Chunxiang Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1493072/publications.pdf

Version: 2024-02-01

152 5,811 37 71 papers citations h-index g-index

156 156 156 6657
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Tripleâ€Mode Emission of Carbon Dots: Applications for Advanced Antiâ€Counterfeiting. Angewandte Chemie - International Edition, 2016, 55, 7231-7235.	13.8	625
2	Tripleâ€Mode Emission of Carbon Dots: Applications for Advanced Antiâ€Counterfeiting. Angewandte Chemie, 2016, 128, 7347-7351.	2.0	467
3	Field emission from zinc oxide nanopins. Applied Physics Letters, 2003, 83, 3806-3808.	3.3	332
4	Low temperature sintering of Ag nanoparticles for flexible electronics packaging. Applied Physics Letters, 2010, 97, .	3.3	265
5	Field emission from gallium-doped zinc oxide nanofiber array. Applied Physics Letters, 2004, 84, 1540-1542.	3.3	255
6	Improved UV photoresponse of ZnO nanorod arrays by resonant coupling with surface plasmons of Al nanoparticles. Nanoscale, 2015, 7, 3396-3403.	5.6	157
7	Facilely synthesized N-doped carbon quantum dots with high fluorescent yield for sensing Fe ³⁺ . New Journal of Chemistry, 2016, 40, 2083-2088.	2.8	134
8	Whisperingâ€gallery mode lasing in ZnO microcavities. Laser and Photonics Reviews, 2014, 8, 469-494.	8.7	115
9	Photovoltaic-pyroelectric effect coupled broadband photodetector in self-powered ZnO/ZnTe core/shell nanorod arrays. Nano Energy, 2019, 62, 310-318.	16.0	111
10	Comparative investigation on temperature-dependent photoluminescence of CH ₃ NH ₃ PbBr ₃ and CH(NH ₂) ₂ PbBr ₃ microstructures. Journal of Materials Chemistry C, 2016, 4, 4408-4413.	5.5	109
11	ZnO quantum dot labeled immunosensor for carbohydrate antigen 19-9. Biosensors and Bioelectronics, 2011, 26, 2720-2723.	10.1	104
12	Facile synthesis of highly conductive sulfur-doped reduced graphene oxide sheets. Physical Chemistry Chemical Physics, 2016, 18, 1125-1130.	2.8	103
13	Whispering gallery-mode lasing in ZnO microrods at room temperature. Applied Physics Letters, 2009, 95, .	3.3	101
14	Single ZnO Microrod Ultraviolet Photodetector with High Photocurrent Gain. ACS Applied Materials & Samp; Interfaces, 2013, 5, 9344-9348.	8.0	101
15	Tyrosinase Immobilization on ZnO Nanorods for Phenol Detection. Journal of Physical Chemistry B, 2009, 113, 377-381.	2.6	85
16	Single Mode ZnO Whispering-Gallery Submicron Cavity and Graphene Improved Lasing Performance. ACS Nano, 2015, 9, 6794-6800.	14.6	78
17	Template-free synthesis of porous ZnO/Ag microspheres as recyclable and ultra-sensitive SERS substrates. Applied Surface Science, 2018, 427, 830-836.	6.1	74
18	Direct Resonant Coupling of Al Surface Plasmon for Ultraviolet Photoluminescence Enhancement of ZnO Microrods. ACS Applied Materials & Interfaces, 2014, 6, 18301-18305.	8.0	69

#	Article	IF	Citations
19	CdS quantum dots/Au nanoparticles/ZnO nanowire array for self-powered photoelectrochemical detection of Escherichia coli O157:H7. Biosensors and Bioelectronics, 2020, 149, 111843.	10.1	66
20	Plasmon-enhanced ZnO whispering-gallery mode lasing. Nano Research, 2018, 11, 3050-3064.	10.4	61
21	Crystal structure and electron transition underlying photoluminescence of methylammonium lead bromide perovskites. Journal of Materials Chemistry C, 2017, 5, 7739-7745.	5 . 5	58
