Ayhan Bozkurt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1492677/publications.pdf

Version: 2024-02-01

173 papers 3,275 citations

147801 31 h-index 223800 46 g-index

174 all docs

174 docs citations

times ranked

174

2880 citing authors

#	Article	IF	Citations
1	Redox active polymer metal chelates for use in flexible symmetrical supercapacitors: Cobalt-containing poly(acrylic acid) polymer electrolytes. Journal of Energy Chemistry, 2021, 55, 145-153.	12.9	54
2	Synthesis of manganese (IV) oxide at activated carbon on reduced graphene oxide sheets via laser irradiation technique for organic binder-free electrodes in flexible supercapacitors. Ceramics International, 2021, 47, 7416-7424.	4.8	9
3	Calibration-Free CMOS Capacitive Sensor for Life Science Applications. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-12.	4.7	8
4	Vertical cavity capacitive transducer. Journal of the Acoustical Society of America, 2021, 149, 2137-2144.	1.1	2
5	A Programmable Low-Power, Low-Noise Front-End Channel in 0.35- Âμm CMOS for CdZnTe Detectors. , 2021, , .		1
6	Novel Polymer Nanocomposites Comprising Triazole Functional Silica for Dental Application. Silicon, 2020, 12, 109-116.	3.3	9
7	Alginate-guided size and morphology-controlled synthesis of MnO ₂ nanoflakes. Soft Materials, 2020, 18, 46-54.	1.7	11
8	Synthesis, characterization and supercapacitor application of ionic liquid incorporated nanocomposites based on SPSU/Silicon dioxide. Journal of Physics and Chemistry of Solids, 2020, 137, 109209.	4.0	18
9	Construction of symmetric supercapacitors using anhydrous electrolytes containing heterocyclic oligomeric structures. International Journal of Energy Research, 2020, 44, 3203-3214.	4.5	6
10	High-temperature symmetric supercapacitor applications of anhydrous gel electrolytes including doped triazole terminated flexible spacers. Journal of Molecular Liquids, 2020, 301, 112400.	4.9	18
11	Molybdate incorporated poly(acrylic acid) electrolytes for use in quasi-solid state carbon based supercapacitors: Redox-active polychelates. Electrochimica Acta, 2020, 354, 136770.	5.2	32
12	Coronavirus diseases 2019: Current biological situation and potential therapeutic perspective. European Journal of Pharmacology, 2020, 886, 173447.	3.5	24
13	Bio-inspired redox mediated electrolyte for high performance flexible supercapacitor applications over broad temperature domain. Journal of Power Sources, 2020, 474, 228544.	7.8	47
14	Vorinostat-loaded titanium oxide nanoparticles (anatase) induce G2/M cell cycle arrest in breast cancer cells via PALB2 upregulation. 3 Biotech, 2020, 10, 407.	2.2	21
15	Symmetric Supercapacitor Application of Anhydrous Gel Electrolytes Comprising Doped Tetrazole Terminated Flexible Spacers. Macromolecular Research, 2020, 28, 1074-1081.	2.4	4
16	Design of Crosslinked Hydrogels Comprising Poly(Vinylphosphonic Acid) and Bis[2-(Methacryloyloxy)Ethyl] Phosphate as an Efficient Adsorbent for Wastewater Dye Removal. Nanomaterials, 2020, 10, 131.	4.1	21
17	Equivalent circuit for capacitive micromachined ultrasonic transducers to predict anti-resonances. Microsystem Technologies, 2020, 26, 3747-3752.	2.0	3
18	Design of highâ€performance flexible symmetric supercapacitors energized by redoxâ€mediated hydrogels including metalâ€doped acidic polyelectrolyte. International Journal of Energy Research, 2020, 44, 4309-4320.	4.5	12

