobalt Phosphide Nanowires in Reaction Solutions into Vertical and Horizontal Alignments. Advanced Materials, 2012, 24, 4369-4375.	11.1	42
70	Colloidal nanocrystals of orthorhombic Cu ₂ ZnGeS ₄ : phase-controlled synthesis, formation mechanism and photocatalytic behavior. Nanoscale, 2015, 7, 3247-3253.	2.8	42
71	Color tunable light-emitting diodes based on p+-Si/p-CuAlO2/n-ZnO nanorod array heterojunctions. Applied Physics Letters, 2010, 97, 013101.	1.5	40
72	Zinc oxide nanowires and nanorods fabricated by vapour-phase transport at low temperature. Nanotechnology, 2004, 15, 839-842.	1.3	39

#	Article	IF	CITATIONS
73	Zinc oxide hexagram whiskers. Applied Physics Letters, 2006, 88, 093101.	1.5	39
74	Study of the cation distributions in Eu doped Sr2Y8(SiO4)6O2 by X-ray diffraction and photoluminescent spectra. Journal of Solid State Chemistry, 2010, 183, 3093-3099.	1.4	39
75	Synthesis and Crystal Structure Characterization of Silicate Apatite Sr ₂ Y ₈ (SiO ₄) ₆ O ₂ . Journal of the American Ceramic Society, 2010, 93, 1176-1182.	1.9	39
76	Perovskite–Ion Beam Interactions: Toward Controllable Light Emission and Lasing. ACS Applied Materials & Interfaces, 2019, 11, 15756-15763.	4.0	38
77	Model Apatite Systems for the Stabilization of Toxic Metals: I, Calcium Lead Vanadate. Journal of the American Ceramic Society, 2002, 85, 2515-2522.	1.9	35
78	Highly Efficient and Stable Hydrogen Production in All pH Range by Two-Dimensional Structured Metal-Doped Tungsten Semicarbides. Research, 2019, 2019, 4029516.	2.8	35
79	Size dependence of radiation-induced amorphization and recrystallization of synthetic nanostructured CePO4 monazite. Acta Materialia, 2013, 61, 2984-2992.	3.8	34
80	CrSi ₂ Hexagonal Nanowebs. Journal of the American Chemical Society, 2010, 132, 15875-15877.	6.6	33
81	Hierarchical protonated titanate nanostructures for lithium-ion batteries. Nanoscale, 2011, 3, 4074.	2.8	33
82	Selective laser melting of nickel powder. Rapid Prototyping Journal, 2017, 23, 750-757.	1.6	33
83	Current-induced self-switching of perpendicular magnetization in CoPt single layer. Nature Communications, 2022, 13, .	5.8	33
84	Facile Synthesis of Luminescent AgInS ₂ –ZnS Solid Solution Nanorods. Small, 2013, 9, 2689-2695.	5.2	32
85	Controlled Formation of Hierarchical Metal–Organic Frameworks Using CO ₂ -Expanded Solvent Systems. ACS Sustainable Chemistry and Engineering, 2017, 5, 7887-7893.	3.2	32
86	Model Apatite Systems for the Stabilization of Toxic Metals: II, Cation and Metalloid Substitutions in Chlorapatites. Journal of the American Ceramic Society, 2005, 88, 1253-1260.	1.9	31
87	Magnetic nanobelts of iron-doped zinc oxide. Applied Physics Letters, 2005, 86, 173110.	1.5	30
88	Static dielectric constant of isolated silicon nanocrystals embedded in a SiO2 thin film. Applied Physics Letters, 2006, 88, 063103.	1.5	30
89	One-Dimensional Single-Crystalline Bismuth Oxide Micro/Nanoribbons: Morphology-Controlled Synthesis and Luminescent Properties. Journal of Nanoscience and Nanotechnology, 2010, 10, 8322-8327.	0.9	30
90	Influence of Particle Velocity When Propelled Using N2 or N2-He Mixed Gas on the Properties of Cold-Sprayed Ti6Al4V Coatings. Coatings, 2018, 8, 327.	1.2	30

#	Article	IF	CITATIONS
91	Fabrication of Er:Y2O3 transparent ceramics for 2.7â€Î¼m mid-infrared solid-state lasers. Journal of the European Ceramic Society, 2020, 40, 444-448.	2.8	30
92	Manganese-doped zinc oxide tetratubes and their photoluminescent properties. Journal of Applied Physics, 2005, 98, 113513.	1.1	29
