Carl S Thummel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1491181/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The nuclear receptor superfamily: The second decade. Cell, 1995, 83, 835-839.	28.9	6,478
2	A Mitochondrial Pyruvate Carrier Required for Pyruvate Uptake in Yeast, <i>Drosophila</i> , and Humans. Science, 2012, 337, 96-100.	12.6	694
3	Vectors for Drosophila P-element-mediated transformation and tissue culture transfection. Gene, 1988, 74, 445-456.	2.2	599
4	Nuclear receptors — a perspective from Drosophila. Nature Reviews Genetics, 2005, 6, 311-323.	16.3	501
5	Flies on steroids — Drosophila metamorphosis and the mechanisms of steroid hormone action. Trends in Genetics, 1996, 12, 306-310.	6.7	451
6	The Drosophila 74EF early puff contains E74, a complex ecdysone-inducible gene that encodes two ets-related proteins. Cell, 1990, 61, 85-99.	28.9	425
7	Diabetic Larvae and Obese Flies—Emerging Studies of Metabolism in Drosophila. Cell Metabolism, 2007, 6, 257-266.	16.2	421
8	Prothoracicotropic Hormone Regulates Developmental Timing and Body Size in Drosophila. Developmental Cell, 2007, 13, 857-871.	7.0	388
9	Methods for studying metabolism in Drosophila. Methods, 2014, 68, 105-115.	3.8	363
10	From embryogenesis to metamorphosis: The regulation and function of drosophila nuclear receptor superfamily members. Cell, 1995, 83, 871-877.	28.9	338
11	Molecular Mechanisms of Developmental Timing in C. elegans and Drosophila. Developmental Cell, 2001, 1, 453-465.	7.0	290
12	A Steroid-Triggered Transcriptional Hierarchy Controls Salivary Gland Cell Death during Drosophila Metamorphosis. Molecular Cell, 2000, 5, 445-455.	9.7	264
13	Spatial and temporal patterns of E74 transcription during Drosophila development. Cell, 1990, 61, 101-111.	28.9	261
14	Molecular Analysis of the Initiation of Insect Metamorphosis: A Comparative Study of Drosophila Ecdysteroid-Regulated Transcription. Developmental Biology, 1993, 160, 388-404.	2.0	260
15	Transcriptional regulation of xenobiotic detoxification in <i>Drosophila</i> . Genes and Development, 2011, 25, 1796-1806.	5.9	242
16	Control of intestinal stem cell function and proliferation by mitochondrial pyruvate metabolism. Nature Cell Biology, 2017, 19, 1027-1036.	10.3	238
17	The Drosophila βFTZ-F1 Orphan Nuclear Receptor Provides Competence for Stage-Specific Responses to the Steroid Hormone Ecdysone. Molecular Cell, 1999, 3, 143-149.	9.7	237
18	The Drosophila Estrogen-Related Receptor Directs a Metabolic Switch that Supports Developmental Growth. Cell Metabolism, 2011, 13, 139-148.	16.2	234

#	Article	IF	CITATIONS
19	The Drosophila Orphan Nuclear Receptor DHR38 Mediates an Atypical Ecdysteroid Signaling Pathway. Cell, 2003, 113, 731-742.	28.9	226
20	Drosophila HNF4 Regulates Lipid Mobilization and \hat{I}^2 -Oxidation. Cell Metabolism, 2009, 9, 228-239.	16.2	222
21	A molecular mechanism for the stage specificity of the Drosophila prepupal genetic response to ecdysone. Cell, 1994, 79, 607-615.	28.9	214
22	Molecular interactions within the ecdysone regulatory hierarchy: DNA binding properties of the Drosophila ecdysone-inducible E74A protein. Cell, 1990, 63, 47-61.	28.9	211
23	Coordinating Growth and Maturation — Insights from Drosophila. Current Biology, 2011, 21, R750-R757.	3.9	196
24	E93 Directs Steroid-Triggered Programmed Cell Death in Drosophila. Molecular Cell, 2000, 6, 433-443.	9.7	181
25	The DHR96 nuclear receptor regulates xenobiotic responses in Drosophila. Cell Metabolism, 2006, 4, 37-48.	16.2	175
26	Ecdysteroid Regulation and DNA Binding Properties of Drosophila Nuclear Hormone Receptor Superfamily Members. Developmental Biology, 1995, 168, 490-502.	2.0	168
