Huiqiao Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1492074/publications.pdf

Version: 2024-02-01

6233 11030 21,339 226 80 137 citations h-index g-index papers 238 238 238 22428 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Ordered Whiskerlike Polyaniline Grown on the Surface of Mesoporous Carbon and Its Electrochemical Capacitance Performance. Advanced Materials, 2006, 18, 2619-2623.	11.1	1,033
2	Reviving Lithiumâ€Metal Anodes for Nextâ€Generation Highâ€Energy Batteries. Advanced Materials, 2017, 29, 1700007.	11.1	908
3	Enhancing the performances of Li-ion batteries by carbon-coating: present and future. Chemical Communications, 2012, 48, 1201-1217.	2.2	832
4	Nâ€Doped Grapheneâ€5nO ₂ Sandwich Paper for Highâ€Performance Lithiumâ€lon Batteries. Advanced Functional Materials, 2012, 22, 2682-2690.	7.8	506
5	Ultrathin and Porous Ni ₃ S ₂ /CoNi ₂ S ₄ 3Dâ€Network Structure for Superhigh Energy Density Asymmetric Supercapacitors. Advanced Energy Materials, 2017, 7, 1700983.	10.2	498
6	Nano active materials for lithium-ion batteries. Nanoscale, 2010, 2, 1294.	2.8	492
7	Ultrathin SnSe ₂ Flakes Grown by Chemical Vapor Deposition for Highâ€Performance Photodetectors. Advanced Materials, 2015, 27, 8035-8041.	11.1	460
8	Centimeterâ€Long V ₂ O ₅ Nanowires: From Synthesis to Fieldâ€Emission, Electrochemical, Electrical Transport, and Photoconductive Properties. Advanced Materials, 2010, 22, 2547-2552.	11.1	359
9	Two-dimensional layered nanomaterials for gas-sensing applications. Inorganic Chemistry Frontiers, 2016, 3, 433-451.	3.0	306
10	Tunneling Diode Based on WSe ₂ /SnS ₂ Heterostructure Incorporating High Detectivity and Responsivity. Advanced Materials, 2018, 30, 1703286.	11.1	293
11	Largeâ€Size Growth of Ultrathin SnS ₂ Nanosheets and High Performance for Phototransistors. Advanced Functional Materials, 2016, 26, 4405-4413.	7.8	279
12	2D Layered Materialâ€Based van der Waals Heterostructures for Optoelectronics. Advanced Functional Materials, 2018, 28, 1706587.	7.8	279
13	Local Charge Distribution Engineered by Schottky Heterojunctions toward Urea Electrolysis. Advanced Energy Materials, 2018, 8, 1801775.	10.2	266
14	Emerging inâ€plane anisotropic twoâ€dimensional materials. InformaÄnÃ-Materiály, 2019, 1, 54-73.	8.5	247
15	A binder-free high silicon content flexible anode for Li-ion batteries. Energy and Environmental Science, 2020, 13, 848-858.	15.6	245
16	Doping engineering and functionalization of two-dimensional metal chalcogenides. Nanoscale Horizons, 2019, 4, 26-51.	4.1	238
17	Li ₃ VO ₄ : A Promising Insertion Anode Material for Lithiumâ€lon Batteries. Advanced Energy Materials, 2013, 3, 428-432.	10.2	225
18	2D GeP: An Unexploited Low‧ymmetry Semiconductor with Strong Inâ€Plane Anisotropy. Advanced Materials, 2018, 30, e1706771.	11.1	219

#	Article	IF	CITATIONS
19	Oneâ€Dimensional CdS Nanostructures: A Promising Candidate for Optoelectronics. Advanced Materials, 2013, 25, 3017-3037.	11.1	212
20	Chemical Vapor Deposition Synthesis of Ultrathin Hexagonal ReSe ₂ Flakes for Anisotropic Raman Property and Optoelectronic Application. Advanced Materials, 2016, 28, 8296-8301.	11.1	206
21	An Autotransferable g ₃ N ₄ Li ⁺ â€Modulating Layer toward Stable Lithium Anodes. Advanced Materials, 2019, 31, e1900342.	11.1	205
22	Largeâ€Area Bilayer ReS ₂ Film/Multilayer ReS ₂ Flakes Synthesized by Chemical Vapor Deposition for High Performance Photodetectors. Advanced Functional Materials, 2016, 26, 4551-4560.	7.8	199
23	Free-standing ultrathin lithium metal–graphene oxide host foils with controllable thickness for lithium batteries. Nature Energy, 2021, 6, 790-798.	19.8	198
24	Controlled Synthesis of Ultrathin 2D βâ€In ₂ S ₃ with Broadband Photoresponse by Chemical Vapor Deposition. Advanced Functional Materials, 2017, 27, 1702448.	7.8	194
25	A wood–polypyrrole composite as a photothermal conversion device for solar evaporation enhancement. Journal of Materials Chemistry A, 2019, 7, 20706-20712.	5.2	189
26	Large-scale synthesis of single-crystal hexagonal tungsten trioxide nanowires and electrochemical lithium intercalation into the nanocrystals. Journal of Solid State Chemistry, 2007, 180, 98-105.	1.4	186
27	Recent Progress on 2D Nobleâ€Transitionâ€Metal Dichalcogenides. Advanced Functional Materials, 2019, 29, 1904932.	7.8	186
28	Crystal organometal halide perovskites with promising optoelectronic applications. Journal of Materials Chemistry C, 2016, 4, 11-27.	2.7	185
