Nehad Ali Shah

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1491200/publications.pdf Version: 2024-02-01

Νέμλο Διι Shah

#	Article	IF	CITATIONS
1	Heat transfer analysis in a second grade fluid over and oscillating vertical plate using fractional Caputo–Fabrizio derivatives. European Physical Journal C, 2016, 76, 1.	1.4	144
2	Scrutinization of the effects of Grashof number on the flow of different fluids driven by convection over various surfaces. Journal of Molecular Liquids, 2018, 249, 980-990.	2.3	129
3	Ternary-hybrid nanofluids: significance of suction and dual-stretching on three-dimensional flow of water conveying nanoparticles with various shapes and densities. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2021, 76, 231-243.	0.7	126
4	Numerical study of bio-convection flow of magneto-cross nanofluid containing gyrotactic microorganisms with activation energy. Scientific Reports, 2021, 11, 16030.	1.6	88
5	Significance of haphazard motion and thermal migration of alumina and copper nanoparticles across the dynamics of water and ethylene glycol on a convectively heated surface. Case Studies in Thermal Engineering, 2021, 26, 101050.	2.8	87
6	Effects of the fractional order and magnetic field on the blood flow in cylindrical domains. Journal of Magnetism and Magnetic Materials, 2016, 409, 10-19.	1.0	76
7	Significance of suction and dual stretching on the dynamics of various hybrid nanofluids: Comparative analysis between type I and type II models. Physica Scripta, 2020, 95, 095205.	1.2	76
8	Significance of nanoparticle's radius, heat flux due to concentration gradient, and mass flux due to temperature gradient: The case of Water conveying copper nanoparticles. Scientific Reports, 2021, 11, 1882.	1.6	70
9	Free convection flow of nanofluids between two vertical plates with damped thermal flux. Journal of Molecular Liquids, 2019, 289, 110964.	2.3	65
10	Numerical investigation of EMHD nanofluid flows over a convectively heated riga pattern positioned horizontally in a Darcy-Forchheimer porous medium: application of passive control strategy and generalized transfer laws. Waves in Random and Complex Media, 0, , 1-20.	1.6	65
11	Heat transfer analysis of fractional second-grade fluid subject to Newtonian heating with Caputo and Caputo-Fabrizio fractional derivatives: A comparison. European Physical Journal Plus, 2017, 132, 1.	1.2	64
12	MHD Hybrid Nanofluid Mixed Convection Heat Transfer and Entropy Generation in a 3-D Triangular Porous Cavity with Zigzag Wall and Rotating Cylinder. Mathematics, 2022, 10, 769.	1.1	63
13	Dynamics of radiative-reactive Walters-b fluid due to mixed convection conveying gyrotactic microorganisms, tiny particles experience haphazard motion, thermo-migration, and Lorentz force. Physica Scripta, 2021, 96, 125239.	1.2	61
14	A Comparative Analysis of Fractional-Order Kaup–Kupershmidt Equation within Different Operators. Symmetry, 2022, 14, 986.	1.1	61
15	Significance of Lorentz Force and Thermoelectric on the Flow of 29 nm CuO–Water Nanofluid on an Upper Horizontal Surface of a Paraboloid of Revolution. Journal of Heat Transfer, 2019, 141, .	1.2	60
16	Analysis of Optical Solitons for Nonlinear SchrĶdinger Equation with Detuning Term by Iterative Transform Method. Symmetry, 2020, 12, 1850.	1.1	58
17	Hemodynamic Characteristics of Gold Nanoparticle Blood Flow Through a Tapered Stenosed Vessel with Variable Nanofluid Viscosity. BioNanoScience, 2019, 9, 245-255.	1.5	57
18	Analytical Investigation of Fractional-Order Korteweg–De-Vries-Type Equations under Atangana–Baleanu–Caputo Operator: Modeling Nonlinear Waves in a Plasma and Fluid. Symmetry, 2022, 14, 739.	1.1	54

#	Article	IF	CITATIONS
19	Significance of buoyancy and Lorentz forces on water-conveying iron(III) oxide and silver nanoparticles in a rectangular cavity mounted with two heated fins: heat transfer analysis. Journal of Thermal Analysis and Calorimetry, 2021, 144, 2369.	2.0	52