93	A new strategy of nanocompositing vanadium dioxide with excellent durability. Journal of Materials Chemistry A, 2021, 9, 15618-15628.	5.2	29
94	Thermal transport behavior of polycrystalline graphene: A molecular dynamics study. Journal of Applied Physics, 2014, 116, .	1.1	28
95	Fabrication and characterization of highly transparent Yb3+: Y2O3 ceramics. Optical Materials, 2015, 50, 21-24.	1.7	28
96	Microstructure, mechanical and tribological properties of cold sprayed Ti6Al4V–CoCr composite coatings. Composites Part B: Engineering, 2020, 202, 108280.	5.9	28
97	Dye removal by surfactant encapsulated polyoxometalates. Journal of Hazardous Materials, 2014, 280, 428-435.	6.5	27
98	Pump laser induced photodarkening in ZrO2-doped Yb:Y2O3 laser ceramics. Journal of the European Ceramic Society, 2019, 39, 635-640.	2.8	27
99	Rapid ultrasound-assisted synthesis of controllable Zn/Co-based zeolitic imidazolate framework nanoparticles for heterogeneous catalysis. Microporous and Mesoporous Materials, 2021, 314, 110777.	2.2	27
100	Tailoring the radiation tolerance of vanadate–phosphate fluorapatites by chemical composition control. RSC Advances, 2013, 3, 15178.	1.7	26
101	Temperature and strain-rate dependent mechanical properties of single-layer borophene. Extreme Mechanics Letters, 2018, 19, 39-45.	2.0	26
102	Preparation and Formula Analysis of Anti-Biofouling Titania–Polyurea Spray Coating with Nano/Micro-Structure. Coatings, 2019, 9, 560.	1.2	26
103	Plasma Spraying of Functionally Graded Yttria Stabilized Zirconia/NiCoCrAlY Coating System Using Composite Powders. Journal of Thermal Spray Technology, 2000, 9, 245-249.	1.6	25
104	Calcium–lead fluoro-vanadinite apatites. I. Disequilibrium structures. Acta Crystallographica Section B: Structural Science, 2004, 60, 138-145.	1.8	25
105	Phase transformation of a rare-earth Anderson polyoxometalate at low temperature. CrystEngComm, 2008, 10, 1318.	1.3	25
106	Direct Observation and Analysis of Annealing-Induced Microstructure at Interface and Its Effect on Performance Improvement of Organic Thin Film Transistors. Journal of Physical Chemistry B, 2008, 112, 12270-12278.	1.2	25
107	Effect of Substrate Surface Roughness on Microstructure and Mechanical Properties of Cold-Sprayed Ti6Al4V Coatings on Ti6Al4V Substrates. Journal of Thermal Spray Technology, 2019, 28, 1959-1973.	1.6	25
108	Effect of pore geometry on ultra-densified hydrogen in microporous carbons. Carbon, 2021, 173, 968-979.	5.4	25

#	Article	IF	CITATIONS
109	Few-Layered WS ₂ Anchored on Co, N-Doped Carbon Hollow Polyhedron for Oxygen Evolution and Hydrogen Evolution. ACS Applied Materials & Interfaces, 2022, 14, 22030-22040.	4.0	25
110	Network array of zinc oxide whiskers. Nanotechnology, 2005, 16, 70-73.	1.3	24
111	Removal of arsenate from aqueous solution by nanocrystalline Mg/Al layered double hydroxide: sorption characteristics, prospects, and challenges. Water Science and Technology, 2010, 61, 1411-1417.	1.2	24
112	Al–Cr–Fe quasicrystals as novel reinforcements in Ti based composites consolidated using high pressure spark plasma sintering. Materials and Design, 2016, 102, 255-263.	3.3	24
113	Intense vortex pinning enhanced by semicrystalline defect traps in self-aligned nanostructured MgB2. Applied Physics Letters, 2003, 83, 314-316.	1.5	23
114	Syntheses, structures and properties of a series of photochromic hybrids based on Keggin tungstophosphates. Journal of Solid State Chemistry, 2009, 182, 1040-1044.	1.4	23