#	Article	IF	CITATIONS
19	Titanium Oxide Nanoparticles Improve the Chemotherapeutic Action of Erlotinib in Liver Cancer Cells. Current Cancer Therapy Reviews, 2020, 16, 337-343.	0.3	2
20	Proton conductivity and structural properties of nanocomposites based on boehmite incorporated poly(vinlyphosphonic acid). Ionics, 2019, 25, 4831-4840.	2.4	2
21	The effects of focused ultrasound pulsation of nucleus accumbens in opioid-dependent rats. Journal of Theoretical Social Psychology, 2019, 29, 748-759.	1.9	2
22	Sulfonated Hollow Silica Spheres as Electrolyte Store/Release Agents: Highâ€Performance Supercapacitor Applications. Energy Technology, 2019, 7, 1900511.	3.8	32
23	Novel flexible Li-doped PEO/copolymer electrolytes for supercapacitor application. lonics, 2019, 25, 1773-1781.	2.4	33
24	Delivery of Conjugated Silicon Dioxide Nanoparticles Show Strong Anti-Proliferative Activities. Applied Biochemistry and Biotechnology, 2019, 189, 760-773.	2.9	11
25	Fabrication of Al ₂ O ₃ /ILâ€Based Nanocomposite Polymer Electrolytes for Supercapacitor Application. ChemistrySelect, 2019, 4, 5880-5887.	1.5	5
26	Aminotriazole functional silica incorporated BisGMA/TEGDMA resins as dental nanocomposites. Polymers and Polymer Composites, 2019, 27, 488-495.	1.9	6
27	A comparative study of various polyelectrolyte/nanocomposite electrode combinations in symmetric supercapacitors. International Journal of Hydrogen Energy, 2019, 44, 16099-16109.	7.1	33
28	Multistimuli-responsive magnetic assemblies. , 2019, , 155-193.		3
29	PMMA-Based Wafer-Bonded Capacitive Micromachined Ultrasonic Transducer for Underwater Applications. Micromachines, 2019, 10, 319.	2.9	4
30	Redoxâ€Mediated Poly(2â€acrylamidoâ€2â€methylâ€1â€propanesulfonic acid)/Ammonium Molybdate Hydrogels Highly Effective Flexible Supercapacitors. ChemElectroChem, 2019, 6, 2876-2882.	for 3.4	38
31	Synthesis, Characterization, and Swelling Behaviors of Poly(acrylic acid-co-acrylamide)/Pozzolan Superabsorbent Polymers. Journal of Polymers and the Environment, 2019, 27, 1086-1095.	5.0	8
32	Synthesis and Physical Properties of Proton Conducting Polymer Electrolytes Comprising PAM Cross-Linked Flexible Spacers. Macromolecular Research, 2019, 27, 713-719.	2.4	5
33	Boron-incorporated Sulfonated polysulfone/polyphosphoric acid electrolytes for supercapacitor application. Soft Materials, 2019, 17, 203-211.	1.7	14
34	An investigation of lithium ion conductivity of copolymers based on P(AMPSâ€coâ€PEGMA). Journal of Applied Polymer Science, 2019, 136, 47798.	2.6	4
35	Evaluation of acoustic-based particle separation methods. World Journal of Engineering, 2019, 16, 823-838.	1.6	4
36	Chitosan/hollow silica sphere nanocomposites for wound healing application. Journal of Materials Research, 2019, 34, 231-239.	2.6	13