22	Graphene Surface Plasmon Induced Optical Field Confinement and Lasing Enhancement in ZnO Whispering-Gallery Microcavity. ACS Applied Materials & Interfaces, 2014, 6, 10469-10475.	8.0	54
23	Plasmon-Enhanced Whispering Gallery Mode Lasing from Hexagonal Al/ZnO Microcavity. ACS Photonics, 2015, 2, 73-77.	6.6	54
24	Piezoelectric Effect Tuning on ZnO Microwire Whispering-Gallery Mode Lasing. ACS Nano, 2018, 12, 11899-11906.	14.6	51
25	Burstein-Moss Effect Behind Au Surface Plasmon Enhanced Intrinsic Emission of ZnO Microdisks. Scientific Reports, 2016, 6, 36194.	3.3	48
26	Vertically aligned ZnO/Ga ₂ O ₃ core/shell nanowire arrays as self-driven superior sensitivity solar-blind photodetectors. Journal of Materials Chemistry C, 2019, 7, 3056-3063.	5 . 5	48
27	3D Ag/ZnO hybrids for sensitive surface-enhanced Raman scattering detection. Applied Surface Science, 2016, 365, 291-295.	6.1	46
28	Emission Enhanced and Stabilized by Stereoisomeric Strategy in Hierarchical Uniform Supramolecular Framework. CheM, 2019, 5, 2470-2483.	11.7	45
29	Lasing Behavior Modulation for ZnO Whispering-Gallery Microcavities. ACS Applied Materials & Company (2012), 4, 6195-6201.	8.0	44
30	Plasmon-enhanced Electrically Light-emitting from ZnO Nanorod Arrays/p-GaN Heterostructure Devices. Scientific Reports, 2016, 6, 25645.	3.3	42
31	Synthesis of 2Hâ€1T′ WS ₂ â€ReS ₂ Heterophase Structures with Atomically Sharp Interface via Hydrogenâ€1riggered Oneâ€Pot Growth. Advanced Functional Materials, 2020, 30, 1910169.	14.9	42
32	Surface photoluminescence and magnetism in hydrothermally grown undoped ZnO nanorod arrays. Applied Physics Letters, 2012, 100, 172401.	3.3	41
33	Nanostructured ZnO for biosensing applications. Science Bulletin, 2013, 58, 2563-2566.	1.7	41
34	Extra green light induced ZnO ultraviolet lasing enhancement assisted by Au surface plasmons. Nanoscale, 2018, 10, 623-627.	5.6	41
35	Identification of visible emission from ZnO quantum dots: Excitation-dependence and size-dependence. Journal of Applied Physics, 2012, 111, 083521.	2.5	40
36	SERS-active ZnO/Ag hybrid WGM microcavity for ultrasensitive dopamine detection. Applied Physics Letters, 2016, 109, .	3.3	40

#	Article	IF	CITATIONS
37	Interface control for pure ultraviolet electroluminescence from nano-ZnO-based heterojunction devices. Science Bulletin, 2018, 63, 38-45.	9.0	40
38	Singleâ€Crystal ZnO/AlN Core/Shell Nanowires for Ultraviolet Emission and Dualâ€Color Ultraviolet Photodetection. Advanced Optical Materials, 2019, 7, 1801522.	7.3	40
39	Control mechanism behind broad fluorescence from violet to orange in ZnO quantum dots. CrystEngComm, 2013, 15, 977-981.	2.6	39
40	Plasmon-Induced Accelerated Exciton Recombination Dynamics in ZnO/Ag Hybrid Nanolasers. ACS Photonics, 2017, 4, 2419-2424.	6.6	38
41	Growth and spectral analysis of ZnO nanotubes. Journal of Applied Physics, 2008, 103, 094303.	2.5	37
42	Self-Assembled Growth of Ultrastable CH ₃ NH ₃ PbBr ₃ Perovskite Milliwires for Photodetectors. ACS Applied Materials & Samp; Interfaces, 2018, 10, 25763-25769.	8.0	37
43	Ultraviolet electroluminescence from horizontal ZnO microrods/GaN heterojunction light-emitting diode array. Applied Physics Letters, 2012, 101, 041110.	3.3	36
44	Plasmon coupled Fabry-Perot lasing enhancement in graphene/ZnO hybrid microcavity. Scientific Reports, 2015, 5, 9263.	3.3	36