27	Mechanisms of steroid-triggered programmed cell death in Drosophila. Seminars in Cell and Developmental Biology, 2005, 16, 237-243.	5.0	165
28	Temporal Profiles of Nuclear Receptor Gene Expression Reveal Coordinate Transcriptional Responses duringDrosophilaDevelopment. Molecular Endocrinology, 2003, 17, 2125-2137.	3.7	164
29	Loss of the Ecdysteroid-Inducible E75A Orphan Nuclear Receptor Uncouples Molting from Metamorphosis in Drosophila. Developmental Cell, 2002, 3, 209-220.	7.0	155
30	Ecdysone-regulated puff genes 2000. Insect Biochemistry and Molecular Biology, 2002, 32, 113-120.	2.7	155
31	Essential Roles for Ecdysone Signaling During Drosophila Mid-Embryonic Development. Science, 2003, 301, 1911-1914.	12.6	155
32	Steroid Regulation of Postembryonic Development and Reproduction in Drosophila. Trends in Endocrinology and Metabolism, 2000, 11, 276-280.	7.1	149
33	The Drosophila E93 Gene from the 93F Early Puff Displays Stage- and Tissue-Specific Regulation by 20-Hydroxyecdysone. Developmental Biology, 1995, 171, 85-97.	2.0	142
34	Steroid signaling in plants and insectscommon themes, different pathways. Genes and Development, 2002, 16, 3113-3129.	5.9	142
35	Inducible expression of double-stranded RNA directs specific genetic interference in Drosophila. Current Biology, 2000, 10, 957-963.	3.9	137
36	The DHR96 Nuclear Receptor Controls Triacylglycerol Homeostasis in Drosophila. Cell Metabolism, 2009, 10, 481-490.	16.2	128

#	Article	IF	CITATIONS
37	Chapter 29 Methods for Quantitative Analysis of Transcription in Larvae and Prepupae. Methods in Cell Biology, 1994, 44, 565-573.	1.1	119
38	DHR3 Is Required for the Prepupal–Pupal Transition and Differentiation of Adult Structures during Drosophila Metamorphosis. Developmental Biology, 1999, 212, 204-216.	2.0	118
39	The Drosophila 78C early late puff contains E78, an ecdysone-inducible gene that encodes a novel member of the nuclear hormone receptor superfamily. Cell, 1993, 75, 307-320.	28.9	114
40	Coordinated Metabolic Transitions During <i>Drosophila</i> Embryogenesis and the Onset of Aerobic Glycolysis. G3: Genes, Genomes, Genetics, 2014, 4, 839-850.	1.8	112
41	Coordinate regulation of small temporal RNAs at the onset of Drosophila metamorphosis. Developmental Biology, 2003, 259, 1-8.	2.0	110
42	Regulation of Tumor Initiation by the Mitochondrial Pyruvate Carrier. Cell Metabolism, 2020, 31, 284-300.e7.	16.2	103
43	The Ecdysone-Induced DHR4 Orphan Nuclear Receptor Coordinates Growth and Maturation in Drosophila. Cell, 2005, 121, 773-784.	28.9	102
44	Constitutive activation of the Nrf2/Keap1 pathway in insecticide-resistant strains of Drosophila. Insect Biochemistry and Molecular Biology, 2013, 43, 1116-1124.	2.7	102
45	Expression of SV40 T antigen under control of adenovirus promoters. Cell, 1981, 23, 825-836.	28.9	100
46	The LYR Factors SDHAF1 and SDHAF3 Mediate Maturation of the Iron-Sulfur Subunit of Succinate Dehydrogenase. Cell Metabolism, 2014, 20, 253-266.	16.2	96
47	The <i>Drosophila</i> DHR96 nuclear receptor binds cholesterol and regulates cholesterol homeostasis. Genes and Development, 2009, 23, 2711-2716.	5.9	94
48	Dynamic regulation of Drosophila nuclear receptor activity in vivo. Development (Cambridge), 2006, 133, 3549-3562.	2.5	91
49	A balance between the diap1 death inhibitor and reaper and hid death inducers controls steroid-triggered cell death in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 8022-8027.	7.1	89
50	Coordination of Triacylglycerol and Cholesterol Homeostasis by DHR96 and the Drosophila LipA Homolog magro. Cell Metabolism, 2012, 15, 122-127.	16.2	89
51	SDHAF4 Promotes Mitochondrial Succinate Dehydrogenase Activity and Prevents Neurodegeneration. Cell Metabolism, 2014, 20, 241-252.	16.2	88