115	Solution-processable organic-capped titanium oxide nanoparticle dielectrics for organic thin-film transistors. Applied Physics Letters, 2008, 93, 113304.	1.5	22
116	Controlled Synthesis of Copper-Silicide Nanostructures. Crystal Growth and Design, 2010, 10, 2983-2989.	1.4	22
117	New double-sintering aid for fabrication of highly transparent ytterbium-doped yttria ceramics. Journal of the European Ceramic Society, 2016, 36, 253-256.	2.8	22
118	Biological and Physiochemical Methods of Biofilm Adhesion Resistance Control of Medical-Context Surface. International Journal of Biological Sciences, 2021, 17, 1769-1781.	2.6	22
119	Formation of Cu diffusion channels in Ta layer of a Cu/Ta/SiO2/Si structure. Applied Physics Letters, 2002, 80, 2296-2298.	1.5	21
120	Calcium–lead fluoro-vanadinite apatites. II. Equilibrium structures. Acta Crystallographica Section B: Structural Science, 2004, 60, 146-154.	1.8	21
121	Solid-state photopolymerization of a photochromic hybrid based on Keggin tungstophosphates. CrystEngComm, 2008, 10, 652.	1.3	21
122	Rapid Copper Metallization of Textile Materials: a Controlled Two-Step Route to Achieve User-Defined Patterns under Ambient Conditions. ACS Applied Materials & Interfaces, 2015, 7, 21545-21551.	4.0	21
123	Spark plasma sintering of Al–Cr–Fe quasicrystals: Electric field effects and densification mechanism. Scripta Materialia, 2016, 114, 88-92.	2.6	21
124	Effect of graphene-oxide enhancement on large-deflection bending performance of thermoplastic polyurethane elastomer. Composites Part B: Engineering, 2016, 89, 1-8.	5.9	21
125	Submicronâ€grained Yb:Lu ₂ O ₃ transparent ceramics with lasing quality. Journal of the American Ceramic Society, 2019, 102, 2587-2592.	1.9	21
126	A novel thin film composite hollow fiber osmotic membrane with one-step prepared dual-layer substrate for sludge thickening. Journal of Membrane Science, 2019, 575, 98-108.	4.1	21

#	Article	IF	CITATIONS
127	Polyoxometalates for bifunctional applications: Catalytic dye degradation and anticancer activity. Chemosphere, 2022, 286, 131869.	4.2	21
128	Ab initio constrained crystal-chemical Rietveld refinement of Ca10(V x P1â€â ``â€x O4)6F2 apatites. Acta Crystallographica Section B: Structural Science, 2007, 63, 37-48.	1.8	20
129	Fabrication and spectroscopic characterization of Ce3+ doped Sr2Y8(SiO4)6O2 translucent ceramics. Optical Materials, 2012, 34, 1155-1160.	1.7	20
130	Upconversion Luminescence of Gd ₂ O ₃ :Ln ³⁺ Nanorods for White Emission and Cellular Imaging via Surface Charging and Crystallinity Control. ACS Applied Nano Materials, 2019, 2, 1421-1430.	2.4	20
131	Fabrication of catalytic membrane contactors based on polyoxometalates and polyvinylidene fluoride intended for degrading phenol in wastewater under mild conditions. Separation and Purification Technology, 2013, 118, 162-169.	3.9	19
132	Facile low temperature solid state synthesis of iodoapatite by high-energy ball milling. RSC Advances, 2014, 4, 38718-38725.	1.7	19
133	Membrane compaction in forward osmosis process. Desalination, 2019, 468, 114067.	4.0	19
134	Fabrication of Highly Transparent Y2O3 Ceramics with CaO as Sintering Aid. Materials, 2021, 14, 444.	1.3	19
135	Optical and biological properties of transparent nanocrystalline hydroxyapatite obtained through spark plasma sintering. Materials Science and Engineering C, 2016, 69, 956-966.	3.8	18
136	3D Printing of Transparent Spinel Ceramics with Transmittance Approaching the Theoretical Limit. Advanced Materials, 2021, 33, e2007072.	11.1	18