29	Vertical heterostructures based on SnSe ₂ /MoS ₂ for high performance photodetectors. 2D Materials, 2017, 4, 025048.	2.0	183
30	A Fully Transparent and Flexible Ultraviolet–Visible Photodetector Based on Controlled Electrospun ZnOâ€CdO Heterojunction Nanofiber Arrays. Advanced Functional Materials, 2015, 25, 5885-5894.	7.8	181
31	Booming Development of Group IV–VI Semiconductors: Fresh Blood of 2D Family. Advanced Science, 2016, 3, 1600177.	5.6	181
32	Layered phosphorus-like GeP ₅ : a promising anode candidate with high initial coulombic efficiency and large capacity for lithium ion batteries. Energy and Environmental Science, 2015, 8, 3629-3636.	15.6	179
33	Schottky Heterojunction Nanosheet Array Achieving Highâ€Currentâ€Density Oxygen Evolution for Industrial Water Splitting Electrolyzers. Advanced Energy Materials, 2021, 11, 2102353.	10.2	177
34	Few‣ayered PtS ₂ Phototransistor on hâ€BN with High Gain. Advanced Functional Materials, 2017, 27, 1701011.	7.8	176
35	Electrochemical properties of an ordered mesoporous carbon prepared by direct tri-constituent co-assembly. Carbon, 2007, 45, 2628-2635.	5.4	171
36	2D layered group IIIA metal chalcogenides: synthesis, properties and applications in electronics and optoelectronics. CrystEngComm, 2016, 18, 3968-3984.	1.3	171

#	Article	IF	CITATIONS
37	High-surface vanadium oxides with large capacities for lithium-ion batteries: from hydrated aerogel to nanocrystalline VO2(B), V6O13 and V2O5. Journal of Materials Chemistry, 2011, 21, 10999.	6.7	166
38	Highâ€"Performance Solarâ€Blind Deep Ultraviolet Photodetector Based on Individual Singleâ€Crystalline Zn ₂ GeO ₄ Nanowire. Advanced Functional Materials, 2016, 26, 704-712.	7.8	163
39	Antimony-based materials as promising anodes for rechargeable lithium-ion and sodium-ion batteries. Materials Chemistry Frontiers, 2018, 2, 437-455.	3.2	163
40	Highly Anisotropic GeSe Nanosheets for Phototransistors with Ultrahigh Photoresponsivity. Advanced Science, 2018, 5, 1800478.	5.6	163
41	Revealing the conversion mechanism of CuO nanowires during lithiation–delithiation by in situ transmission electron microscopy. Chemical Communications, 2012, 48, 4812.	2.2	153
42	Submillimeter 2D Bi ₂ Se ₃ Flakes toward Highâ€Performance Infrared Photodetection at Optical Communication Wavelength. Advanced Functional Materials, 2018, 28, 1802707.	7.8	149
43	Hierarchical micro/nano porous silicon Li-ion battery anodes. Chemical Communications, 2012, 48, 5079.	2.2	142
44	Decorating Perovskite Quantum Dots in TiO ₂ Nanotubes Array for Broadband Response Photodetector. Advanced Functional Materials, 2017, 27, 1703115.	7.8	142
45	Highly Inâ€Plane Anisotropic 2D GeAs ₂ for Polarizationâ€5ensitive Photodetection. Advanced Materials, 2018, 30, e1804541.	11.1	140
46	An Ordered Mesoporous Carbon with Short Pore Length and Its Electrochemical Performances in Supercapacitor Applications. Journal of the Electrochemical Society, 2007, 154, A731.	1.3	138
47	Cellulose-Based Hybrid Structural Material for Radiative Cooling. Nano Letters, 2021, 21, 397-404.	4.5	135
48	CoO octahedral nanocages for high-performance lithium ion batteries. Chemical Communications, 2012, 48, 4878.	2.2	130
49	A High Rate 1.2V Aqueous Sodium-ion Battery Based on All NASICON Structured NaTi2(PO4)3 and Na3V2(PO4)3. Electrochimica Acta, 2016, 196, 470-478.	2.6	130
50	Layer Structured Materials for Advanced Energy Storage and Conversion. Small, 2017, 13, 1701649.	5.2	129
51	ZnSe nanostructures: Synthesis, properties and applications. Progress in Materials Science, 2016, 83, 472-535.	16.0	128
52	2D Metal Chalcogenides for IR Photodetection. Small, 2019, 15, e1901347.	5.2	121
53	Self-stacked Co3O4 nanosheets for high-performance lithium ion batteries. Chemical Communications, 2011, 47, 12280.	2.2	119
54	Strong In-Plane Anisotropies of Optical and Electrical Response in Layered Dimetal Chalcogenide. ACS Nano, 2017, 11, 10264-10272.	7.3	116

#	Article	IF	Citations
55	2D Ternary Chalcogenides. Advanced Optical Materials, 2018, 6, 1800058.	3.6	114
56	High performance near-infrared photodetectors based on ultrathin SnS nanobelts grown via physical vapor deposition. Journal of Materials Chemistry C, 2016, 4, 2111-2116.	2.7	113
57	Ternary Ta ₂ NiSe ₅ Flakes for a Highâ€Performance Infrared Photodetector. Advanced Functional Materials, 2016, 26, 8281-8289.	7.8	112