52	Translational control of SV40 T antigen expressed from the adenovirus late promoter. Cell, 1983, 33, 455-464.	28.9	87
53	The Drosophila HNF4 nuclear receptor promotes glucose-stimulated insulin secretion and mitochondrial function in adults. ELife, 2016, 5, .	6.0	78
54	The <i>Drosophila</i> nuclear receptors DHR3 and βFTZ-F1 control overlapping developmental responses in late embryos. Development (Cambridge), 2010, 137, 123-131.	2.5	77

#	Article	IF	CITATIONS
55	Isolation and characterization of five Drosophila genes that encode an ets-related DNA binding domain. Developmental Biology, 1992, 151, 176-191.	2.0	74
56	Steroid-triggered death by autophagy. BioEssays, 2001, 23, 677-682.	2.5	68
57	Spatial patterns of ecdysteroid receptor activation during the onset of <i>Drosophila</i> metamorphosis. Development (Cambridge), 2002, 129, 1739-1750.	2.5	66
58	Puffs and gene regulation ? molecular insights into theDrosophila ecdysone regulatory hierarchy. BioEssays, 1990, 12, 561-568.	2.5	63
59	The DHR78 Nuclear Receptor Is Required for Ecdysteroid Signaling during the Onset of Drosophila Metamorphosis. Cell, 1998, 93, 543-555.	28.9	60
60	Dueling orphans-interacting nuclear receptors coordinateDrosophila metamorphosis. BioEssays, 1997, 19, 669-672.	2.5	57
61	Transcriptional activation of the Drosophila ecdysone receptor by insect and plant ecdysteroids. Insect Biochemistry and Molecular Biology, 2000, 30, 1037-1043.	2.7	57
62	The Ecdysone Regulatory Pathway Controls Wing Morphogenesis and Integrin Expression during Drosophila Metamorphosis. Developmental Biology, 2000, 220, 211-224.	2.0	55
63	rigor mortisencodes a novel nuclear receptor interacting protein required for ecdysone signaling duringDrosophilalarval development. Development (Cambridge), 2004, 131, 25-36.	2.5	55
64	The Circadian Clock, Light, and Cryptochrome Regulate Feeding and Metabolism in <i>Drosophila</i> . Journal of Biological Rhythms, 2011, 26, 497-506.	2.6	55
65	Specific transcriptional responses to juvenile hormone and ecdysone in Drosophila. Insect Biochemistry and Molecular Biology, 2007, 37, 570-578.	2.7	54
66	Metabolomic Studies in <i>Drosophila</i> . Genetics, 2017, 206, 1169-1185.	2.9	51
67	Drosophila HNF4 Directs a Switch in Lipid Metabolism that Supports the Transition to Adulthood. Developmental Cell, 2019, 48, 200-214.e6.	7.0	51
68	The Drosophila NR4A Nuclear Receptor DHR38 Regulates Carbohydrate Metabolism and Glycogen Storage. Molecular Endocrinology, 2011, 25, 83-91.	3.7	50
69	Molecular Characterization of the 71E Late Puff inDrosophila melanogasterReveals a Family of Novel Genes. Journal of Molecular Biology, 1996, 255, 387-400.	4.2	49
70	GFP in living animals reveals dynamic developmental responses to ecdysone during drosophila metamorphosisâ [®] †â [®] †Supplementary data for this article are available on Science Direct (http://www.sciencedirect.com) and on the author's web site (http://thummel.genetics.utah.edu/) Developmental Biology, 2003, 256, 389-402.	2.0	47
71	Down-regulation of inhibitor of apoptosis levels provides competence for steroid-triggered cell death. Journal of Cell Biology, 2007, 178, 85-92.	5.2	41
72	Epigenetic inheritance of metabolic state. Current Opinion in Genetics and Development, 2014, 27, 43-47.	3.3	38

#	Article	IF	CITATIONS
73	Sir2 Acts through Hepatocyte Nuclear Factor 4 to maintain insulin Signaling and Metabolic Homeostasis in Drosophila. PLoS Genetics, 2016, 12, e1005978.	3.5	37
74	An ancestral role for the mitochondrial pyruvate carrier in glucose-stimulated insulin secretion. Molecular Metabolism, 2016, 5, 602-614.	6.5	36
75	<i>Drosophila</i> estrogen-related receptor directs a transcriptional switch that supports adult glycolysis and lipogenesis. Genes and Development, 2020, 34, 701-714.	5.9	35