20	Magnetic-hybrid nanoparticles with stretching/shrinking cylinder in a suspension of MoS4 and copper nanoparticles. International Communications in Heat and Mass Transfer, 2022, 136, 106150.	2.9	49
21	Convective flows of generalized time-nonlocal nanofluids through a vertical rectangular channel. Physics of Fluids, 2018, 30, 052002.	1.6	47
22	Influence of time-fractional derivatives on the boundary layer flow of Maxwell fluids. Chinese Journal of Physics, 2017, 55, 1340-1351.	2.0	46
23	Radiated magnetic flow in a suspension of ferrous nanoparticles over a cone with brownian motion and thermophoresis. Case Studies in Thermal Engineering, 2021, 25, 100915.	2.8	46
24	Applications of non-integer Caputo time fractional derivatives to natural convection flow subject to arbitrary velocity and Newtonian heating. Neural Computing and Applications, 2018, 30, 1589-1599.	3.2	45
25	Maxwell fluid flow between vertical plates with damped shear and thermal flux: Free convection. Chinese Journal of Physics, 2020, 65, 367-376.	2.0	45
26	Natural convection with damped thermal flux in a vertical circular cylinder. Chinese Journal of Physics, 2018, 56, 630-644.	2.0	44
27	General solution for MHD-free convection flow over a vertical plate with ramped wall temperature and chemical reaction. Arabian Journal of Mathematics, 2018, 7, 49-60.	0.4	43
28	Exploration of bioconvection flow of MHD thixotropic nanofluid past a vertical surface coexisting with both nanoparticles and gyrotactic microorganisms. Scientific Reports, 2021, 11, 16627.	1.6	43
29	Effects of fractional derivative and heat source/sink on MHD free convection flow of nanofluids in a vertical cylinder: A generalized Fourier's law model. Case Studies in Thermal Engineering, 2021, 28, 101518.	2.8	42
30	Analysis of free convection flow of viscous fluid with damped thermal and mass fluxes. Chinese Journal of Physics, 2019, 60, 98-106.	2.0	36
31	Thermodynamic activity of a ternary nanofluid flow passing through a permeable slipped surface with heat source and sink. Waves in Random and Complex Media, 0, , 1-21.	1.6	34
32	Natural convection flows of Prabhakar-like fractional Maxwell fluids with generalized thermal transport. Journal of Thermal Analysis and Calorimetry, 2021, 143, 2245-2258.	2.0	33
33	Hydromagnetic free convection flow of viscous fluid between vertical parallel plates with damped thermal and mass fluxes. AEJ - Alexandria Engineering Journal, 2019, 58, 989-1000.	3.4	32
34	Numerical solutions of the partial differential equations for investigating the significance of partial slip due to lateral velocity and viscous dissipation: The case of bloodâ€gold Carreau nanofluid and dusty fluid. Numerical Methods for Partial Differential Equations, 2024, 40, .	2.0	32
35	Further Discussion on the Significance of Quartic Autocatalysis on the Dynamics of Water Conveying 47Ânm Alumina and 29Ânm Cupric Nanoparticles. Arabian Journal for Science and Engineering, 2020, 45, 5977-6004.	1.7	29
36	A scientific report on heat transfer analysis in mixed convection flow of Maxwell fluid over an oscillating vertical plate. Scientific Reports, 2017, 7, 40147.	1.6	25

#	Article	IF	CITATIONS
37	Fractional System of Korteweg-De Vries Equations via Elzaki Transform. Mathematics, 2021, 9, 673.	1.1	25
38	Significance of Dust Particles, Nanoparticles Radius, Coriolis and Lorentz Forces: The Case of Maxwell Dusty Fluid. Nanomaterials, 2022, 12, 1512.	1.9	25
39	Analysis of magnetohydrodynamic flow of a fractional viscous fluid through a porous medium. Chinese Journal of Physics, 2018, 56, 261-269.	2.0	24
40	Insight into the Natural Convection Flow Through a Vertical Cylinder Using Caputo Time-Fractional Derivatives. International Journal of Applied and Computational Mathematics, 2018, 4, 1.	0.9	23
41	Double diffusive MHD convective flows of a viscous fluid under influence of the inclined magnetic field, source/sink and chemical reaction. AEJ - Alexandria Engineering Journal, 2020, 59, 4171-4181.	3.4	23