58	Modulation of Molecular Spatial Distribution and Chemisorption with Perforated Nanosheets for Ethanol Electroâ€oxidation. Advanced Materials, 2019, 31, e1900528.	11.1	111
59	Multi-heteroatom self-doped porous carbon derived from swim bladders for large capacitance supercapacitors. Journal of Materials Chemistry A, 2016, 4, 15006-15014.	5.2	108
60	An anticorrosive zinc metal anode with ultra-long cycle life over one year. Energy and Environmental Science, 2022, 15, 1638-1646.	15.6	107
61	Rechargeable Ni-Li Battery Integrated Aqueous/Nonaqueous System. Journal of the American Chemical Society, 2009, 131, 15098-15099.	6.6	105
62	Ultrathin Nonâ€van der Waals Magnetic Rhombohedral Cr ₂ S ₃ : Spaceâ€Confined Chemical Vapor Deposition Synthesis and Raman Scattering Investigation. Advanced Functional Materials, 2019, 29, 1805880.	7.8	103
63	A competitive candidate material for aqueous supercapacitors: High surface-area graphite. Journal of Power Sources, 2008, 185, 1557-1562.	4.0	101
64	Single-crystal H ₂ V ₃ O ₈ nanowires: a competitive anode with large capacity for aqueous lithium-ion batteries. Journal of Materials Chemistry, 2011, 21, 1780-1787.	6.7	100
65	Highly Porous Carbon with Graphene Nanoplatelet Microstructure Derived from Biomass Waste for Highá€Performance Supercapacitors in Universal Electrolyte. Advanced Sustainable Systems, 2017, 1, 1600011.	2.7	98
66	Highly reversible sodium storage in a GeP ₅ /C composite anode with large capacity and low voltage. Journal of Materials Chemistry A, 2017, 5, 4413-4420.	5.2	97
67	Ultrathin 2D GeSe ₂ Rhombic Flakes with High Anisotropy Realized by Van der Waals Epitaxy. Advanced Functional Materials, 2017, 27, 1703858.	7.8	95
68	Two-dimensional inorganic molecular crystals. Nature Communications, 2019, 10, 4728.	5.8	91
69	Vacancyâ€Rich Ni(OH) ₂ Drives the Electrooxidation of Amino Câ^'N Bonds to Nitrile C≡N Bonds. Angewandte Chemie - International Edition, 2020, 59, 16974-16981.	7.2	91
70	Strategies on Phase Control in Transition Metal Dichalcogenides. Advanced Functional Materials, 2018, 28, 1802473.	7.8	90
71	Liquidâ€Alloyâ€Assisted Growth of 2D Ternary Ga ₂ In ₄ S ₉ toward Highâ€Performance UV Photodetection. Advanced Materials, 2019, 31, e1806306.	11.1	90
72	Fabrication of FePO4 layer coated LiNi1/3Co1/3Mn1/3O2: Towards high-performance cathode materials for lithium ion batteries. Electrochimica Acta, 2012, 83, 253-258.	2.6	89

#	Article	IF	CITATIONS
73	The Development of a New Type of Rechargeable Batteries Based on Hybrid Electrolytes. ChemSusChem, 2010, 3, 1009-1019.	3.6	88
74	Nanostructured Materials and Architectures for Advanced Infrared Photodetection. Advanced Materials Technologies, 2017, 2, 1700005.	3.0	87
75	PEDOT modified LiNi $1/3$ Co $1/3$ Mn $1/3$ O 2 with enhanced electrochemical performance for lithium ion batteries. Journal of Power Sources, 2013, 243, 374-380.	4.0	86
76	Recent progress in solid-state electrolytes for alkali-ion batteries. Science Bulletin, 2017, 62, 1473-1490.	4.3	86
77	Self‣imited Epitaxial Growth of Ultrathin Nonlayered CdS Flakes for Highâ€Performance Photodetectors. Advanced Functional Materials, 2018, 28, 1800181.	7.8	86
78	Halide-Induced Self-Limited Growth of Ultrathin Nonlayered Ge Flakes for High-Performance Phototransistors. Journal of the American Chemical Society, 2018, 140, 12909-12914.	6.6	85
79	A Hybrid Electrochemical Supercapacitor Based on a 5 V Li-lon Battery Cathode and Active Carbon. Electrochemical and Solid-State Letters, 2005, 8, A433.	2.2	83
80	2D CoOOH Sheet-Encapsulated Ni2P into Tubular Arrays Realizing 1000ÂmAÂcmâ^'2-Level-Current-Density Hydrogen Evolution Over 100Âh in Neutral Water. Nano-Micro Letters, 2020, 12, 140.	14.4	83
81	Flexible Wire-Shaped Supercapacitors in Parallel Double Helix Configuration with Stable Electrochemical Properties under Static/Dynamic Bending. Small, 2016, 12, 1024-1033.	5.2	81
82	Generalized Selfâ€Doping Engineering towards Ultrathin and Largeâ€Sized Twoâ€Dimensional Homologous Perovskites. Angewandte Chemie - International Edition, 2017, 56, 14893-14897.	7.2	81
83	A Ternary Solvent Method for Largeâ€Sized Twoâ€Dimensional Perovskites. Angewandte Chemie - International Edition, 2017, 56, 2390-2394.	7.2	80
84	Achieving Uniform Monolayer Transition Metal Dichalcogenides Film on Silicon Wafer via Silanization Treatment: A Typical Study on WS ₂ . Advanced Materials, 2017, 29, 1603550.	11.1	77