3

#	Article	IF	Citations
37	Nanocomposites composed of sulfonated polysulfone/hexagonal boron nitride/ionic liquid for supercapacitor applications. Journal of Energy Storage, 2019, 21, 672-679.	8.1	45
38	A novel approach to produce monodisperse hollow pure silica spheres. Journal of Saudi Chemical Society, 2019, 23, 477-485.	5.2	3
39	Synthesis and Characterization of Novel Azole Functionalized Poly(glycidyl methacrylate)s for Antibacterial and Anticandidal Activity. Current Organic Synthesis, 2019, 16, 1002-1009.	1.3	2
40	Silicone-based composite materials simulate breast tissue to be used as ultrasonography training phantoms. Ultrasonics, 2018, 88, 9-15.	3.9	13
41	Synthesis and anhydrous proton conductivity of doped azole functional PGMA-hBN nano-flakes. Synthetic Metals, 2018, 241, 1-6.	3.9	8
42	Single Ion Conducting Blend Polymer Electrolytes Based on LiPAAOB and PPEGMA. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 1616-1623.	3.7	2
43	Single-ion conductivity enhancement for the composite polymer electrolytes based on Li(PVAOB)/PPEGMA for lithium-ion batteries. Ionics, 2018, 24, 1399-1405.	2.4	6
44	Synthesis of chitosan nanoparticles, chitosan-bulk, chitosan nanoparticles conjugated with glutaraldehyde with strong anti-cancer proliferative capabilities. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 1152-1161.	2.8	26
45	A novel power efficient asynchronous time difference of arrival indoor localization system using CC1101 radio transceivers. Microwave and Optical Technology Letters, 2017, 59, 550-555.	1.4	9
46	Integrated HIFU Drive System on a Chip for CMUT-Based Catheter Ablation System. IEEE Transactions on Biomedical Circuits and Systems, 2017, 11, 534-546.	4.0	22
47	Electrolyte loaded hexagonal boron nitride/polyacrylonitrile nanofibers for lithium ion battery application. Solid State Ionics, 2017, 309, 71-76.	2.7	38
48	Fabrication of High-Efficiency CMUTs With Reduced Parasitics Using Embedded Metallic Layers. IEEE Sensors Journal, 2017, 17, 4013-4020.	4.7	6
49	Design and evaluation of phased array transducers for deep brain stimulation in nucleus accumbens region of the rat brain. , 2017, , .		1
50	Design and evaluation of phased array transducers for deep brain stimulation in nucleus accumbens region of the rat brain. , 2017 , , .		1
51	Nano hexagonal boron nitride–Nafion composite membranes for proton exchange membrane fuel cells. Polymer Composites, 2016, 37, 422-428.	4.6	32
52	Mutual radiation impedance of circular CMUTs on a cylinder. , 2016, , .		1
53	A high frequency CMUT ring array for small spot size HIFU. , 2016, , .		0
54	Receive-Noise Analysis of Capacitive Micromachined Ultrasonic Transducers. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2016, 63, 1980-1987.	3.0	5

#	Article	IF	Citations
55	Ultrasonic transmittance of rat skull as a function of frequency. , 2016, , .		5
56	Synthesis and characterization of novel multifunctional polymer grafted hollow silica spheres. Journal of Materials Research, 2015, 30, 2408-2416.	2.6	7
57	Enhancing the Anhydrous Proton Conductivity of Sulfonated Polysulfone/Polyvinyl Phosphonic Acid Composite Membranes With Hexagonal Boron Nitride. International Journal of Polymeric Materials and Polymeric Biomaterials, 2015, 64, 683-689.	3.4	15
58	Preparation and characterization of hexagonal boron nitride and PAMPS-NMPA-based thin composite films and investigation of their membrane properties. Ionics, 2015, 21, 2871-2878.	2.4	13
59	Embedded sacrificial layers for CMUT fabrication. , 2015, , .		2
60	Enhancement of Anhydrous Proton Conductivity of Poly(vinylphosphonic) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 Physics, 2015, 216, 106-112.	547 Td (a 2.2	cid)–Poly(2 18
61	Investigation of perfluorinated proton exchange membranes prepared via a facile strategy of chemically combining poly(vinylphosphonic acid) with PVDF by means of poly(glycidyl methacrylate) grafts. Journal of Polymer Research, 2015, 22, 1.	2.4	15
62	Investigation of nanocomposite membranes based on crosslinked poly(vinyl alcohol)–sulfosuccinic acid ester and hexagonal boron nitride. Journal of Polymer Research, 2015, 22, 1.	2.4	28
63	Enhanced ionic conductivity in borate ester plasticized Polyacrylonitrile electrolytes for lithium battery application. Electrochimica Acta, 2015, 164, 108-113.	5.2	31
64	Novel composite polymer electrolyte membranes based on poly(vinyl phosphonic acid) and poly (5-(methacrylamido)tetrazole). Polymer Engineering and Science, 2015, 55, 260-269.	3.1	19
65	Nanocomposite polymer electrolytes comprising PVA-graft-PEGME/TiO ₂ for Li-ion batteries. Journal of Materials Research, 2014, 29, 625-632.	2.6	16
66	An integrated beamforming driver for CMUT based ultrasound catheter ablation system. , 2014, , .		0
67	Frequency optimization in high intensity focused ultrasound. , 2014, , .		3
68	Design of a driver IC for an ultrasound catheter ablation system. , 2014, , .		6
69	An Investigation of Proton Conductivity of Vinyltriazole-Grafted PVDF Proton Exchange Membranes Prepared via Photoinduced Grafting. Journal of Chemistry, 2014, 2014, 1-11.	1.9	6
70	Nanocomposite membranes based on sulfonated polysulfone and sulfated nano-titania/NMPA for proton exchange membrane fuel cells. Solid State Ionics, 2014, 255, 89-95.	2.7	34
71	Synthesis and proton conductivity studies of methacrylate/methacrylamideâ€based azole functional novel polymer electrolytes. Journal of Applied Polymer Science, 2014, 131, .	2.6	6
72	Investigation of proton conductivity of anhydrous proton exchange membranes prepared via grafting vinyltriazole onto alkaline-treated PVDF. Journal of Polymer Science Part A, 2014, 52, 1885-1897.	2.3	22