45	Temperature-dependent photoluminescence properties of mixed-cation methylammoniumâ€"formamidium lead iodide [HC(NH ₂) ₂] _{Pbl_{ac/sub>3}]_{1â^'x}Pbl<subperovskite 12057-12061.<="" 2017.="" 5.="" c.="" chemistry="" lournal="" materials="" nanostructures,="" of="" td=""><td>นชิ้>⁵3<td>36</td></td></subperovskite>}	นชิ้> ⁵ 3 <td>36</td>	36
46	Inhomogeneous Trap-State-Mediated Ultrafast Photocarrier Dynamics in CsPbBr ₃ Microplates. ACS Applied Materials & Samp; Interfaces, 2021, 13, 6820-6829.	8.0	34
47	Localized Surface Plasmon Resonanceâ€Enhanced Twoâ€Photon Excited Ultraviolet Emission of Auâ€Decorated ZnO Nanorod Arrays. Advanced Optical Materials, 2013, 1, 940-945.	7.3	33
48	A novel ultra-thin-walled ZnO microtube cavity supporting multiple optical modes for bluish-violet photoluminescence, low-threshold ultraviolet lasing and microfluidic photodegradation. NPG Asia Materials, 2017, 9, e442-e442.	7.9	33
49	Dual functional NaYF ₄ :Yb ³⁺ , Er ³⁺ @NaYF ₄ :Yb ³⁺ , Nd ³⁺ core–shell nanoparticles for cell temperature sensing and imaging. Nanotechnology, 2018, 29, 094001.	2.6	33
50	Single-mode ultraviolet whispering gallery mode lasing from a floating GaN microdisk. Optics Letters, 2018, 43, 647.	3.3	33
51	Dimerization effect of fluorene-based semiconductors on conformational planarization for microcrystal lasing. Journal of Materials Chemistry C, 2017, 5, 5345-5355.	5.5	32
52	Dynamic regulating of single-mode lasing in ZnO microcavity by piezoelectric effect. Materials Today, 2019, 24, 33-40.	14.2	32
53	A Bright and Stable Violet Carbon Dot Lightâ€Emitting Diode. Advanced Optical Materials, 2020, 8, 2000239.	7.3	30
54	Unveiling the Effects of Interchain Hydrogen Bonds on Solution Gelation and Mechanical Properties of Diarylfluorene-Based Semiconductor Polymers. Research, 2020, 2020, 3405826.	5.7	29

#	Article	IF	CITATIONS
55	Supramolecular Polymer–Molecule Complexes as Gain Media for Ultraviolet Lasers. ACS Macro Letters, 2016, 5, 967-971.	4.8	28
56	Unidirectional ultraviolet whispering gallery mode lasing from floating asymmetric circle GaN microdisk. Applied Physics Letters, 2017, 111 , .	3.3	25
57	Conformational Effect of Polymorphic Terfluorene on Photophysics, Crystal Morphologies, and Lasing Behaviors. Journal of Physical Chemistry C, 2017, 121, 14803-14810.	3.1	25
58	Plasmon enhancement for Vernier coupled single-mode lasing from ZnO/Pt hybrid microcavities. Nano Research, 2017, 10, 3447-3456.	10.4	25
59	A core@dual-shell nanorod array with a cascading band configuration for enhanced photocatalytic properties and anti-photocorrosion. Journal of Materials Chemistry A, 2020, 8, 3726-3734.	10.3	25
60	Photoelectrochemical response to glutathione in Au-decorated ZnO nanorod array. Journal of Materials Chemistry C, 2019, 7, 5624-5629.	5.5	24
61	Synergistic graphene/aluminum surface plasmon coupling for zinc oxide lasing improvement. Nano Research, 2017, 10, 1996-2004.	10.4	23
62	Electro-pumped whispering gallery mode ZnO microlaser array. Applied Physics Letters, 2015, 106, 021111.	3.3	22
63	Three-Dimensional Core–Shell Nanorod Arrays for Efficient Visible-Light Photocatalytic H ₂ Production. ACS Applied Materials & Interfaces, 2018, 10, 35184-35193.	8.0	22
64	Whispering-Gallery Mode Lasing in a Floating GaN Microdisk with a Vertical Slit. Scientific Reports, 2020, 10, 253.	3.3	22
65	Improved Whispering-Gallery Mode Lasing of ZnO Microtubes Assisted by the Localized Surface Plasmon Resonance of Au Nanoparticles. Science of Advanced Materials, 2015, 7, 1156-1162.	0.7	22