85	High performance LiNi0.5Mn1.5O4 cathode by Al-coating and Al3+-doping through a physical vapor deposition method. Electrochimica Acta, 2016, 191, 237-246.	2.6	76
86	Space-confined vapor deposition synthesis of two dimensional materials. Nano Research, 2018, 11, 2909-2931.	5.8	76
87	Scalable production of self-supported WS2/CNFs by electrospinning as the anode for high-performance lithium-ion batteries. Science Bulletin, 2016, 61, 227-235.	4.3	74
88	Design of Gold Hollow Nanorods with Controllable Aspect Ratio for Multimodal Imaging and Combined Chemo-Photothermal Therapy in the Second Near-Infrared Window. ACS Applied Materials & Samp; Interfaces, 2018, 10, 36703-36710.	4.0	74
89	The rising zinc anodes for high-energy aqueous batteries. EnergyChem, 2021, 3, 100052.	10.1	74
90	Improvement of electrochemical properties of LiNi1/3Co1/3Mn1/3O2 by coating with V2O5 layer. Journal of Alloys and Compounds, 2013, 552, 76-82.	2.8	73

#	Article	IF	CITATIONS
91	Enhancing the performance of Li ₃ VO ₄ by combining nanotechnology and surface carbon coating for lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 11253-11260.	5.2	73
92	Active and conductive layer stacked superlattices for highly selective CO2 electroreduction. Nature Communications, 2022, 13, 2039.	5.8	69
93	On-chip electrocatalytic microdevice: an emerging platform for expanding the insight into electrochemical processes. Chemical Society Reviews, 2020, 49, 2916-2936.	18.7	68
94	Redoxâ€Mediatorâ€Enhanced Electrochemical Capacitors: Recent Advances and Future Perspectives. ChemSusChem, 2019, 12, 1118-1132.	3.6	67
95	In Situ Phase Separation into Coupled Interfaces for Promoting CO ₂ Electroreduction to Formate over a Wide Potential Window. Angewandte Chemie - International Edition, 2021, 60, 22940-22947.	7.2	67
96	In Situ Halogenâ€Ion Leaching Regulates Multiple Sites on Tandem Catalysts for Efficient CO ₂ Electroreduction to C ₂₊ Products. Angewandte Chemie - International Edition, 2022, 61, .	7.2	67
97	Fabrication of vertically aligned single-crystalline lanthanum hexaboride nanowire arrays and investigation of their field emission. NPG Asia Materials, 2013, 5, e53-e53.	3.8	66
98	Salt-assisted chemical vapor deposition of two-dimensional materials. Science China Chemistry, 2019, 62, 1300-1311.	4.2	66
99	2D Homojunctions for Electronics and Optoelectronics. Advanced Materials, 2021, 33, e2005303.	11.1	66
100	Generalized Selfâ€Doping Engineering towards Ultrathin and Largeâ€Sized Twoâ€Dimensional Homologous Perovskites. Angewandte Chemie, 2017, 129, 15089-15093.	1.6	65
101	Spaceâ€Confined Synthesis of 2D Allâ€Inorganic CsPbl ₃ Perovskite Nanosheets for Multiphotonâ€Pumped Lasing. Advanced Optical Materials, 2018, 6, 1800879.	3.6	65
102	Subâ€Millimeterâ€Scale Monolayer pâ€Type Hâ€Phase VS ₂ . Advanced Functional Materials, 2020, 30 2000240.	⁰ 7.8	64
103	Self-supported Zn ₃ P ₂ nanowire arrays grafted on carbon fabrics as an advanced integrated anode for flexible lithium ion batteries. Nanoscale, 2016, 8, 8666-8672.	2.8	63
104	Inversion Symmetry Broken 2D 3Râ€MoTe ₂ . Advanced Functional Materials, 2018, 28, 1800785.	7.8	63
105	Development and perspective of the insertion anode Li 3 VO 4 for lithium-ion batteries. Energy Storage Materials, 2017, 7, 17-31.	9.5	61
106	Direct conversion of waste tires into three-dimensional graphene. Energy Storage Materials, 2019, 23, 499-507.	9.5	61
107	Synthesis of high efficient Cu/TiO 2 photocatalysts by grinding and their size-dependent photocatalytic hydrogen production. Applied Surface Science, 2017, 409, 241-249.	3.1	60
108	Healable Structure Triggered by Thermal/Electrochemical Force in Layered GeSe ₂ for High Performance Liâ€lon Batteries. Advanced Energy Materials, 2018, 8, 1703635.	10.2	59

#	Article	IF	CITATIONS
109	Electrochemical Doubleâ€Layer Capacitor Energized by Adding an Ambipolar Organic Redox Radical into the Electrolyte. Angewandte Chemie - International Edition, 2018, 57, 8214-8218.	7.2	59
110	Smart supercapacitors with deformable and healable functions. Journal of Materials Chemistry A, $2017, 5, 16-30$.	5.2	58
111	Artificial Wooden Nacre: A High Specific Strength Engineering Material. ACS Nano, 2020, 14, 2036-2043.	7.3	57
112	A hybrid nonaqueous electrochemical supercapacitor using nano-sized iron oxyhydroxide and activated carbon. Journal of Solid State Electrochemistry, 2006, 10, 405-410.	1.2	56