137	Electron Irradiation Induced Transformation of (Pb ₅ Ca ₅)(VO ₄) ₆ F ₂ Apatite to CaVO ₃ Perovskite. Journal of the American Ceramic Society, 2005, 88, 184-190.	1.9	16
138	Microstructure characterization of Al–Cr–Fe quasicrystals sintered using spark plasma sintering. Materials Characterization, 2015, 110, 264-271.	1.9	16
139	A Review of Transmission Electron Microscopy of Quasicrystals—How Are Atoms Arranged?. Crystals, 2016, 6, 105.	1.0	16
140	Hybrid Nanomaterials with Single-Site Catalysts by Spatially Controllable Immobilization of Nickel Complexes <i>via</i> Photoclick Chemistry for Alkene Epoxidation. ACS Nano, 2018, 12, 5903-5912.	7.3	16
141	Electronic structure and vacancy formation of Li3N. Applied Physics Letters, 2009, 94, .	1.5	15
142	Low-level sintering aids for highly transparent Yb:Y2O3 ceramics. Journal of Alloys and Compounds, 2017, 695, 1414-1419.	2.8	15
143	Electroluminescence From Ferromagnetic Fe-Doped ZnO Nanorod Arrays on p-Si. IEEE Transactions on Electron Devices, 2010, 57, 1948-1952.	1.6	14
	Structure and Thermal Expansion of Calcium–Thorium Apatite,		

144 [Ca₄]_F[Ca₂Th₄]<sup>T</sub>[(SiO₄)₆]O₂ Inorganic Chemistry, 2015, 54, 11356-11361.

#	Article	IF	CITATIONS
145	Novel Ti based metal matrix composites reinforced with Al–Cr–Fe quasicrystals approximants. Materials Science and Technology, 2015, 31, 688-694.	0.8	14
146	Strain hardening cementitious composites incorporating high volumes of municipal solid waste incineration fly ash. Construction and Building Materials, 2017, 146, 183-191.	3.2	14
147	Fabrication of Zinc Substrate Encapsulated by Fluoropolyurethane and Its Drag-Reduction Enhancement by Chemical Etching. Coatings, 2020, 10, 377.	1.2	14
148	Magnetic Anisotropies in Cobalt-Nickel Ferrites (NixCo1-xFe2O4). Journal of the Korean Physical Society, 2008, 52, 1483-1486.	0.3	14
149	Sintered Ni metal as a matrix of robust self-supporting electrode for ultra-stable hydrogen evolution. Chemical Engineering Journal, 2022, 430, 133040.	6.6	14
150	Rapid preparation and antimicrobial activity of polyurea coatings with REâ€Đoped nanoâ€ZnO. Microbial Biotechnology, 2022, 15, 548-560.	2.0	14
151	Atomic-Scale Control of Magnetism at the Titanite-Manganite Interfaces. Nano Letters, 2019, 19, 3057-3065.	4.5	13
152	Transparent Ceramic Materials. Topics in Mining, Metallurgy and Materials Engineering, 2015, , 29-91.	1.4	12
153	Radiation-induced amorphization of Ce-doped Mg2Y8(SiO4)6O2 silicate apatite. Nuclear Instruments & Methods in Physics Research B, 2016, 379, 102-106.	0.6	12
154	Influence of microstructures on mechanical properties and tribology behaviors of TiN/TiXAl1â^'XN multilayer coatings. Surface and Coatings Technology, 2017, 320, 441-446.	2.2	12
155	Electron radiation-induced material diffusion and nanocrystallization in nanostructured amorphous CoFeB thin film. Acta Materialia, 2018, 161, 221-236.	3.8	12
156	Polycrystalline alumina ceramic fabrication using digital stereolithographic light process. Ceramics International, 2021, 47, 33815-33826.	2.3	12
157	Effect of transition metal (M = Co, Ni, Cu) substitution on electronic structure and vacancy formation of Li ₃ N. Journal of Materials Chemistry, 2011, 21, 165-170.	6.7	11
158	Electron-beam radiation induced degradation of silicon nitride and its impact to semiconductor failure analysis by TEM. AIP Advances, 2018, 8, 115327.	0.6	11
159	Effect of Nano-Titanium Dioxide Contained in Titania-Polyurea Coating on Marina Biofouling and Drag Reduction. Journal of Biomedical Nanotechnology, 2020, 16, 1530-1541.	0.5	11