66	ZIF-8 Coupling with Reduced Graphene Oxide to Enhance the Electrochemical Sensing of Dopamine. Journal of the Electrochemical Society, 2021, 168, 116517.	2.9	21
67	Lasing mode evolution and regulation of the perovskite CH ₃ NH ₃ PbBr ₃ . Journal of Materials Chemistry C, 2017, 5, 9238-9241.	5.5	19
68	Femtomolar response of a plasmon-coupled ZnO/graphene/silver hybrid whispering-gallery mode microcavity for SERS sensing. Journal of Materials Chemistry C, 2019, 7, 2710-2716.	5.5	19
69	Graphene induced high-Q hybridized plasmonic whispering gallery mode microcavities. Optics Express, 2014, 22, 23836.	3.4	18
70	A facile preparation route for highly conductive borate cross-linked reduced graphene oxide paper. New Journal of Chemistry, 2015, 39, 6907-6913.	2.8	17
71	Hydrogen-bonded-assisted supramolecular microwires for pure violet lasers: benefits of preventing intermolecular π–π stacking and aggregation in single crystals. Materials Chemistry Frontiers, 2018, 2, 2307-2312.	5.9	17
72	Temporally Resolving Synchronous Degenerate and Nondegenerate Twoâ€Photon Absorption in 2D Semiconducting Monolayers. Laser and Photonics Reviews, 2019, 13, 1800225.	8.7	17

#	Article	IF	CITATIONS
73	Synthesis of Large-Area Uniform MoS ₂ â€"WS ₂ Lateral Heterojunction Nanosheets for Photodetectors. ACS Applied Nano Materials, 2021, 4, 5522-5530.	5. 0	17
74	Surface plasmons promoted single-mode polariton lasing in a subwavelength ZnO nanowire. Nano Energy, 2020, 78, 105202.	16.0	16
75	Sulfate-Functionalized Core–Shell ZnO/CdS/Ag ₂ S Nanorod Arrays with Dual-Charge-Transfer Channels for Enhanced Photoelectrochemical Performance. ACS Applied Energy Materials, 2022, 5, 6228-6237.	5.1	16
76	Ultraviolet electroluminescence from n-ZnO/i-MgO/p+-GaN heterojunction light-emitting diodes fabricated by RF-magnetron sputtering. Applied Physics B: Lasers and Optics, 2012, 109, 195-199.	2.2	15
77	Controllable Fabrication of ZnO Microspheres for Whispering Gallery Mode Microcavity. Crystal Growth and Design, 2018, 18, 5279-5286.	3.0	15
78	CsPbBr ₃ interconnected microwire structure: temperature-related photoluminescence properties and its lasing action. Journal of Materials Chemistry C, 2019, 7, 10454-10459.	5.5	15
79	Green emission and Ag ⁺ sensing of hydroxy double salt supported gold nanoclusters. Nanoscale, 2016, 8, 5120-5125.	5.6	14
80	Lasing behaviors in solution processed all-inorganic CsPbBr3 perovskite microsized crystals. Optics Communications, 2019, 453, 124354.	2.1	14
81	Plasmon-mediated exciton–phonon coupling in a ZnO microtower cavity. Journal of Materials Chemistry C, 2016, 4, 7718-7723.	5.5	13
82	Structure Evolution of CH ₃ NH ₃ PbBr ₃ Single Crystal Grown in <i>N</i> , <i>N</i> , 2018, 18, 3132-3137.	3.0	13
83	Optical performance improvement in hydrothermal ZnO/graphene structures for ultraviolet lasing. Journal of Materials Chemistry C, 2018, 6, 3240-3244.	5.5	13
84	Double-triangular whispering-gallery mode lasing from a hexagonal GaN microdisk grown on graphene. Journal of Materials Science and Technology, 2020, 53, 140-145.	10.7	13
85	Nano-buffer controlled electron tunneling to regulate heterojunctional interface emission. Opto-Electronic Advances, 2021, 4, 200064-200064.	13.3	13