42	Some New Versions of Hermite–Hadamard Integral Inequalities in Fuzzy Fractional Calculus for Generalized Pre-Invex Functions via Fuzzy-Interval-Valued Settings. Fractal and Fractional, 2022, 6, 83.	1.6	23
43	Generalized Exp-Function Method to Find Closed Form Solutions of Nonlinear Dispersive Modified Benjamin–Bona–Mahony Equation Defined by Seismic Sea Waves. Mathematics, 2022, 10, 1026.	1.1	23
44	Applications of bioconvection for tiny particles due to two concentric cylinders when role of Lorentz force is significant. PLoS ONE, 2022, 17, e0265026.	1.1	23
45	Influence of magnetic field on double convection problem of fractional viscous fluid over an exponentially moving vertical plate: New trends of Caputo time-fractional derivative model. Advances in Mechanical Engineering, 2019, 11, 168781401986038.	0.8	22
46	Natural convection flow of second grade fluid with thermal radiation and damped thermal flux between vertical channels. AEJ - Alexandria Engineering Journal, 2019, 58, 1119-1125.	3.4	22
47	Natural convection flow maxwell fluids with generalized thermal transport and newtonian heating. Case Studies in Thermal Engineering, 2021, 27, 101226.	2.8	22
48	Effects of double stratification and heat flux damping on convective flows over a vertical cylinder. Chinese Journal of Physics, 2019, 60, 290-306.	2.0	21
49	Exact solutions for some unsteady flows of a couple stress fluid between parallel plates. Ain Shams Engineering Journal, 2018, 9, 985-992.	3.5	20
50	Analytic simulation of thermophoretic second grade fluid flow past a vertical surface with variable fluid characteristics and convective heating. Scientific Reports, 2022, 12, 5445.	1.6	20
51	Thermal analysis of free convection flows of viscous carbon nanotubes nanofluids with generalized thermal transport: a Prabhakar fractional model. Journal of Thermal Analysis and Calorimetry, 2021, 144, 2327.	2.0	19
52	Electro-osmotic flow of biological fluid in divergent channel: drug therapy in compressed capillaries. Scientific Reports, 2021, 11, 23652.	1.6	19
53	Analysis of Dendrimer Generation by Sombor Indices. Journal of Chemistry, 2021, 2021, 1-11.	0.9	18
54	Brownian motion and thermophoretic diffusion effects on the dynamics of MHD upper convected maxwell papofluid flow past a vertical surface. Physica Scripta, 2021, 96, 125722	1.2	18

#	Article	IF	CITATIONS
55	A thermal optimization throughan innovative mechanism of free convection flow of Jeffrey fluid using non-local kernel. Case Studies in Thermal Engineering, 2021, 24, 100851.	2.8	16
56	A Decomposition Method for a Fractional-Order Multi-Dimensional Telegraph Equation via the Elzaki Transform. Symmetry, 2021, 13, 8.	1.1	16
57	Effects of Dufour and fractional derivative on unsteady natural convection flow over an infinite vertical plate with constant heat and mass fluxes. Computational and Applied Mathematics, 2018, 37, 4931-4943.	1.3	15
58	Free convection flows over a vertical plate that applies shear stress to a fractional viscous fluid. AEJ - Alexandria Engineering Journal, 2018, 57, 2529-2540.	3.4	15
59	Natural convection heat transfer in an oscillating vertical cylinder. PLoS ONE, 2018, 13, e0188656.	1.1	15
60	Advances in transport phenomena with nanoparticles and generalized thermal process for vertical plate. Physica Scripta, 2021, 96, 114001.	1.2	15
61	Natural convection of bio-nanofluid between two vertical parallel plates with damped shear and thermal flux. Journal of Molecular Liquids, 2019, 296, 111575.	2.3	14
62	Natural convection flows of carbon nanotubes nanofluids with Prabhakarâ€like thermal transport. Mathematical Methods in the Applied Sciences, 2020, , .	1.2	14
63	Modified Exp-Function Method to Find Exact Solutions of Ionic Currents along Microtubules. Mathematics, 2022, 10, 851.	1.1	14
64	3D Flow of Hybrid Nanomaterial through a Circular Cylinder: Saddle and Nodal Point Aspects. Mathematics, 2022, 10, 1185.	1.1	14
65	Analysis of Fractional-Order Regularized Long-Wave Models via a Novel Transform. Journal of Function Spaces, 2022, 2022, 1-16.	0.4	14