#	Article	IF	Citations
73	Novel anhydrous proton conducting copolymers of 1-vinyl-1,2,4-triazole and diisopropyl- <i>p</i> -vinylbenzyl phosphonate. Polymers for Advanced Technologies, 2014, 25, 191-195.	3.2	6
74	Preparation of Thin Films from New Azolic Copolymers and Investigation of Their Membrane Properties. Journal of Macromolecular Science - Pure and Applied Chemistry, 2014, 51, 420-434.	2.2	16
75	Investigation of proton conductivity of inorganic–organic hybrid membranes based on boronic acid and tetrazole. Journal of Polymer Research, 2014, 21, 1.	2.4	12
76	An investigation of proton conductivity of PVDF based 5-aminotetrazole functional polymer electrolyte membranes (PEMs) prepared via direct surface-initiated AGET ATRP of glycidyl methacrylate (GMA). Journal of Polymer Research, 2014, 21, 1.	2.4	15
77	Proton Conducting Copolymer Electrolytes Based on Vinyl Phosphonic Acid and 5â€(Methacrylamido)tetrazole. Macromolecular Chemistry and Physics, 2014, 215, 269-279.	2.2	18
78	Novel membranes based on poly(5â€(methacrylamido)tetrazole) and sulfonated polysulfone for proton exchange membrane fuel cells. Journal of Applied Polymer Science, 2014, 131, .	2.6	11
79	Synthesis of Polymer Electrolyte Membrane based on Acid-Base Complex Pair and Its Characteristics. Journal of Mathematical and Fundamental Sciences, 2014, 46, 50-61.	0.5	5
80	Protonâ€conducting blend membranes of crosslinked poly(vinyl alcohol)–sulfosuccinic acid ester and poly(1â€vinylâ€1,2,4â€triazole) for high temperature fuel cells. Polymer Engineering and Science, 2013, 53, 153-158.	3.1	14
81	Novel boron-containing triazole functional copolymers as anhydrous proton conductive membranes. Journal of Polymer Research, 2013, 20, 1.	2.4	5
82	Preparation of proton conducting membranes containing bifunctional titania nanoparticles. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	2
83	PEG crosslinked poly(vinylbenzene boronic acid) polymer electrolytes for Li-ion batteries. Current Applied Physics, 2013, 13, 1668-1673.	2.4	17
84	An investigation of proton conductivity of nanocomposite membranes based on sulfated nano-titania and polymer. Solid State Ionics, 2013, 239, 21-27.	2.7	7
85	5-(methacrylamido)tetrazole and vinyl triazole based copolymers as novel anhydrous proton conducting membranes. Journal of Polymer Research, 2013, 20, 1.	2.4	22
86	Synthesis and characterization of 1H-1,2,4-triazole functional polymer electrolyte membranes (PEMs) based on PVDF and 4-(chloromethyl)styrene via photoinduced grafting. Journal of Polymer Research, 2013, 20, 1.	2.4	8
87	Synthesis and proton conductivity of azole-substituted cyclic and polymeric phosphazenes. Polymer, 2013, 54, 2250-2256.	3.8	29
88	Synthesis and characterization of polymer electrolyte membranes based on PVDF and styrene via photoinduced grafting. Journal of Polymer Research, 2013, 20, 1.	2.4	33
89	Enhancing the Anhydrous Proton Conductivity of Boronic and Phosphonic Acid Functional Copolymers by Grafting With Flexible Spacers. Journal of Inorganic and Organometallic Polymers and Materials, 2013, 23, 846-854.	3.7	5
90	Proton-conducting blend membranes of Nafion/poly(vinylphosphonic acid) for proton exchange membrane fuel cells. Journal of Polymer Research, 2013, 20, 1.	2.4	23