86	Long-Range Ordered Hierarchical Structure Assisted by the Side-Oligoether Network in Light-Emitting Conjugated Polymer for an Efficient Deep-Blue Organic Laser. Chemistry of Materials, 2021, 33, 5326-5336.	6.7	13
87	Structure evolution of Zn cluster on graphene for ZnO nanostructure growth. Journal of Applied Physics, 2011, 109, .	2.5	12
88	<i>In situ</i> synthesis of Ag nanoparticles-graphene oxide nanocomposites with strong SERS activity. Materials Research Express, 2018, 5, 015034.	1.6	12
89	A Bioâ€Inspired Molecular Design Strategy toward 2D Organic Semiconductor Crystals with Superior Integrated Optoelectronic Properties. Small, 2021, 17, e2102060.	10.0	12
90	Exciton photoluminescence of CsPbBr ₃ @SiO ₂ quantum dots and its application as a phosphor material in light-emitting devices. Optical Materials Express, 2020, 10, 1007.	3.0	12

#	Article	IF	Citations
91	Interface design for electrically pumped ultraviolet nanolaser from single ZnO-nanorod. Nano Energy, 2022, 93, 106832.	16.0	12
92	Multi-photon induced ultraviolet emission from hexagram-shaped ZnO nanorods. Applied Physics A: Materials Science and Processing, 2009, 95, 381-385.	2.3	11
93	Welding of gold nanowires with different joining procedures. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	11
94	Dual-band Fabry-Perot lasing from single ZnO microbelt. Optical Materials, 2016, 60, 366-372.	3.6	11
95	Interfacial Control of ZnO Microrod for Whispering Gallery Mode Lasing. ACS Photonics, 2018, 5, 2313-2319.	6.6	11
96	Ultraviolet lasing in Zn-rich ZnO microspheres fabricated by laser ablation. Nanoscale, 2018, 10, 17852-17857.	5.6	11
97	Underlying mechanism of blue emission enhancement in Au decorated p-GaN film. RSC Advances, 2017, 7, 15071-15076.	3.6	10
98	Plasmon-coupled microcavity aptasensors for visual and ultra-sensitive simultaneous detection of Staphylococcus aureus and Escherichia coli. Analytical and Bioanalytical Chemistry, 2020, 412, 8117-8126.	3.7	10
99	Thermal Quenching and Antiquenching of Photoluminescence in Solution-Grown Cs ₄ PbBr ₆ Perovskite Single Crystals. Journal of Physical Chemistry C, 2021, 125, 11278-11284.	3.1	10
100	Spatiotemporal sectioning of two-photon fluorescence ellipsoid with a CsPbBr3 nanosheet. Nano Research, 2021, 14, 4288-4293.	10.4	10
101	Comparative investigation on decorating carbon nanotubes withÂdifferent transition metals. Applied Physics A: Materials Science and Processing, 2011, 102, 333-337.	2.3	9
102	Photoluminescence and Two-Photon Lasing of ZnO:Sn Microdisks. Journal of Physical Chemistry C, 2014, 118, 14542-14547.	3.1	9
103	Rücktitelbild: Tripleâ€Mode Emission of Carbon Dots: Applications for Advanced Antiâ€Counterfeiting (Angew. Chem. 25/2016). Angewandte Chemie, 2016, 128, 7384-7384.	2.0	9
104	Two Photon–Pumped Whisperingâ€Gallery Mode Lasing and Dynamic Regulation. Advanced Science, 2019, 6, 1900916.	11.2	9
105	Detachable surface plasmon substrate to enhance CH3NH3PbBr3 lasing. Optics Communications, 2019, 452, 400-404.	2.1	9
106	Realization of self-powered bidirectional photoresponse in the ultraviolet/visible wavelength region in ferroelectric heterojunctions. Applied Physics Letters, 2022, 120, .	3.3	9
107	Synergistic SERS enhancement and <i>in situ</i> monitoring of photocatalytic reactions in a plasmonic metal/ferroelectric hybrid system by the light-induced pyroelectric effect. Journal of Materials Chemistry A, 2022, 10, 14078-14089.	10.3	9