113	Miniature Hollow Gold Nanorods with Enhanced Effect for In Vivo Photoacoustic Imaging in the NIRâ€II Window. Small, 2020, 16, e2002748.	5.2	56
114	Strain Driven Spectral Broadening of Pb Ion Exchanged CdS Nanowires. Small, 2016, 12, 874-881.	5.2	55
115	1T′-MoTe ₂ -Based On-Chip Electrocatalytic Microdevice: A Platform to Unravel Oxidation-Dependent Electrocatalysis. CCS Chemistry, 2019, 1, 396-406.	4.6	55
116	Excellent Fieldâ€Emission Performances of Neodymium Hexaboride (NdB ₆) Nanoneedles with Ultraâ€Low Work Functions. Advanced Functional Materials, 2013, 23, 5038-5048.	7.8	54
117	Facile synthesis and electrochemical properties of nanoflake VN for supercapacitors. CrystEngComm, 2016, 18, 3040-3047.	1.3	53
118	One-pot synthesis of Li3VO4@C nanofibers by electrospinning with enhanced electrochemical performance for lithium-ion batteries. Science Bulletin, 2017, 62, 1081-1088.	4.3	53
119	PMMA-assisted Li deposition towards 3D continuous dendrite-free lithium anode. Energy Storage Materials, 2019, 16, 203-211.	9.5	53
120	Ultrafine potassium titanate nanowires: a new Ti-based anode for sodium ion batteries. Chemical Communications, 2016, 52, 6229-6232.	2.2	52
121	Emerging twoâ€dimensional bismuth oxychalcogenides for electronics and optoelectronics. InformaÄnÃ- Materiály, 2021, 3, 1251-1271.	8.5	51
122	Alkali metal boosted atom rearrangement in amorphous carbon towards crystalline graphitic belt skeleton for high performance supercapacitors. Energy Storage Materials, 2018, 15, 82-90.	9.5	50
123	Single Additive with Dual Functional-Ions for Stabilizing Lithium Anodes. ACS Applied Materials & Samp; Interfaces, 2019, 11, 11360-11368.	4.0	49
124	Ultrahighâ€Currentâ€Density and Longâ€Termâ€Durability Electrocatalysts for Water Splitting. Small, 2022, 18, e2104513.	5.2	49
125	Van der Waals 2D Transition Metal Tellurides. Advanced Materials Interfaces, 2019, 6, 1900741.	1.9	48
126	Functional "Janus―Annulus in Confined Channels. Advanced Materials, 2016, 28, 460-465.	11.1	47

#	Article	IF	CITATIONS
127	Probing the capacity loss of Li 3 VO 4 anode upon Li insertion and extraction. Journal of Power Sources, 2017, 348, 48-56.	4.0	47
128	LISICON structured Li ₃ V ₂ (PO ₄) ₃ with high rate and ultralong life for low-temperature lithium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 9737-9746.	5.2	44
129	Synthesis and investigation of layered GeS as a promising large capacity anode with low voltage and high efficiency in full-cell Li-ion batteries. Materials Chemistry Frontiers, 2017, 1, 1607-1614.	3.2	43
130	Hand-drawing patterned ultra-thin integrated electrodes for flexible micro supercapacitors. Energy Storage Materials, 2018, 11, 144-151.	9.5	43
131	Air sensitivity of electrode materials in Li/Na ion batteries: Issues and strategies. InformaÄnÃ-Materiály, 2022, 4, .	8.5	43
132	A high strength, anti-corrosion and sustainable separator for aqueous zinc-based battery by natural bamboo cellulose. Energy Storage Materials, 2022, 48, 191-191.f6.	9.5	43
133	A New Triclinic Phase Na ₂ Ti ₃ O ₇ Anode for Sodiumâ€lon Battery. Advanced Functional Materials, 2020, 30, 2003733.	7.8	42
134	Saltâ€Assisted Growth of Pâ€type Cu ₉ S ₅ Nanoflakes for Pâ€N Heterojunction Photodetectors with High Responsivity. Advanced Functional Materials, 2020, 30, 1908382.	7.8	40
135	2D Inorganic Bimolecular Crystals with Strong Inâ€Plane Anisotropy for Secondâ€Order Nonlinear Optics. Advanced Materials, 2020, 32, e2003146.	11.1	40
136	Air Sensitivity and Degradation Evolution of Halide Solid State Electrolytes upon Exposure. Advanced Functional Materials, 2022, 32, 2108805.	7.8	40
137	A study of nitroxide polyradical/activated carbon composite as the positive electrode material for electrochemical hybrid capacitor. Electrochimica Acta, 2007, 52, 2153-2157.	2.6	39
138	Polyallene with pendant nitroxyl radicals. Polymer, 2008, 49, 3393-3398.	1.8	39
139	One-step synthesis of p-type GaSe nanoribbons and their excellent performance in photodetectors and phototransistors. Journal of Materials Chemistry C, 2016, 4, 7817-7823.	2.7	39
140	Approaching ohmic contact to two-dimensional semiconductors. Science Bulletin, 2019, 64, 1426-1435.	4.3	39
141	Phaseâ€Engineered Synthesis of Ultrathin Hexagonal and Monoclinic GaTe Flakes and Phase Transition Study. Advanced Functional Materials, 2019, 29, 1901012.	7.8	39
142	On-site building of a Zn2+-conductive interfacial layer via short-circuit energization for stable Zn anode. Science Bulletin, 2021, 66, 545-552.	4.3	39