76	Genetic Modifier Screens in Drosophila Demonstrate a Role for Rho1 Signaling in Ecdysone-Triggered Imaginal Disc Morphogenesis. Genetics, 2003, 165, 1397-1415.	2.9	34
77	A Genetic Screen Identifies New Regulators of Steroid-Triggered Programmed Cell Death in Drosophila. Genetics, 2008, 180, 269-281.	2.9	32
78	Indicted: Worms Caught using Steroids. Cell, 2006, 124, 1137-1140.	28.9	31
79	<i>Drosophila</i> DHR38 nuclear receptor is required for adult cuticle integrity at eclosion. Developmental Dynamics, 2009, 238, 701-707.	1.8	31
80	<i>Med24</i> and <i>Mdh2</i> are required for <i>Drosophila</i> larval salivary gland cell death. Developmental Dynamics, 2010, 239, 954-964.	1.8	29
81	DEVELOPMENTAL BIOLOGY: Enhanced: Less Steroids Make Bigger Flies. Science, 2005, 310, 630-631.	12.6	25
82	Developmental Timing: let-7 Function Conserved through Evolution. Current Biology, 2008, 18, R707-R708.	3.9	24
83	Genetic Analysis of the Drosophila 63F Early Puff: Characterization of Mutations in E63-1 and maggie, a Putative Tom22. Genetics, 2000, 156, 229-244.	2.9	20
84	Functional interactions between the Moses corepressor and DHR78 nuclear receptor regulate growth in Drosophila. Genes and Development, 2007, 21, 450-464.	5.9	18
85	<i>dTrf2</i> is required for transcriptional and developmental responses to ecdysone during <i>Drosophila</i> metamorphosis. Developmental Dynamics, 2007, 236, 3173-3179.	1.8	18
86	Parental obesity leads to metabolic changes in the F2 generation in Drosophila. Molecular Metabolism, 2017, 6, 631-639.	6.5	18
87	An Enhancer Trap Screen for Ecdysone-Inducible Genes Required for Drosophila Adult Leg Morphogenesis. Genetics, 2000, 156, 1765-1776.	2.9	18
88	For Intestinal Homeostasis, You Are What You Eat. Developmental Cell, 2018, 47, 1-2.	7.0	16
89	Regulation of Drosophila Intestinal Stem Cell Proliferation by Enterocyte Mitochondrial Pyruvate Metabolism. G3: Genes, Genomes, Genetics, 2019, 9, 3623-3630.	1.8	14
90	Essential roles for the Dhr78 orphan nuclear receptor during molting of the Drosophila tracheal system. Insect Biochemistry and Molecular Biology, 2003, 33, 1201-1209.	2.7	12

#	Article	IF	CITATIONS
91	Right time, right place: the temporal regulation of developmental gene expression. Genes and Development, 2017, 31, 847-848.	5.9	12
92	Drosophila E93 promotes adult development and suppresses larval responses to ecdysone during metamorphosis. Developmental Biology, 2022, 481, 104-115.	2.0	10
93	Powered by Gas—A Ligand for a Fruit Fly Nuclear Receptor. Cell, 2005, 122, 151-153.	28.9	9
94	Functional analysis of Aarf domainâ€containing kinase 1 in Drosophila melanogaster. Developmental Dynamics, 2019, 248, 762-770.	1.8	7
95	The <i>Drosophila</i> E78 nuclear receptor regulates dietary triglyceride uptake and systemic lipid levels. Developmental Dynamics, 2021, 250, 640-651.	1.8	7
96	Regulation of male fertility and accessory gland gene expression by the Drosophila HR39 nuclear receptor. Developmental Biology, 2021, 479, 51-60.	2.0	5
97	To die or not to die—a role for Fork head. Journal of Cell Biology, 2007, 176, 737-739.	5.2	4
98	Linking Nutrients to Growth through a Positive Feedback Loop. Developmental Cell, 2015, 35, 265-266.	7.0	2
99	Drosophila Nuclear Receptors. , 2003, , 69-73.		2
100	Adult functions for the <i>Drosophila</i> DHR78 nuclear receptor. Developmental Dynamics, 2018, 247, 315-322.	1.8	1
101	The Drosophila Estrogenâ€Related Receptor Coordinates Carbohydrate Metabolism with Developmental Growth. FASEB Journal, 2011, 25, .	0.5	1
102	Transcriptional Regulation of Xenobiotic Detoxification in Drosophila. FASEB Journal, 2012, 26, .	0.5	1
103	A direct-drive GFP reporter for studies of tracheal development in Drosophila. Fly, 2022, 16, 105-110.	1.7	0