#	Article	IF	CITATIONS
91	Indoor positioning based on global positioning system signals. Microwave and Optical Technology Letters, 2013, 55, 1091-1097.	1.4	27
92	Synthesis of Poly(1-vinyl-1,2,4-triazole) and Preparation of Proton Conducting Membrane for High Temperature Operation. Advanced Materials Research, 2013, 789, 294-299.	0.3	2
93	Sulfonated poly(vinyl alcohol)/triazole blends as anhydrous proton conducting membranes for polymer electrolyte membrane fuel cells. Journal of Materials Research, 2013, 28, 1458-1465.	2.6	8
94	Novel Inorganic Protonâ€Conducting Graft Copolymers Based on 4â€Vinyl Benzene Boronic Acid and Vinyl Phosphonic Acid. Macromolecular Chemistry and Physics, 2013, 214, 486-491.	2.2	7
95	Preparation of proton conducting membranes containing bifunctional titania nanoparticles. , 2012 , , $235-243$.		1
96	Nanocomposite polymer electrolyte membranes based on poly(vinylphosphonic acid)/TiO ₂ nanoparticles. Journal of Materials Research, 2012, 27, 3090-3095.	2.6	8
97	Optimization of operating frequency of acoustic transducers for obtaining maximum temperature in HIFU based therapeutic ablation. , 2012 , , .		3
98	Alternatives toward proton conductive anhydrous membranes for fuel cells: Heterocyclic protogenic solvents comprising polymer electrolytes. Progress in Polymer Science, 2012, 37, 1265-1291.	24.7	155
99	Controlling phosphonic acid substitution degree on proton conducting polyphosphazenes. Polymer, 2012, 53, 3659-3668.	3.8	24
100	Nanocomposite polymer electrolyte membranes based on poly (vinylphosphonic acid)/sulfated nano-titania. Journal of Power Sources, 2012, 217, 158-163.	7.8	40
101	High-power CMUTs: design and experimental verification. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2012, 59, 1276-1284.	3.0	30
102	PAMAM type dendritic electrolytes for lithium ion battery applications. Solid State Ionics, 2012, 226, 1-6.	2.7	6
103	Novel proton conductive hybrid membranes based on sulfonated polysulfone and benzotriazole. Journal of Materials Research, 2012, 27, 2650-2656.	2.6	11
104	Nanocomposite polymer electrolytes membranes based on Poly(vinylphosphonic acid)/SiO2. Journal of Polymer Research, 2012, 19, 1.	2.4	18
105	Fabrication and characterization of anhydrous polymer electrolyte membranes based on sulfonated poly(vinyl alcohol) and benzimidazole. Polymer Science - Series A, 2012, 54, 231-239.	1.0	2
106	Synthesis, characterization, and ionic conductivity of novel crosslinked polymer electrolytes for Liâ€ion batteries. Journal of Applied Polymer Science, 2012, 124, 1193-1199.	2.6	12
107	Synthesis and proton conductivity studies of azole functional organic electrolytes. Ionics, 2012, 18, 101-107.	2.4	8
108	An equivalent circuit model for transmitting capacitive micromachined ultrasonic transducers in collapse mode. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2011, 58, 1468-1477.	3.0	15