66	Two-Dimensional Advection–Diffusion Process with Memory and Concentrated Source. Symmetry, 2019, 11, 879.	1.1	13
67	Numerical Investigation of Time-Fractional Equivalent Width Equations That Describe Hydromagnetic Waves. Symmetry, 2021, 13, 418.	1.1	13
68	A generalized kinetic model of the advection-dispersion process in a sorbing medium. Mathematical Modelling of Natural Phenomena, 2021, 16, 39.	0.9	13
69	Steady Squeezing Flow of Magnetohydrodynamics Hybrid Nanofluid Flow Comprising Carbon Nanotube-Ferrous Oxide/Water with Suction/Injection Effect. Nanomaterials, 2022, 12, 660.	1.9	13
70	Melting and entropy generation of infinite shear rate viscosity Carreau model over Riga plate with erratic thickness: a numerical Keller Box approach. Waves in Random and Complex Media, 0, , 1-25.	1.6	13
71	Induced magnetic field and viscous dissipation on flows of two immiscible fluids in a rectangular channel. Scientific Reports, 2022, 12, 39.	1.6	12
72	An Efficient Technique of Fractional-Order Physical Models Involving ϕLaplace Transform. Mathematics, 2022, 10, 816.	1.1	12

#	Article	IF	CITATIONS
73	Modelling Entropy in Magnetized Flow of Eyring–Powell Nanofluid through Nonlinear Stretching Surface with Chemical Reaction: A Finite Element Method Approach. Nanomaterials, 2022, 12, 1811.	1.9	12
74	Combination of <scp>Shehu</scp> decomposition and variational iteration transform methods for solving fractional third order dispersive partial differential equations. Numerical Methods for Partial Differential Equations, 2024, 40, .	2.0	11
75	Entropy optimized dissipative flow of hybrid nanofluid in the presence of non-linear thermal radiation and Joule heating. Scientific Reports, 2021, 11, 16067.	1.6	11
76	Natural convection flows and heat transfer with exponential memory of a Maxwell fluid with damped shear stress. Computers and Mathematics With Applications, 2018, 76, 2246-2261.	1.4	10
77	Two phase flow of blood through a circular tube with magnetic properties. Journal of Magnetism and Magnetic Materials, 2019, 477, 382-387.	1.0	10
78	Twoâ€layer flows of generalized immiscible second grade fluids in a rectangular channel. Mathematical Methods in the Applied Sciences, 2020, 43, 1337-1348.	1.2	10
79	An efficient approach for solution of fractional-order Helmholtz equations. Advances in Difference Equations, 2021, 2021, .	3.5	10
80	Significance of Reynolds number, lower and upper rotating disks on the dynamics of water conveying graphene and silver nanoparticles between rotating disks. Physica Scripta, 2021, 96, 045218.	1.2	10
81	Thermography of ferromagnetic Walter's-B fluid through varying thermal stratification. South African Journal of Chemical Engineering, 2021, 36, 118-126.	1.2	10
82	Analytical Analysis of Fractional-Order Multi-Dimensional Dispersive Partial Differential Equations. Symmetry, 2021, 13, 939.	1.1	10
83	Study of Magnetohydrodynamic Pulsatile Blood Flow through an Inclined Porous Cylindrical Tube with Generalized Time-Nonlocal Shear Stress. Advances in Mathematical Physics, 2021, 2021, 1-11.	0.4	10
84	Dual solution framework for mixed convection flow of Maxwell nanofluid instigated by exponentially shrinking surface with thermal radiation. Scientific Reports, 2021, 11, 15944.	1.6	10
85	The Variational Iteration Transform Method for Solving the Time-Fractional Fornberg–Whitham Equation and Comparison with Decomposition Transform Method. Mathematics, 2021, 9, 141.	1.1	10
86	Heat transfer enhancement in natural convection flow of nanofluid with Cattaneo thermal transport. Physica Scripta, 2020, 95, 115705.	1.2	10
87	Impact of entropy optimized Darcyâ€Forchheimer flow in MnZnFe ₂ O ₄ and NiZnFe ₂ O ₄ hybrid nanofluid towards a curved surface. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2022, 102, e202100194.	0.9	10
88	Memory effects and of the killing rate on the tumor cells concentration for a one-dimensional cancer model. Chaos, Solitons and Fractals, 2021, 144, 110750.	2.5	9