143	Asymmetric Behavior of Positive and Negative Electrodes in Carbon/Carbon Supercapacitors and Its Underlying Mechanism. Journal of Physical Chemistry C, 2016, 120, 24675-24681.	1.5	38
144	Multishell Precursors Facilitated Synthesis of Concentration-Gradient Nickel-Rich Cathodes for Long-Life and High-Rate Lithium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2018, 10, 24508-24515.	4.0	38

#	Article	IF	CITATIONS
145	Flowerlike Vanadium Sesquioxide: Solvothermal Preparation and Electrochemical Properties. ChemPhysChem, 2010, 11, 3273-3280.	1.0	37
146	Siâ€Doping Mediated Phase Control from β―to γâ€Form Li ₃ VO ₄ toward Smoothing L Insertion/Extraction. Advanced Energy Materials, 2018, 8, 1701621.	-i _{10.2}	37
147	High-loading individually dispersed NiCo ₂ O ₄ anchoring on checkerboard-like C/CNT nanosheets as a binder-free high rate electrode for lithium storage. Journal of Materials Chemistry A, 2019, 7, 3632-3641.	5.2	36
148	A Water Stable, Nearâ€Zeroâ€Strain O3â€Layered Titaniumâ€Based Anode for Long Cycle Sodiumâ€Ion Battery. Advanced Functional Materials, 2020, 30, 1907023.	7.8	36
149	2D Hybrid Superlattice-Based On-Chip Electrocatalytic Microdevice for <i>in Situ</i> Revealing Enhanced Catalytic Activity. ACS Nano, 2020, 14, 1635-1644.	7.3	36
150	Large-scale synthesis of 2D metal dichalcogenides. Journal of Materials Chemistry C, 2018, 6, 4627-4640.	2.7	35
151	Dualâ€Regulation of Defect Sites and Vertical Conduction by Spiral Domain for Electrocatalytic Hydrogen Evolution. Angewandte Chemie - International Edition, 2022, 61, .	7.2	35
152	Phaseâ€Engineered Growth of Ultrathin InSe Flakes by Chemical Vapor Deposition for Highâ€Efficiency Second Harmonic Generation. Chemistry - A European Journal, 2018, 24, 15678-15684.	1.7	34
153	A biomimeticâ€structured woodâ€derived carbon sponge with highly compressible and biocompatible properties for humanâ€motion detection. InformaÄnÃ-Materiály, 2020, 2, 1225-1235.	8.5	34
154	Removing structural water from sodium titanate anodes towards barrier-free ion diffusion for sodium ion batteries. Journal of Materials Chemistry A, 2017, 5, 18691-18697.	5.2	33
155	Investigation of the temperature-dependent behaviours of Li metal anode. Chemical Communications, 2019, 55, 9773-9776.	2.2	33
156	Airâ€Stable 2D Intrinsic Ferromagnetic Ta ₃ FeS ₆ with Four Months Durability. Advanced Science, 2020, 7, 2001722.	5.6	33
157	Acid promoted Ni/NiO monolithic electrode for overall water splitting in alkaline medium. Science China Materials, 2017, 60, 918-928.	3.5	32
158	In Situ Formed LiZn Alloy Skeleton for Stable Lithium Anodes. ACS Applied Materials & Samp; Interfaces, 2020, 12, 25818-25825.	4.0	32
159	Geometry-induced high performance ultraviolet photodetectors in kinked SnO ₂ nanowires. Journal of Materials Chemistry C, 2015, 3, 8300-8306.	2.7	31
160	Tunnel-Structured K _{<i>x</i>} TiO ₂ Nanorods by in Situ Carbothermal Reduction as a Long Cycle and High Rate Anode for Sodium-Ion Batteries. ACS Applied Materials & Amp; Interfaces, 2017, 9, 7009-7016.	4.0	31
161	Highly Stretchable Waterproof Fiber Asymmetric Supercapacitors in an Integrated Structure. ACS Applied Materials & Samp; Interfaces, 2018, 10, 19820-19827.	4.0	31
162	Atomically Thin Oxyhalide Solarâ€Blind Photodetectors. Small, 2020, 16, e2000228.	5.2	31

#	Article	IF	CITATIONS
163	In situ fabrication and investigation of nanostructures and nanodevices with a microscope. Chemical Society Reviews, 2016, 45, 2694-2713.	18.7	30
164	A Universal Aqueous Conductive Binder for Flexible Electrodes. Advanced Functional Materials, 2021, 31, 2102284.	7.8	30
165	Fabricating a PVDF skin for PEO-based SPE to stabilize the interface both at cathode and anode for Li-ion batteries. Journal of Energy Chemistry, 2022, 70, 356-362.	7.1	30
166	Easy synthesis and supercapacities of highly ordered mesoporous polyacenes/carbons. Carbon, 2006, 44, 1601-1604.	5.4	29
167	Temperature Difference Triggering Controlled Growth of Allâ€Inorganic Perovskite Nanowire Arrays in Air. Small, 2018, 14, e1803010.	5.2	29
168	Shaping Li Deposits from Wild Dendrites to Regular Crystals via the Ferroelectric Effect. Nano Letters, 2020, 20, 7680-7687.	4.5	29
169	A Ternary Solvent Method for Largeâ€Sized Twoâ€Dimensional Perovskites. Angewandte Chemie, 2017, 129, 2430-2434.	1.6	28