#	Article	IF	CITATIONS
109	Deep-collapse operation of capacitive micromachined ultrasonic transducers. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2011, 58, 2475-2483.	3.0	36
110	Azole substituted polyphosphazenes as nonhumidified proton conducting membranes. Journal of Materials Chemistry, 2011, 21, 1020-1027.	6.7	22
111	CMUT array element in deep-collapse mode. , 2011, , .		4
112	New type of anhydrous organic electrolyte based on carboxylic acid functional triazole as model system. Synthetic Metals, 2011, 161, 665-669.	3.9	8
113	Sol–gel synthesis of proton conductive tetrazole functional silane networks. Solid State Ionics, 2011, 199-200, 1-5.	2.7	7
114	Proton conducting composite membranes based on poly(1-vinyl-1,2,4-triazole) and nitrilotri (methyl) Tj ETQq0 0 0	O rgBT /Ov	verlock 10 Tf
115	Novel triazole functional sol–gel derived inorganic–organic hybrid networks as anhydrous proton conducting membranes. Polymer, 2011, 52, 4670-4675.	3.8	11
116	Proton conducting properties of ionically cross-linked poly(1-vinyl-1,2,4 triazole) and poly(2-acrylamido-2-methyl-1-propanesulfonic acid) electrolytes. Polymer Bulletin, 2011, 66, 1099-1110.	3.3	12
117	The synthesis and characterization of anhydrous proton conducting membranes based on sulfonated poly(vinyl alcohol) and imidazole. Journal of Membrane Science, 2011, 375, 157-164.	8.2	54
118	Synthesis and proton conductivity studies of 5â€aminotetrazoleâ€doped sulfonated polymer electrolyte membranes. Polymer Composites, 2011, 32, 1625-1632.	4.6	9
119	Entrapment of urease in poly(1â€vinyl imidazole)/poly(2â€acrylamidoâ€2â€methylâ€1â€propanesulfonic acid) network. Journal of Applied Polymer Science, 2011, 119, 1931-1939.	2.6	6
120	Proton conducting polymer blends from poly(2,5â€benzimidazole) and poly(2â€acrylamidoâ€2â€methylâ€1â€propanesulfonic acid). Journal of Applied Polymer Science, 2011, 120, 119	3 ² 198.	20
121	Proton conduction promoted by 1H-1,2,3-benzotriazole in non-humidified polymer membranes. Electrochimica Acta, 2011, 56, 5961-5965.	5.2	17
122	Inorganic–organic polymer electrolytes based on poly(vinyl alcohol) and borane/poly(ethylene) Tj ETQq0 0 0 rgl	BT_!Qverlo	ck 10 Tf 50
123	Design and implementation of capacitive micromachined ultrasonic transducers for high power., 2011,,.		O
124	Immobilization of urease in poly(1-vinyl imidazole)/poly(acrylic acid) network. Chemical Papers, 2010, 64, 1-7.	2.2	16
125	Synthesis and proton conductivity studies of doped azole functional polymer electrolyte membranes. Electrochimica Acta, 2010, 55, 8498-8503.	5.2	31
126	Proton conductivity properties of acid doped fluoroalkylated 1,2,3-triazole. Journal of Fluorine Chemistry, 2010, 131, 776-779.	1.7	8