89	Free convection Hartmann flow of a viscous fluid with damped thermal transport through a cylindrical tube. Chinese Journal of Physics, 2022, 80, 19-33.	2.0	9
90	First general solutions for unsteady unidirectional motions of rate type fluids in cylindrical domains. AEJ - Alexandria Engineering Journal, 2018, 57, 1185-1196.	3.4	8

#	Article	IF	CITATIONS
91	Unsteady two-dimensional flow of pseudo-blood fluid in an arterial duct carrying stenosis. Physica A: Statistical Mechanics and Its Applications, 2020, 550, 124126.	1.2	8
92	Analytical solutions to the advection-diffusion equation with Atangana-Baleanu time-fractional derivative and a concentrated loading. AEJ - Alexandria Engineering Journal, 2021, 60, 1199-1208.	3.4	8
93	Marangoni Convection of Dust Particles in the Boundary Layer of Maxwell Nanofluids with Varying Surface Tension and Viscosity. Coatings, 2021, 11, 1072.	1.2	8
94	Novel Analytical Technique to Find Closed Form Solutions of Time Fractional Partial Differential Equations. Fractal and Fractional, 2022, 6, 24.	1.6	8
95	Simulation of Dissipative Hybrid Nanofluid (PEG-Water + ZrO2 + MgO) Flow by a Curved Shrinking Sheet with Thermal Radiation and Higher Order Chemical Reaction. Mathematics, 2022, 10, 1706.	1.1	8
96	An Analytical Approach for Fractional Hyperbolic Telegraph Equation Using Shehu Transform in One, Two and Three Dimensions. Mathematics, 2022, 10, 1961.	1.1	8
97	Natural convection flows of carbon nanotube Prabhakarâ€like fractional secondâ€grade nanofluids over an infinite plate with Newtonian heating. Mathematical Methods in the Applied Sciences, 2020, , .	1.2	7
98	Fractional Analysis of Coupled Burgers Equations within Yang Caputo-Fabrizio Operator. Journal of Function Spaces, 2022, 2022, 1-13.	0.4	7
99	Hydrothermal and Entropy Investigation of Nanofluid Mixed Convection in Triangular Cavity with Wavy Boundary Heated from below and Rotating Cylinders. Nanomaterials, 2022, 12, 1469.	1.9	7
100	Analysis of Natural Convection Bionanofluid Between Two Vertical Parallel Plates. BioNanoScience, 2019, 9, 930-936.	1.5	6
101	A COMPARATIVE STUDY OF SEMI-ANALYTICAL METHODS FOR SOLVING FRACTIONAL-ORDER CAUCHY REACTION–DIFFUSION EQUATION. Fractals, 2021, 29, 2150143.	1.8	6
102	Magnetoâ€hydrodynamics natural convection flows of viscous carbon nanotubes nanofluids with generalized Fourier's law in a vertical cylinder. Mathematical Methods in the Applied Sciences, 2020, , .	1.2	5
103	The New Semianalytical Technique for the Solution of Fractional-Order Navier-Stokes Equation. Journal of Function Spaces, 2021, 2021, 1-13.	0.4	5
104	Thermal analysis through cylindrical porous fin having insulated tip: a hybrid nanomaterial approach. Physica Scripta, 2021, 96, 094014.	1.2	5
105	Radio Labeling for Strong Product K3 ⊠Pn. IEEE Access, 2020, 8, 109801-109806.	2.6	4
106	The analytical solution of fractionalâ€order <scp>Whitham–Broer–Kaup</scp> equations by an Elzaki decomposition method. Numerical Methods for Partial Differential Equations, 2024, 40, .	2.0	4
107	Unsteady free convective magnetohydrodynamics flow of a Casson fluid through a channel with double diffusion and ramp temperature and concentration. Mathematical Methods in the Applied Sciences, 2023, 46, 11322-11341.	1.2	4
108	Numerical Analysis of Time-Fractional Diffusion Equations via a Novel Approach. Journal of Function Spaces, 2021, 2021, 1-12.	0.4	4

#	Article	IF	CITATIONS
109	Analytical Solutions of the Fractional Mathematical Model for the Concentration of Tumor Cells for Constant Killing Rate. Mathematics, 2021, 9, 1156.	1.1	4
110	The Analysis of Fractional-Order Kersten–Krasil Shchik Coupled KdV System, via a New Integral Transform. Symmetry, 2021, 13, 1592.	1.1	4
111	Strong Convergence of a New Hybrid Iterative Scheme for Nonexpensive Mappings and Applications. Journal of Function Spaces, 2022, 2022, 1-11.	0.4	4
112	Weber-Type Integral Transform Connected with Robin-Type Boundary Conditions. Mathematics, 2020, 8, 1335.	1.1	3