108	Optical and Exciton Dynamical Properties of a Screw-Dislocation-Driven ZnO:Sn Microstructure. ACS Applied Materials & District Screws (2015), 7, 12655-12662.	8.0	8

7

#	Article	IF	CITATIONS
109	Symmetrical Bi-Heterojunction Alternating Current Ultraviolet Light-Emitting Diode. IEEE Electron Device Letters, 2020, 41, 252-255.	3.9	8
110	Dynamics of interfacial carriers and negative photoconductance in CH3NH3PbBr3-ZnO heterostructure. Applied Physics Letters, 2021, 118, .	3.3	8
111	Wide-bandgap organic nanocrystals with high mobility and tunable lasing emission. Journal of Materials Chemistry C, 2021, 9, 3171-3176.	5.5	8
112	Full-Spectrum Analysis of Perovskite-Based Surface Plasmon Nanolasers. Nanoscale Research Letters, 2020, 15, 66.	5.7	8
113	Growth mechanism and multiphoton-induced photoluminescence of crownlike zinc oxide. Journal of Materials Science, 2011, 46, 1877-1883.	3.7	7
114	Simulation on initial growth stages of graphene on Pt (111) surface. Journal of Applied Physics, 2012, 111, .	2.5	7
115	Energy band modification for UV photoresponse improvement in a ZnO microrod-quantum dot structure. RSC Advances, 2016, 6, 687-691.	3.6	7
116	Efficient red up-conversion emission from Er3+-Yb3+ co-doped rubidium lead iodide perovskite nanowires with surface plasmons. Applied Physics Letters, 2018, 112, .	3.3	7
117	Floating GaN whispering gallery mode micro-ring lasing with Burstein–Moss effect. AIP Advances, 2020, 10, .	1.3	7
118	Plasmon–exciton coupling dynamics and plasmonic lasing in a core–shell nanocavity. Nanoscale, 2021, 13, 6780-6785.	5.6	7
119	In Situ and Quantitative Vapor/Solid Anion Exchange for Composition Regulation and Optical Properties of Perovskites. Advanced Optical Materials, 2021, 9, 2002186.	7.3	7
120	Thickness-dependent ultrafast charge-carrier dynamics and coherent acoustic phonon oscillations in mechanically exfoliated PdSe ₂ flakes. Physical Chemistry Chemical Physics, 2021, 23, 20666-20674.	2.8	7
121	Scaling Laws for Perovskite Nanolasers With Photonic and Hybrid Plasmonic Modes. Advanced Optical Materials, 2022, 10, .	7.3	7
122	Low threshold lasing from novel thulium-incorporated C(NH2)3PbI3 perovskite thin films in Fabry–Pérot resonator. Journal of Materials Chemistry C, 2018, 6, 12537-12546.	5.5	6
123	Highly Emissive Hierarchical Uniform Dialkylfluorene-Based Dimer Microcrystals for Ultraviolet Organic Laser. Journal of Physical Chemistry C, 2019, 123, 28881-28886.	3.1	6
124	Diastereoisomerâ€Induced Morphology Tunable Selfâ€Assembled Organic Microcrystals of Conjugated Molecules for Ultraviolet Laser. Advanced Materials Interfaces, 2020, 7, 1902057.	3.7	6
125	Current-Induced Thermal Tunneling Electroluminescence in a Single Highly Compensated Semiconductor Microrod. IScience, 2020, 23, 101210.	4.1	6
126	Enhanced emission in organic nanocrystals <i>via</i> asymmetrical design of spirocyclic aromatic hydrocarbons. Nanoscale, 2020, 12, 9964-9968.	5 . 6	6

#	Article	IF	Citations
127	Spontaneous Radiation Amplification in a Microsphereâ€Coupled CsPbBr ₃ Perovskite Vertical Structure. Advanced Optical Materials, 2021, 9, 2001932.	7.3	6
128	Thermal-Assisted UV-Photon Irradiation to Improve Crystallization and Luminescence Efficiency of ZnO. IEEE Transactions on Electron Devices, 2021, 68, 3283-3289.	3.0	6
129	Unraveling the synergetic mechanism of physisorption and chemisorption in laser-irradiated monolayer WS2. Nano Research, 2021, 14, 4274-4280.	10.4	6
