
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1492234/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Real-time measurement and preliminary analysis of debris-flow impact force at Jiangjia Ravine, China. Earth Surface Processes and Landforms, 2011, 36, 1268-1278.	1.2	127
2	Characteristics and triggering mechanism of Xinmo landslide on 24 June 2017 in Sichuan, China. Journal of Mountain Science, 2017, 14, 1689-1700.	0.8	79
3	Jiangjia Ravine debris flows in south-western China. , 2005, , 565-594.		70
4	Age and extent of a giant glacial-dammed lake at Yarlung Tsangpo gorge in the Tibetan Plateau. Geomorphology, 2015, 246, 370-376.	1.1	68
5	Outburst floods in China: A review. Earth-Science Reviews, 2019, 197, 102895.	4.0	67
6	Assessment of debris-flow potential dangers in the Jiuzhaigou Valley following the August 8, 2017, Jiuzhaigou earthquake, western China. Engineering Geology, 2019, 256, 57-66.	2.9	61
7	Prediction of debris-flow danger area by combining hydrological and inundation simulation methods. Journal of Mountain Science, 2011, 8, 1-9.	0.8	58
8	Landslides and dammed lakes triggered by the 2017 Ms6.9 Milin earthquake in the Tsangpo gorge. Landslides, 2019, 16, 993-1001.	2.7	57
9	A depthâ€averaged twoâ€phase model for debris flows over erodible beds. Earth Surface Processes and Landforms, 2018, 43, 817-839.	1.2	45
10	Assessment of prospective hazards resulting from the 2017 earthquake at the world heritage site Jiuzhaigou Valley, Sichuan, China. Journal of Mountain Science, 2018, 15, 779-792.	0.8	45
11	Rainfall intensity–duration threshold and erosion competence of debris flows in four areas affected by the 2008 Wenchuan earthquake. Geomorphology, 2017, 282, 85-95.	1.1	43
12	Modelling roll waves with shallow water equations and turbulent closure. Journal of Hydraulic Research/De Recherches Hydrauliques, 2015, 53, 161-177.	0.7	38
13	New understandings of the June 24th 2017 Xinmo Landslide, Maoxian, Sichuan, China. Landslides, 2018, 15, 2465-2474.	2.7	35
14	Comparison of debris-flow volume and activity under different formation conditions. Natural Hazards, 2013, 67, 261-273.	1.6	32
15	Rainfall occurrence and its relation to flood damage in China from 2000 to 2015. Journal of Mountain Science, 2018, 15, 2492-2504.	0.8	29
16	A physics-based model to derive rainfall intensity-duration threshold for debris flow. Geomorphology, 2020, 351, 106930.	1.1	28
17	Characteristic rainfall for warning of debris flows. Journal of Mountain Science, 2010, 7, 207-214.	0.8	24
18	The establishment and influence of Baimakou paleo-dam in an upstream reach of the Yangtze River, southeastern margin of the Tibetan Plateau. Geomorphology, 2018, 321, 167-173.	1.1	24

??

#	Article	IF	CITATIONS
19	Relationships between debris flows and earth surface factors in Southwest China. Environmental Geology, 2008, 55, 619-627.	1.2	23
20	Measuring the internal velocity of debris flows using impact pressure detecting in the flume experiment. Journal of Mountain Science, 2011, 8, 109-116.	0.8	23
21	Susceptibility mapping of landslides in Beichuan County using cluster and MLC methods. Natural Hazards, 2014, 70, 755-766.	1.6	22
22	Quantitative assessment of the impact of earthquake-induced geohazards on natural landscapes in Jiuzhaigou Valley. Journal of Mountain Science, 2019, 16, 441-452.	0.8	22
23	Topographical and geological variation of effective rainfall for debris-flow occurrence from a large-scale perspective. Geomorphology, 2020, 358, 107134.	1.1	20
24	Morpho-sedimentary and stratigraphic characteristics of the 2000 Yigong River landslide dam outburst flood deposits, eastern Tibetan Plateau. Geomorphology, 2020, 367, 107293.	1.1	17
25	Characteristics of clustering debris flows in Wenchuan earthquake zone. Journal of Mountain Science, 2013, 10, 953-961.	0.8	16
26	A depth-averaged two-phase model for debris flows over fixed beds. International Journal of Sediment Research, 2018, 33, 462-477.	1.8	14
27	A quasi single-phase model for debris flows and its comparison with a two-phase model. Journal of Mountain Science, 2018, 15, 1071-1089.	0.8	14
28	Modelling the evolution of propagation and runout from a gravel–silty clay landslide to a debris flow in Shaziba, southwestern Hubei Province, China. Landslides, 2022, 19, 2199-2212.	2.7	14
29	Comprehensive Evaluation of Satelliteâ€Based Precipitation at Subâ€Daily Time Scales Over a Highâ€Profile Watershed with Complex Terrain. Earth and Space Science, 2019, 6, 2347-2361.	1.1	11
30	Two megafloods in the middle reach of Yarlung Tsangpo River since Last-glacial period: Evidence from giant bars. Global and Planetary Change, 2022, 208, 103726.	1.6	11
31	A hydrology-process based method for correlating debris flow density to rainfall parameters and its application on debris flow prediction. Journal of Hydrology, 2020, 589, 125124.	2.3	10
32	Comparison of rheometric devices for measuring the rheological parameters of debris flow slurry. Journal of Mountain Science, 2015, 12, 1125-1134.	0.8	9
33	Investigation of vertical velocity distribution in debris flows by PIV measurement. Geomatics, Natural Hazards and Risk, 2017, 8, 1631-1642.	2.0	8
34	Investments against flash floods and their effectiveness in China in 2000–2015. International Journal of Disaster Risk Reduction, 2019, 38, 101193.	1.8	8
35	Effects of bed longitudinal inflexion and sediment porosity on basal entrainment mechanism: insights from laboratory debris flows. Landslides, 2021, 18, 3041-3062.	2.7	8
36	Landscape change in response to multiperiod glacial debris flows in Peilong catchment, southeastern Tibet. Journal of Mountain Science, 2021, 18, 567-582.	0.8	8

??