160	High density diffusion barrier of ionized metal plasma deposited Ti in Al–0.5%Cu/Ti/SiO[sub 2]/Si structure. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2001, 19, 388.	1.6	10
161	K10[Co4(H2O)2(B-α-SiW9O34H)2]·21H2O: A sandwich polyoxometalate based on the magnetically interesting element cobalt. Inorganic Chemistry Communication, 2007, 10, 1378-1380.	1.8	10
162	Low-Temperature Facile Synthesis of ZnO Rod Arrays and Their Device Applications. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17, 801-807.	1.9	10

#	Article	IF	CITATIONS
163	Anisotropic magnetoresistance in topological insulator Bi1.5Sb0.5Te1.8Se1.2/CoFe heterostructures. AIP Advances, 2012, 2, 042171.	0.6	10
164	Anisotropic Imprint of Amorphization and Phase Separation in Manganite Thin Films via Laser Interference Irradiation. Small, 2015, 11, 576-584.	5.2	10
165	Elucidation of thermally induced internal porosity in zinc oxide nanorods. Nano Research, 2018, 11, 2412-2423.	5.8	10
166	Yttria nanopowders with low degree of aggregation by a spray precipitation method. Ceramics International, 2018, 44, 20472-20477.	2.3	10
167	Fabrication and microstructural characterizations of lasing grade Nd:Y ₂ O ₃ ceramics. Journal of the American Ceramic Society, 2019, 102, 7462-7468.	1.9	10
168	Assessing the potential of integrally skinned asymmetric hollow fiber membranes for addressing membrane fouling in pressure retarded osmosis process. Desalination, 2021, 520, 115347.	4.0	10
169	NiFe layered double hydroxide nanosheet arrays for efficient oxygen evolution reaction in alkaline media. International Journal of Hydrogen Energy, 2022, 47, 21725-21735.	3.8	10
170	Magnetic nanobraids of iron-doped amorphous silica. Applied Physics Letters, 2004, 85, 5364-5366.	1.5	9
171	Hierarchical ZnO/Bi2O3 nanostructures: synthesis, characterization, and electron-beam modification. Applied Physics A: Materials Science and Processing, 2010, 98, 91-96.	1.1	9
172	Tunable Ionic and Electronic Conduction of Lithium Nitride via Phosphorus and Arsenic Substitution: A First-Principles Study. Journal of Physical Chemistry C, 2010, 114, 16706-16709.	1.5	9
173	Morphological Growth and Theoretical Understanding of Gold and Other Noble Metal Nanoplates. Chemistry - A European Journal, 2018, 24, 15589-15595.	1.7	9
174	Fire-retardant effect of titania-polyurea coating and additional enhancement via aromatic diamine and modified melamine polyphosphate. Npj Materials Degradation, 2022, 6, .	2.6	9
175	Self-assembly of rare-earth Anderson polyoxometalates on the surface of imide polymeric hollow fiber membranes potentially for organic pollutant degradation. Separation and Purification Technology, 2015, 151, 155-164.	3.9	8
176	Bifunctional TiO2/AlZr Thin Films on Steel Substrate Combining Corrosion Resistance and Photocatalytic Properties. Coatings, 2019, 9, 564.	1.2	8
177	Discharge and densification in the spark plasma sintering of quasicrystal particles. Journal of Materials Science, 2019, 54, 8727-8742.	1.7	8
178	Exploring the evolution of pores in HIPed Y2O3 transparent ceramics. Ceramics International, 2021, 47, 11637-11643.	2.3	8
179	Grating Network of ZnO Nanostructure. Journal of Physical Chemistry C, 2008, 112, 13922-13925.	1.5	7
180	Development of Translucent Oxyapatite Ceramics by Spark Plasma Sintering. Journal of the American Ceramic Society, 2010, 93, 3060-3063.	1.9	7

#	Article	IF	CITATIONS
181	Introducing Cations (Zn ²⁺ , Sn ²⁺ and Mg ²⁺) and Anions(Cl ^{â`'}) to Tune Mn Photoluminescence Intensity of Doped Perovskite Nanocrystals(CsPbCl ₃). ChemistrySelect, 2018, 3, 11986-11992.	0.7	7