130	Surface plasmon coupling regulated CsPbBr ₃ perovskite lasers in a metalâ€"insulatorâ€"semiconductor structure. RSC Advances, 2021, 11, 37218-37224.	3.6	6
131	Current-induced thermal tunneling electroluminescence <i>via</i> multiple donor–acceptor-pair recombination. Journal of Materials Chemistry C, 2021, 9, 1174-1182.	5.5	5
132	Crystallizationâ€Enhanced Stability by Effectively Suppressing Photooxidation Defect for Optoelectronic Devices. Advanced Materials Interfaces, 2022, 9, .	3.7	5
133	High-quality all-inorganic CsPbBr ₃ single crystals prepared by a facile one-step solution growth method. RSC Advances, 2022, 12, 14838-14843.	3.6	5
134	Strategies to Improve Field Emission Performance of Nanostructural ZnO. Journal of Electronic Materials, 2007, 36, 543-548.	2.2	4
135	Hybrid single/poly-crystalline ZnO nanoawl arrays: facile synthesis and enhanced field emission properties. RSC Advances, 2012, 2, 11601.	3.6	4
136	Brightness improvement in a graphene inserted GaN/ZnO heterojunction light emitting diode. Journal Physics D: Applied Physics, 2019, 52, 395104.	2.8	4
137	Dynamical tuning for single mode whispering gallery mode microcavity lasing. Optics Communications, 2021, 485, 126688.	2.1	4
138	Electrically driven optical resonance of spherical ZnO whispering gallery mode microcavity. Applied Physics Letters, 2021, 119, .	3.3	4
139	Dynamic regulating of lasing mode in a whispering-gallery microresonator by thermo-optic effect. Applied Physics Letters, 2021, 119, .	3.3	4
140	Photoelectric dual-mode strain sensing based on piezoelectric effect. Journal of Luminescence, 2021, 238, 118237.	3.1	4
141	Lasing behavior modulation in a layered cylindrical microcavity. Applied Physics B: Lasers and Optics, 2015, 118, 93-100.	2.2	3
142	Asymmetric Molecular Conformation of Steric Terfluorene toward Constructing Polyhedral Microcrystals for Deep-Blue Lasers. Journal of Physical Chemistry C, 2019, 123, 10000-10006.	3.1	3
143	Ultra-strong mode confinement at semishell metal/insulator/semiconductor interface for nanolaser. Journal of Luminescence, 2021, 238, 118242.	3.1	3
144	Crescent-shaped shadow of second harmonic generation in dielectric microsphere/TMD monolayer heterostructure. Journal Physics D: Applied Physics, 2022, 55, 325301.	2.8	3

#	Article	IF	CITATIONS
145	Manganese ion-assisted assembly of superparamagnetic graphene oxide microbowls. Applied Physics Letters, 2014, 104, 121602.	3.3	2
146	Study on the fluorescence quenching of ZnO by graphene oxide. Optoelectronics Letters, 2016, 12, 35-38.	0.8	1
147	Dual-band lasing from ZnO/CsPbBr ₃ core/shell microcavity. Journal Physics D: Applied Physics, 2019, 52, 505101.	2.8	1
148	Water-Recycled Perovskite for White Light-Emitting Diodes. Journal of Physical Chemistry C, 2021, 125, 10605-10610.	3.1	1
149	Electroâ€Optic Effect of ZnO Microcavity and Active Dynamic Lasing Mode Modulation. Advanced Optical Materials, 0, , 2201080.	7.3	1
150	Shallow trap mediated temperature-dependent exciton and Mn ²⁺ photoluminescence in CsPbCl ₃ :Mn ²⁺ nanocrystals. Journal of Applied Physics, 2022, 132, 035102.	2.5	1
151	Spontaneous Radiation Amplification in a Microsphereâ€Coupled CsPbBr ₃ Perovskite Vertical Structure (Advanced Optical Materials 6/2021). Advanced Optical Materials, 2021, 9, 2170023.	7.3	0
152	10.1063/5.0062761.1., 2021, , .		0