#	Article	IF	CITATIONS
37	Annual risk assessment on high-frequency debris-flow fans. Natural Hazards, 2009, 49, 469-477.	1.6	7
38	Debris flow entrainment rates in non-uniform channels with convex and concave slopes. Journal of Hydraulic Research/De Recherches Hydrauliques, 2018, 56, 156-167.	0.7	7
39	Measuring internal velocity of debris flows by temporally correlated shear forces. Journal of Earth Science (Wuhan, China), 2012, 23, 373-380.	1.1	6
40	A debris-flow impact pressure model combining material characteristics and flow dynamic parameters. Journal of Mountain Science, 2018, 15, 2721-2729.	0.8	6
41	Experimental study of debris-flow entrainment over stepped-gradient beds incorporating bed sediment porosity. Engineering Geology, 2020, 274, 105708.	2.9	6
42	Quantitative multi-hazard risk assessment to buildings in the Jiuzhaigou valley, a world natural heritage site in Western China. Geomatics, Natural Hazards and Risk, 2022, 13, 193-221.	2.0	6
43	Broad valleys and barrier dams in upstream Brahmaputra efficiently retain Tibetan-sourced sediments: Evidence from palaeoflood records. Quaternary Science Reviews, 2022, 285, 107538.	1.4	6
44	Determination of the suspension competence of debris flows based on particle size analysis. International Journal of Sediment Research, 2014, 29, 73-81.	1.8	5
45	Experimental study of entrainment behavior of debris flow over channel inflexion points. Journal of Mountain Science, 2016, 13, 971-984.	0.8	5
46	Landslide Inventory along a National Highway Corridor in the Hissar-Allay Mountains, Central Tajikistan. GeoHazards, 2021, 2, 212-227.	0.8	5
47	Geomorphic effects of recurrent outburst superfloods in the Yigong River on the southeastern margin of Tibet. Scientific Reports, 2021, 11, 15577.	1.6	5
48	Spatial distribution of debris flow-prone catchments in Hengduan mountainous area in southwestern China. Arabian Journal of Geosciences, 2021, 14, 1.	0.6	5
49	Rapid changes in fluvial morphology in response to the high-energy Yigong outburst flood in 2000: Integrating channel dynamics and flood hydraulics. Journal of Hydrology, 2022, 612, 128199.	2.3	5
50	A grid-based physical model to analyze the stability of slope unit. Geomorphology, 2021, 391, 107887.	1.1	4
51	Multi-Hazard Chain Reaction Initiated by the 2020 Meilong Debris Flow in the Dadu River, Southwest China. Frontiers in Earth Science, 2022, 10, .	0.8	4
52	New Insights into Ice Avalanche-Induced Debris Flows in Southeastern Tibet Using SAR Technology. Remote Sensing, 2022, 14, 2603.	1.8	4
53	Energy Dissipation of Debris Flows over Stepped Gradients and Erodible Beds in Open Channel. Journal of Hydraulic Engineering, 2020, 146, 06020008.	0.7	3
54	Classification and sediment estimation for debris flow-prone catchments in the Parlung Zangbo Basin on the southeastern Tibet. Geomorphology, 2022, 413, 108348.	1.1	3

#	Article	IF	CITATIONS
55	Field observation of debris-flow activities in the initiation area of the Jiangjia Gully, Yunnan Province, China. Journal of Mountain Science, 2022, 19, 1602-1617.	0.8	3
56	Hack's law of debris-flow basins. International Journal of Sediment Research, 2009, 24, 74-87.	1.8	2
57	The properties of dilute debris flow and hyper-concentrated flow in different flow regimes in open channels. Journal of Mountain Science, 2017, 14, 1728-1738.	0.8	2
58	Quantitative Analysis of the Effects of an Earthquake on Rainfall Thresholds for Triggering Debris-Flow Events. Frontiers in Earth Science, 2021, 9, .	0.8	2
59	Hydro-climatic Characteristics of Yarlung Zangbo River Basin since the Last Glacial Maximum. Advances in Atmospheric Sciences, 2022, 39, 415-426.	1.9	2
60	Automatic identification of buildings vulnerable to debris flows in Sichuan Province, China, by <scp>GIS</scp> analysis and Deep Encoding Network methods. Journal of Flood Risk Management, 2022, 15, .	1.6	2
61	Recent two runoff-triggered debris flow events in Tibet Plateau, China. Landslides, 2022, 19, 2409-2422.	2.7	2
62	Assessment of Debris Flow Activity in Response to an Earthquake Using the Sediment Connectivity	0.8	1

Index. Frontiers in Earth Science, 0, 10, . 62