182	Mechanism of CO2 capture in nanostructured sodium amide encapsulated in porous silica. Surface and Coatings Technology, 2018, 350, 227-233.	2.2	7
183	Nanotubes: Mechanical Force-Driven Growth of Elongated Bending TiO2-based Nanotubular Materials for Ultrafast Rechargeable Lithium Ion Batteries (Adv. Mater. 35/2014). Advanced Materials, 2014, 26, 6046-6046.	11.1	6
184	Thermal Stability and Lattice Strain Evolution of Highâ€Nbâ€Containing TiAl Alloy under Lowâ€Cycleâ€Fatigue Loading. Advanced Engineering Materials, 2021, 23, 2001337.	1.6	6
185	Practical Reviews of Exhaust Systems Operation in Semiconductor Industry. IOP Conference Series: Earth and Environmental Science, 2021, 859, 012074.	0.2	6
186	Electrochemical Cycling Induced Surface Segregation of AuPt Nanoparticles in HClO4and H2SO4. Journal of the Electrochemical Society, 2016, 163, F752-F760.	1.3	5
187	Fabrication of laser grade Yb: Y2O3 transparent ceramics with ZrO2 additive through hot isostatic pressing. Materials Today Communications, 2020, 24, 101185.	0.9	5
188	State-of-the-Art Review on Selective Laser Melting of Non-Ferrous Metals. , 2014, , .		5
189	Surface Modification of 304L Stainless Steel and Interface Engineering by HiPIMS Pre-Treatment. Coatings, 2022, 12, 727.	1.2	5
190	Atomic Stacking Configurations in Atomic Layer Deposited TiN Films. Journal of Physical Chemistry B, 2002, 106, 12797-12800.	1.2	4
191	Synthesis and Crystal Structure Characterization of Oxysilicate Apatites for Stabilization of Sr and Rareâ€Earth Elements. Journal of the American Ceramic Society, 2016, 99, 1761-1768.	1.9	4
192	Analysis of Biofilm-Resistance Factors in Singapore Drinking Water Distribution System. IOP Conference Series: Earth and Environmental Science, 2020, 558, 042004.	0.2	4
193	Synthesis of yttria nanopowder with poly acrylic acid as dispersant for highly transparent yttria ceramics. Journal of the American Ceramic Society, 2022, 105, 2029-2037.	1.9	4
194	Carbon-Coated Nanophase CaMoO4 as Anode Material for Li Ion Batteries ChemInform, 2004, 35, no.	0.1	3
195	Mechanistic and thermodynamic studies of oxyanion sorption by various synthetic Mg/Al layered double hydroxides. Water Science and Technology, 2009, 59, 1011-1017.	1.2	3
196	The Yttrium Effect on Nanoscale Structure, Mechanical Properties, and High-Temperature Oxidation Resistance of (Ti0.6Al0.4)1–x Y x N Multilayer Coatings. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 4097-4110.	1.1	3
197	Ion Beam Irradiation-induced Amorphization in Nano-sized KxLnyTa2O7-v Tantalate Pyrochlore. Materials Research Society Symposia Proceedings, 2011, 1298, 147.	0.1	2
198	Multiferroicity in manganite/titanate superlattices determined by oxygen pressure-mediated cation defects. Journal of Applied Physics, 2013, 113, 164302.	1.1	2

#	ARTICLE al and Magnetic Properties of <inline-formula> <tex-math notation="TeX">(extbf</tex-math></inline-formula>	IF	CITATIONS
	{x}) ⁢/tex-matn>⁢/inline-formula>Fe _Z TiO ₄ <inline-formula> <tex-math notation="TeX">(cdot)</tex-math></inline-formula>		
199			

#	Article	IF	CITATIONS
217	Synthesis and Characterization of Nano-scale Clay Anion Exchanger and Its Application in Removing Arsenic from Aqueous System. Journal of Ion Exchange, 2007, 18, 316-321.	0.1	0
218	Nd:Y2O3 Transparent Ceramics: Fabrication and Laser Performance. , 2019, , .		0
219	Efficiency degradation of laser ceramics caused by inappropriate dispersants and sintering aids. Optical Materials, 2021, 122, 111789.	1.7	0