170	A safe, convenient liquid phase pre-sodiation method for titanium-based SIB materials. Chemical Communications, 2019, 55, 14761-14764.	2.2	28
171	Nonlayered CdSe Flakes Homojunctions. Advanced Functional Materials, 2020, 30, 1908902.	7.8	28
172	Single MoTe2 sheet electrocatalytic microdevice for in situ revealing the activated basal plane sites by vacancies engineering. Nano Research, 2021, 14, 4814-4821.	5.8	27
173	Suppression of Persistent Photoconductivity of Rubrene Crystals using Gate†unable Rubrene/Bi ₂ Se ₃ Diodes with Photoinduced Negative Differential Resistance. Small, 2020, 16, e2002312.	5.2	25
174	Wrapping Sb ₂ Te ₃ with a Graphite Layer toward High Volumetric Energy and Long Cycle Li-lon Batteries. ACS Applied Materials & Samp; Interfaces, 2020, 12, 16264-16275.	4.0	25
175	Temperature dependence of Raman responses of few-layer PtS ₂ . Nanotechnology, 2018, 29, 505709.	1.3	23
176	Controllable Hydrogen Generation from Water. ChemSusChem, 2010, 3, 571-574.	3.6	22
177	A novel rechargeable Li–AgO battery with hybrid electrolytes. Chemical Communications, 2010, 46, 2055.	2.2	22
178	Vacancyâ€Rich Ni(OH) ₂ Drives the Electrooxidation of Amino Câ^'N Bonds to Nitrile C≡N Bonds. Angewandte Chemie, 2020, 132, 17122-17129.	1.6	21
179	Van der Waals Epitaxy of Bi ₂ Te ₂ Se/Bi ₂ O ₂ Se Vertical Heterojunction for High Performance Photodetector. Small, 2022, 18, e2105211.	5.2	21
180	Dynamic Investigation of Battery Materials via Advanced Visualization: From Particle, Electrode to Cell Level. Advanced Materials, 2022, 34, e2200777.	11.1	21

#	Article	IF	CITATIONS
181	Geometry dependent photoconductivity of In2S3 kinks synthesized by kinetically controlled thermal deposition. Nano Research, 2016, 9, 3848-3857.	5.8	20
182	Extended Visible Light Absorption Combined with Promoted Charge Carrier Transfer in Urea-Derived Graphitic Carbon Nitride for Enhanced Photocatalytic Hydrogen Evolution Performances. Journal of Physical Chemistry C, 2018, 122, 20717-20726.	1.5	20
183	Recent Advances in 2D Group VB Transition Metal Chalcogenides. Small, 2021, 17, e2005411.	5.2	20
184	Backâ€Gated van der Waals Heterojunction Manipulates Local Charges toward Fineâ€Tuning Hydrogen Evolution. Angewandte Chemie - International Edition, 2022, 61, .	7.2	20
185	Morphology Processing by Encapsulating GeP ₅ Nanoparticles into Nanofibers toward Enhanced Thermo/Electrochemical Stability. ACS Applied Materials & Samp; Interfaces, 2018, 10, 32162-32170.	4.0	19
186	Compact self-standing layered film assembled by V2O5 \hat{A} ·nH2O/CNTs 2D/1D composites for high volumetric capacitance flexible supercapacitors. Science China Materials, 2019, 62, 936-946.	3.5	19
187	2D Cu ₉ S ₅ /PtS ₂ /WSe ₂ Double Heterojunction Bipolar Transistor with High Current Gain. Advanced Materials, 2021, 33, e2106537.	11.1	19
188	An unsymmetrical lithium-ion pathway between charge and discharge processes in a two-phase stage of Li4Ti5O12. Physical Chemistry Chemical Physics, 2012, 14, 9086.	1.3	18
189	A Versatile Capacity Balancer for Asymmetric Supercapacitors. Advanced Energy Materials, 2020, 10, 2001608.	10.2	18
190	Scalable Van der Waals Encapsulation by Inorganic Molecular Crystals. Advanced Materials, 2022, 34, e2106041.	11.1	18
191	Polarized Emission of Lanthanide Metal–Organic Framework (Lnâ€MOF) Crystals for Highâ€Capacity Photonic Barcodes. Advanced Optical Materials, 2022, 10, .	3.6	17
192	Synthesis of 2D ternary layered manganese phosphorous trichalcogenides towards ultraviolet photodetection. Science China Materials, 2021, 64, 2251-2260.	3.5	16
193	Facile, Atom-Economic, Chemical Thinning Strategy for Ultrathin Lithium Foils. Nano Letters, 2022, 22, 3047-3053.	4.5	16
194	Level the Conversion/Alloying Voltage Gap by Grafting the Endogenetic Sb ₂ Te ₃ Building Block into Layered GeTe to Build Ge ₂ Sb ₂ Te ₅ for Li-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 41374-41382.	4.0	15
195	Single WTe ₂ Sheet-Based Electrocatalytic Microdevice for Directly Detecting Enhanced Activity of Doped Electronegative Anions. ACS Applied Materials & Samp; Interfaces, 2021, 13, 14302-14311.	4.0	15
196	High-sensitivity shortwave infrared photodetectors of metal-organic frameworks integrated on 2D layered materials. Science China Materials, 2022, 65, 451-459.	3. 5	15
197	Bioinspired Construction of Micronano Lignocellulose into an Impact Resistance "Wooden Armor― With Bouligand Structure. ACS Nano, 2022, 16, 7525-7534.	7.3	15