113	New idea of Atanganaâ€Baleanu timeâ€fractional derivative to advectionâ€diffusion equation. Mathematical Methods in the Applied Sciences, 2021, 44, 2521-2531.	1.2	3
114	Analytical Solutions of the Diffusion–Wave Equation of Groundwater Flow with Distributed-Order of Atangana–Baleanu Fractional Derivative. Applied Sciences (Switzerland), 2021, 11, 4142.	1.3	3
115	ANALYSIS OF TIME-FRACTIONAL BURGERS AND DIFFUSION EQUATIONS BY USING MODIFIED <i>q</i> HATM. Fractals, 2022, 30, .	1.8	3
116	A renovated Scott–Blair model for heat and mass transfer analysis. Waves in Random and Complex Media, 0, , 1-15.	1.6	3
117	On some rotational flows of non-integer order rate type fluids with shear stress on the boundary. Ain Shams Engineering Journal, 2018, 9, 1865-1876.	3.5	2
118	Study of oneâ€dimensional contaminant transport in soils using fractional calculus. Mathematical Methods in the Applied Sciences, 2021, 44, 6839-6856.	1.2	2
119	An Analytical View of Fractional-Order Fisher's Type Equations within Caputo Operator. Mathematical Problems in Engineering, 2021, 2021, 1-10.	0.6	2
120	Simultaneous Flow of n-Immiscible Fractional Maxwell Fluids with Generalized Thermal Flux and Robin Boundary Conditions. Advances in Mathematical Physics, 2021, 2021, 1-20.	0.4	2
121	Dynamics of ferromagnetic due to nonlinear thermal buoyancy when Cattaneo–Christov heat flux and magnetic dipole whose magnetic scalars are significant. Waves in Random and Complex Media, 0, , 1-20.	1.6	2
122	Numerical Approaches of the Generalized Time-Fractional Burgers' Equation with Time-Variable Coefficients. Journal of Function Spaces, 2021, 2021, 1-14.	0.4	2
123	Energy dissipative MHD Cu-AA7072/water-based hybrid nanofluid flow over a perpetually moving slender needle. Waves in Random and Complex Media, 0, , 1-13.	1.6	2
124	MHDâ€free convection flow of CNTs differential type nanofluid over an infinite vertical plate with firstâ€order chemical reaction, porous medium, and suction/injection. Mathematical Methods in the Applied Sciences, 2020, , .	1.2	1
125	A Comparative Analysis of Fractional-Order Gas Dynamics Equations via Analytical Techniques. Mathematics, 2021, 9, 1735.	1.1	1
126	Numerical Analysis of the Klein-Gordon Equations by Using the New Iteration Transform Method. Journal of Function Spaces, 2021, 2021, 1-9.	0.4	1

#	Article	IF	CITATIONS
127	A Comparative Study of the Fractional-Order System of Burgers Equations. Symmetry, 2021, 13, 1786.	1.1	1
128	On implementation of a semi-analytic strategy to develop an analytical solution of a steady-state isothermal tube drawing model. Scientific Reports, 2022, 12, 7636.	1.6	1
129	Mathematical Simulation of Heat Transfer in Thermally Magnetised Oldroyd-B Fluid in Sakiadis Rheology with a Heat Reservoir. Mathematics, 2022, 10, 1775.	1.1	1
130	Molecular irregularity descriptors of H A C 5 C 7 nanotube. Mathematical Methods in the Applied Sciences, 2020, , .	1.2	0
131	A Comparison Study of Irregularity Descriptors of Benzene Ring Embedded in P-Type Surface Network and Its Derived Network. Journal of Mathematics, 2021, 2021, 1-12.	0.5	0
132	Analytical Fuzzy Analysis of a Fractional-Order Newell-Whitehead-Segel Model with Mittag-Leffler Kernel. Journal of Function Spaces, 2022, 2022, 1-12.	0.4	0
133	Novel Evaluation of Fuzzy Fractional Cauchy Reaction-Diffusion Equation. Journal of Function Spaces, 2022, 2022, 1-10.	0.4	0
134	Hardy–Leindler, Yang and Hwang Inequalities for Functions of Several Variables via Time Scale Calculus. Symmetry, 2022, 14, 802.	1.1	0
135	Fractional-View Analysis of Jaulent-Miodek Equation via Novel Analytical Techniques. Journal of Function Spaces, 2022, 2022, 1-11.	0.4	0
136	Weighted Ostrowski type inequalities via Montgomery identity involving double integrals on time scales. AIMS Mathematics, 2022, 7, 16657-16672.	0.7	0
137	Corrigendum to "Strong Convergence of a New Hybrid Iterative Scheme for Nonexpensive Mappings and Applications― Journal of Function Spaces, 2022, 2022, 1-1.	0.4	0