#	Article	IF	CITATIONS
127	Blend membranes from poly(2,5-benzimidazole) and poly(styrene sulfonic acid) as proton-conducting polymer electrolytes for fuel cells. Journal of Materials Science, 2010, 45, 993-998.	3.7	23
128	Nafion/poly(1-vinyl-1,2,4-triazole) blends as proton conducting membranes for polymer electrolyte membrane fuel cells. Journal of Power Sources, 2010, 195, 7720-7726.	7.8	61
129	The synthesis and proton-conducting properties of the copolymers based on 1-vinyl-1,2,4-triazole and 2-acrylamido-2-methyl-1-propanesulfonic acid. Solid State Ionics, 2010, 181, 525-530.	2.7	10
130	Polymer electrolytes based on the doped comb-branched copolymers for Li-ion batteries. Solid State lonics, 2010, 181, 987-993.	2.7	12
131	Dielectric and proton conductivity studies in organic electrolytes based on 2-perfluoroalkyl-ethyl-azides. Current Applied Physics, 2010, 10, 133-137.	2.4	4
132	Synthesis and proton conductivity studies of polystyreneâ€based triazole functional polymer membranes. Journal of Polymer Science Part A, 2010, 48, 4974-4980.	2.3	21
133	Polymer electrolyte membranes based on <i>p</i> àêtoluenesulfonic acid doped poly(1â€vinylâ€1,2,4â€triazole): Synthesis, thermal and proton conductivity properties. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 1016-1021.	2.1	16
134	Immobilization of Invertase in a Novel Proton Conducting Poly(vinylphosphonic acid) – poly(1-vinylimidazole) Network. Journal of Macromolecular Science - Pure and Applied Chemistry, 2010, 47, 639-646.	2.2	15
135	Bioinspired Blend Membranes Based on Adenine and Guanine Functional Poly(glycidyl methacrylate). Langmuir, 2010, 26, 13655-13661.	3.5	11
136	Optimizing CMUT geometry for high power. , 2010, , .		5
137	An equivalent circuit for collapse operation mode of CMUTs. , 2010, , .		O
138	Modeling the pulse-echo response of a 2D CMUT array element. , 2009, , .		1
139	Wafer bonded capacitive micromachined underwater transducers. , 2009, , .		12
140	Proton-conducting properties of the membranes based on poly(vinyl phosphonic acid) grafted poly(glycidyl methacrylate). Solid State Ionics, 2009, 180, 1240-1245.	2.7	35
141	Intrinsically proton-conducting poly(1-vinyl-1,2,4-triazole)/triflic acid blends. Electrochimica Acta, 2009, 54, 2957-2961.	5.2	50
142	Proton conductivity survey of the acid doped copolymers based on 4â€vinylbenzylboronic acid and 4(5)â€vinylimidazole. Journal of Polymer Science, Part B: Polymer Physics, 2009, 47, 1267-1274.	2.1	11
143	Proton conducting membranes based on Poly(2,5-benzimidazole) (ABPBI)–Poly(vinylphosphonic acid) blends for fuel cells. International Journal of Hydrogen Energy, 2009, 34, 2724-2730.	7.1	7 5
144	Development and characterization of polymer electrolyte membranes based on ionical cross-linked poly(1-vinyl-1,2,4 triazole) and poly(vinylphosphonic acid). Journal of Power Sources, 2009, 191, 442-447.	7.8	63

