Mussa Quareshy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1492912/publications.pdf

Version: 2024-02-01

687363 713466 21 550 13 21 citations h-index g-index papers 24 24 24 981 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Lightâ€Activated Electron Transfer and Catalytic Mechanism of Carnitine Oxidation by Rieskeâ€Type Oxygenase from Human Microbiota. Angewandte Chemie - International Edition, 2021, 60, 4529-4534.	13.8	9
2	Structural basis of carnitine monooxygenase CntA substrate specificity, inhibition, and intersubunit electron transfer. Journal of Biological Chemistry, 2021, 296, 100038.	3.4	15
3	Lightâ€Activated Electron Transfer and Catalytic Mechanism of Carnitine Oxidation by Rieskeâ€√ype Oxygenase from Human Microbiota. Angewandte Chemie, 2021, 133, 4579-4584.	2.0	1
4	A novel class of sulfur-containing aminolipids widespread in marine roseobacters. ISME Journal, 2021, 15, 2440-2453.	9.8	8
5	Seedling developmental defects upon blocking CINNAMATEâ€4â€HYDROXYLASE are caused by perturbations in auxin transport. New Phytologist, 2021, 230, 2275-2291.	7.3	27
6	A novel ATP dependent dimethylsulfoniopropionate lyase in bacteria that releases dimethyl sulfide and acryloyl-CoA. ELife, 2021, 10, .	6.0	38
7	A Glycolipid Glycosyltransferase with Broad Substrate Specificity from the Marine Bacterium " <i>Candidatus</i> Pelagibacter sp.―Strain HTCC7211. Applied and Environmental Microbiology, 2021, 87, e0032621.	3.1	2
8	Beyond oil degradation: enzymatic potential of <i>Alcanivorax</i> to degrade natural and synthetic polyesters. Environmental Microbiology, 2020, 22, 1356-1369.	3.8	53
9	The non-swapped monomeric structure of the arginine-binding protein from <i>Thermotoga maritima</i> . Acta Crystallographica Section F, Structural Biology Communications, 2019, 75, 707-713.	0.8	5
10	Pinstatic Acid Promotes Auxin Transport by Inhibiting PIN Internalization. Plant Physiology, 2019, 180, 1152-1165.	4.8	21
11	Auxin molecular field maps define <scp>AUX</scp> 1 selectivity: many auxin herbicides are not substrates. New Phytologist, 2018, 217, 1625-1639.	7.3	24
12	A cheminformatics review of auxins as herbicides. Journal of Experimental Botany, 2018, 69, 265-275.	4.8	36
13	Methodological considerations for the identification of choline and carnitine-degrading bacteria in the gut. Methods, 2018, 149, 42-48.	3.8	34
14	Manganese Is Essential for PlcP Metallophosphoesterase Activity Involved in Lipid Remodeling in Abundant Marine Heterotrophic Bacteria. Applied and Environmental Microbiology, 2018, 84, .	3.1	12
15	Jasmonic Acid Inhibits Auxin-Induced Lateral Rooting Independently of the CORONATINE INSENSITIVE1 Receptor. Plant Physiology, 2018, 177, 1704-1716.	4.8	48
16	Arabidopsis WRKY50 and TGA Transcription Factors Synergistically Activate Expression of PR1. Frontiers in Plant Science, 2018, 9, 930.	3.6	92
17	The Tetrazole Analogue of the Auxin Indole-3-acetic Acid Binds Preferentially to TIR1 and Not AFB5. ACS Chemical Biology, 2018, 13, 2585-2594.	3.4	13
18	cis-Cinnamic Acid Is a Novel, Natural Auxin Efflux Inhibitor That Promotes Lateral Root Formation. Plant Physiology, 2017, 173, 552-565.	4.8	61

#	Article	IF	CITATIONS
19	Assaying Auxin Receptor Activity Using SPR Assays with F-Box Proteins and Aux/IAA Degrons. Methods in Molecular Biology, 2017, 1497, 159-191.	0.9	9
20	The allelochemical MDCA inhibits lignification and affects auxin homeostasis. Plant Physiology, 2016, 172, pp.01972.2015.	4.8	14
21	Tomographic docking suggests the mechanism of auxin receptor TIR1 selectivity. Open Biology, 2016, 6, 160139.	3.6	24