198	Electrochemical Doubleâ€Layer Capacitor Energized by Adding an Ambipolar Organic Redox Radical into the Electrolyte. Angewandte Chemie, 2018, 130, 8346-8350.	1.6	13

#	Article	IF	CITATIONS
199	Aqueous Binder Enhanced High-Performance GeP5 Anode for Lithium-lon Batteries. Frontiers in Chemistry, 2018, 6, 21.	1.8	13
200	Facilitating Allâ€Inorganic Halide Perovskites Fabrication in Confinedâ€Space Deposition. Small Methods, 2020, 4, 2000102.	4.6	13
201	Foldable highâ€strength electrode enabled by nanosheet subunits for advanced sodiumâ€ion batteries. InformaÄnÄ-Materiály, 2022, 4, .	8.5	12
202	Fusing semiconductor and nonmetal into a high conductive wide-range solid solution alloy for Li-ion batteries. Energy Storage Materials, 2021, 42, 502-512.	9.5	12
203	Study on the capacity fading of pristine and FePO 4 coated LiNi $1/3$ Co $1/3$ Mn $1/3$ O 2 by Electrochemical and Magnetical techniques. Electrochimica Acta, 2014, 148, 26-32.	2.6	11
204	In Situ Phase Separation into Coupled Interfaces for Promoting CO ₂ Electroreduction to Formate over a Wide Potential Window. Angewandte Chemie, 2021, 133, 23122-23129.	1.6	11
205	The mechanism of the modulation of electronic anisotropy in two-dimensional ReS ₂ . Nanoscale, 2020, 12, 8915-8921.	2.8	10
206	2D ternary vanadium phosphorous chalcogenide with strong in-plane optical anisotropy. Inorganic Chemistry Frontiers, 2021, 8, 2999-3006.	3.0	10
207	Ultrathin 2D ternary Bi2Te2Se flakes for fast-response photodetectors with gate-tunable responsivity. Science China Materials, 2021, 64, 3017-3026.	3.5	10
208	Photodetectors based on two-dimensional semiconductors: Progress, opportunity and challenge. Chinese Science Bulletin, 2017, 62, 3134-3153.	0.4	10
209	Polar-surface-driven growth of ZnS microsprings with novel optoelectronic properties. NPG Asia Materials, 2015, 7, e213-e213.	3.8	9
210	Towards wafer-size strictly monolayer graphene on copper via cyclic atmospheric chemical vapor deposition. Carbon, 2016, 110, 384-389.	5 . 4	9
211	<i>In situ</i> formed nanoparticle-assisted growth of large-size single crystalline h-BN on copper. Nanoscale, 2018, 10, 17865-17872.	2.8	9
212	Effects of nanostructuring on the bond strength and disorder in V ₂ O ₅ cathode material for rechargeable ion-batteries. Physical Chemistry Chemical Physics, 2018, 20, 15288-15292.	1.3	9
213	Effect of Strong Intermolecular Interaction in 2D Inorganic Molecular Crystals. Journal of the American Chemical Society, 2021, 143, 20192-20201.	6.6	9
214	In Situ Halogenâ€lon Leaching Regulates Multiple Sites on Tandem Catalysts for Efficient CO ₂ Electroreduction to C ₂₊ Products. Angewandte Chemie, 2022, 134, .	1.6	9
215	Double the energy storage of hard carbon anode for Li-ion batteries via a simple blending strategy. Electrochimica Acta, 2020, 336, 135729.	2.6	8
216	Backâ€Gated van der Waals Heterojunction Manipulates Local Charges toward Fineâ€Tuning Hydrogen Evolution. Angewandte Chemie, 2022, 134, .	1.6	8

#	Article	IF	CITATIONS
217	Engineering a Local Free Water Enriched Microenvironment for Surpassing Platinum Hydrogen Evolution Activity. Angewandte Chemie, 2022, 134, .	1.6	8
218	Photodetectors: Ultrathin SnSe2Flakes Grown by Chemical Vapor Deposition for High-Performance Photodetectors (Adv. Mater. 48/2015). Advanced Materials, 2015, 27, 8119-8119.	11.1	6
219	Solvent mediated sodium storage enhancement in van der Waals layered materials. Solid State Ionics, 2018, 318, 35-44.	1.3	5
220	Dualâ€Regulation of Defect Sites and Vertical Conduction by Spiral Domain for Electrocatalytic Hydrogen Evolution. Angewandte Chemie, 2022, 134, .	1.6	4
221	Electrical Characteristics: High-Performance Solar-Blind Deep Ultraviolet Photodetector Based on Individual Single-Crystalline Zn2GeO4Nanowire (Adv. Funct. Mater. 5/2016). Advanced Functional Materials, 2016, 26, 804-804.	7.8	3
222	Seamlessly Merging the Capacity of P into Sb at Same Voltage with Maintained Superior Cycle Stability and Lowâ€temperature Performance for Liâ€ion Batteries. Energy and Environmental Materials, 2023, 6, .	7.3	3
223	Recent Progress on 2D Noble-Transition-Metal Dichalcogenides. , 2019, 29, 1904932.		1
224	æ–°åž‹é",-æ¶²æμç"μæ±. Chinese Science Bulletin, 2016, 61, 350-363.	0.4	1
225	Structure transitions of lithium ionic conductor Li ₄ . Chinese Science Bulletin, 2021, , .	0.4	1
226	Scalable Van der Waals Encapsulation by Inorganic Molecular Crystals (Adv. Mater. 7/2022). Advanced Materials, 2022, 34, .	11.1	0