#	Article	IF	CITATIONS
145	Immobilizing cholesterol oxidase in chitosan–alginic acid network. Carbohydrate Polymers, 2009, 76, 430-436.	10.2	23
146	The Synthesis of Complex Polymer Electrolytes Based on Alginic Acid and Poly(1-vinylimidazole) and Application in Tyrosinase Immobilization. Polymer Journal, 2009, 41, 46-50.	2.7	7
147	l-lysine coated iron oxide nanoparticles: Synthesis, structural and conductivity characterization. Journal of Alloys and Compounds, 2009, 484, 371-376.	5.5	129
148	Preparation, Properties, and Characterization of Polymer Electrolyte Membranes Based on Poly(1-vinyl-1,2,4 triazole) and Poly(styrene sulfonic acid). Journal of the Electrochemical Society, 2009, 156, B1112.	2.9	24
149	Synthesis and NMR studies of the polymer membranes based on poly(4-vinylbenzylboronic acid) and phosphoric acid. Polymer, 2008, 49, 3859-3864.	3.8	26
150	Synthesis and proton conductivity of poly(styrene sulfonic acid)/heterocycle-based membranes. Polymer International, 2008, 57, 133-138.	3.1	42
151	Protonâ€Conducting Properties of Acidâ€Doped Poly(glycidyl methacrylate)â€1,2,4â€Triazole Systems. Macromolecular Chemistry and Physics, 2008, 209, 593-603.	2.2	46
152	Preparation and proton conductivity of acid-doped 5-aminotetrazole functional poly(glycidyl) Tj ETQq0 0 0 rgBT	/Oyerlock	10 Tf 50 462
153	Phosphoric acid-doped poly(1-vinyl-1,2,4-triazole) as water-free proton conducting polymer electrolytes. Solid State Ionics, 2008, 179, 683-688.	2.7	87
154	Anhydrous proton conducting membranes for PEM fuel cells based on Nafion/Azole composites. International Journal of Hydrogen Energy, 2008, 33, 2808-2815.	7.1	83
155	Preparation and Proton Conductivity of Polymer Electrolytes Based on Alginic Acid and 1,2,4-Triazole. Polymer Journal, 2008, 40, 104-108.	2.7	14
156	Preparation and the proton conductivity of chitosan/poly(vinyl phosphonic acid) complex polymer electrolytes. Journal of Non-Crystalline Solids, 2008, 354, 3637-3642.	3.1	70
157	Ultrasonic Phased Array Device for Acoustic Imaging in Air. IEEE Sensors Journal, 2008, 8, 1755-1762.	4.7	41
158	A lumped-circuit model for the radiation impedance of a circular piston in a rigid baffle. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2008, 55, 2046-2052.	3.0	17
159	Anhydrous proton-conducting properties of triazole–phosphonic acid copolymers: a combined study with MAS NMR. Physical Chemistry Chemical Physics, 2008, 10, 6058.	2.8	81
160	Ultrasonic phased array device for real-time acoustic imaging in air. , 2008, , .		7
161	Realization of a ROIC for 72×4 PV-IR detectors. , 2008, , .		3
162	Design of a 4.2–5.4 GHz differential LC VCO using 0.35 μm SiGe BiCMOS technology for IEEE 802.11a applications. International Journal of RF and Microwave Computer-Aided Engineering, 2007, 17, 243-251.	1.2	1

#	Article	IF	CITATIONS
163	Synthesis and proton conductivity of anhydrous dendritic electrolytes. Open Chemistry, 2007, 5, 546-556.	1.9	5
164	A Low Noise and Low Power, SiGe-BiCMOS LNA for IEEE 802.11a Applications. , 2006, , .		0
165	Low Noise Amplifier Design Using 0.35 & Description of the Bick Signal of the Company of the Com		4
166	Novel Conducting Polymer Electrolyte Biosensor Based on Poly(1-vinyl imidazole) and Poly(acrylic) Tj ETQq0 0 0	rgBT/Ove	erlock 10 Tf 50 42
167	Design of a 4.2-5.4 GHz Differential LC VCO using 0.35 ¿m SiGe BiCMOS Technology. , 2006, , .		O
168	The effects of polyelectrolytes on the inhibition and aggregation of calcium oxalate crystallization. Polymers for Advanced Technologies, 2006, 17, 58-65.	3.2	26
169	Dielectric and dynamic mechanical relaxations in polymer–heterocycle hybrid materials. Chemical Physics Letters, 2006, 422, 496-499.	2.6	9
170	An analytical design methodology for microelectromechanical (MEM) filters. Sensors and Actuators A: Physical, 2005, 119, 38-47.	4.1	11
171	Design of a front-end integrated circuit for 3D acoustic imaging using 2D CMUT arrays. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52, 2235-2241.	3.0	44
172	Performance comparison of state-of-the-art heterojunction bipolar devices (HBT) based on AlGaAs/GaAs, Si/SiGe and InGaAs/InP. Microelectronics Journal, 2004, 35, 901-908.	2.0	19
173	As an Alternative Membrane: Functional NanoParticles/Polymer Composites Membranes for Proton Exchange Membrane Fuel Cells (PEMFC). Advanced Materials Research, 0, 716, 98-102.	0.3	О