Haoshen Zhou

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1491135/haoshen-zhou-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

556	43,251 citations	111	184
papers		h-index	g-index
586 ext. papers	48,357 ext. citations	12.2 avg, IF	8.06 L-index

#	Paper	IF	Citations
556	A long-life lithium-oxygen battery via a molecular quenching/mediating mechanism <i>Science Advances</i> , 2022 , 8, eabm1899	14.3	9
555	Highly safe and stable lithiumThetal batteries based on a quasi-solid-state electrolyte. <i>Journal of Materials Chemistry A</i> , 2022 , 10, 651-663	13	3
554	Achieving long cycle life for all-solid-state rechargeable Li-I battery by a confined dissolution strategy <i>Nature Communications</i> , 2022 , 13, 125	17.4	2
553	Long-enduring oxygen redox enabling robust layered cathodes for sodium-ion batteries. <i>Chemical Engineering Journal</i> , 2022 , 435, 134944	14.7	1
552	Status and challenges facing representative anode materials for rechargeable lithium batteries. Journal of Energy Chemistry, 2022 , 66, 260-294	12	26
551	Long-Life Aqueous Zn-I Battery Enabled by a Low-Cost Multifunctional Zeolite Membrane Separator <i>Nano Letters</i> , 2022 ,	11.5	6
550	A high-voltage anode-free rechargeable sodium battery <i>Angewandte Chemie - International Edition</i> , 2022 ,	16.4	6
549	A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments <i>Nature Communications</i> , 2022 , 13, 1510	17.4	7
548	Synergetic Anion-Cation Redox Ensures a Highly Stable Layered Cathode for Sodium-Ion Batteries <i>Advanced Science</i> , 2022 , e2105280	13.6	3
547	Tailoring the solvation sheath of cations by constructing electrode front-faces for rechargeable batteries <i>Advanced Materials</i> , 2022 , e2201339	24	9
546	Carbon-free and binder-free Li-Al alloy anode enabling an all-solid-state Li-S battery with high energy and stability <i>Science Advances</i> , 2022 , 8, eabn4372	14.3	10
545	Structure design enables stable anionic and cationic redox chemistry in a T2-type Li-excess layered oxide cathode. <i>Science Bulletin</i> , 2021 , 67, 381-381	10.6	2
544	Progress and Prospects in Redox Mediators for Highly Reversible Lithium Dxygen Batteries: A Minireview. <i>Energy & Dxygen Batteries</i> 2021, 35, 19302-19319	4.1	1
543	Advanced cobalt-free cathode materials for sodium-ion batteries. <i>Chemical Society Reviews</i> , 2021 , 50, 13189-13235	58.5	22
542	A high-capacity cathode for rechargeable K-metal battery based on reversible superoxide-peroxide conversion. <i>National Science Review</i> , 2021 , 8, nwaa287	10.8	6
541	Recent Advances in Rechargeable LittO2 Batteries. <i>Energy & Damp; Fuels</i> , 2021 , 35, 9165-9186	4.1	10
540	A Safe and Sustainable Lithium-Ion-Oxygen Battery based on a Low-Cost Dual-Carbon Electrodes Architecture. <i>Advanced Materials</i> , 2021 , 33, e2100827	24	9

(2021-2021)

539	Pinning Effect Enhanced Structural Stability toward a Zero-Strain Layered Cathode for Sodium-Ion Batteries. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 13366-13371	16.4	27	
538	Pinning Effect Enhanced Structural Stability toward a Zero-Strain Layered Cathode for Sodium-Ion Batteries. <i>Angewandte Chemie</i> , 2021 , 133, 13478-13483	3.6	7	
537	A high efficiency electrolyte enables robust inorganicBrganic solid electrolyte interfaces for fast Li metal anode. <i>Science Bulletin</i> , 2021 , 66, 897-903	10.6	7	
536	A high-energy-density and long-life initial-anode-free lithium battery enabled by a Li2O sacrificial agent. <i>Nature Energy</i> , 2021 , 6, 653-662	62.3	46	
535	Achieving stable anionic redox chemistry in Li-excess O2-type layered oxide cathode via chemical ion-exchange strategy. <i>Energy Storage Materials</i> , 2021 , 38, 1-8	19.4	12	
534	Sustainable Lithium-Metal Battery Achieved by a Safe Electrolyte Based on Recyclable and Low-Cost Molecular Sieve. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 15572-15581	16.4	11	
533	Sustainable Lithium-Metal Battery Achieved by a Safe Electrolyte Based on Recyclable and Low-Cost Molecular Sieve. <i>Angewandte Chemie</i> , 2021 , 133, 15700-15709	3.6	1	
532	Designing CationBolvent Fully Coordinated Electrolyte for High-Energy-Density LithiumBulfur Full Cell Based On SolidBolid Conversion. <i>Angewandte Chemie</i> , 2021 , 133, 17867-17875	3.6	3	
531	Incorporation of LiF into functionalized polymer fiber networks enabling high capacity and high rate cycling of lithium metal composite anodes. <i>Chemical Engineering Journal</i> , 2021 , 404, 126508	14.7	11	
530	In-situ/operando characterization techniques in lithium-ion batteries and beyond. <i>Journal of Energy Chemistry</i> , 2021 , 59, 191-211	12	23	
529	Stabilizing Anionic Redox Chemistry in a Mn-Based Layered Oxide Cathode Constructed by Li-Deficient Pristine State. <i>Advanced Materials</i> , 2021 , 33, e2004280	24	33	
528	A low-charge-overpotential lithium-CO2 cell based on a binary molten salt electrolyte. <i>Energy and Environmental Science</i> , 2021 , 14, 4107-4114	35.4	4	
527	Applications of Metal-organic Frameworks (MOFs) Materials in Lithium-ion Battery/Lithium-metal Battery Electrolytes. <i>Acta Chimica Sinica</i> , 2021 , 79, 139	3.3	3	
526	A high-stability biphasic layered cathode for sodium-ion batteries. <i>Chemical Communications</i> , 2021 , 57, 2891-2894	5.8	3	
525	Oxygen vacancy promising highly reversible phase transition in layered cathodes for sodium-ion batteries. <i>Nano Research</i> , 2021 , 14, 4100	10	6	
524	Designing Cation-Solvent Fully Coordinated Electrolyte for High-Energy-Density Lithium-Sulfur Full Cell Based On Solid-Solid Conversion. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 17726-17734	1 ^{16.4}	16	
523	Reducing Water Activity by Zeolite Molecular Sieve Membrane for Long-Life Rechargeable Zinc Battery. <i>Advanced Materials</i> , 2021 , 33, e2102415	24	37	
522	Sifting weakly-coordinated solvents within solvation sheath through an electrolyte filter for high-voltage lithium-metal batteries. <i>Energy Storage Materials</i> , 2021 ,	19.4	3	

521	Two-dimensional Mo-based compounds for the Li-O2 batteries: Catalytic performance and electronic structure studies. <i>Energy Storage Materials</i> , 2021 , 41, 650-655	19.4	8
520	A rechargeable all-solid-state LiftO2 battery using a Li1.5Al0.5Ge1.5(PO4)3 ceramic electrolyte and nanoscale RuO2 catalyst. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 9581-9585	13	6
519	Two-dimensional metalorganic framework with perpendicular one-dimensional nano-channel as precise polysulfide sieves for highly efficient lithiumBulfur batteries. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 4870-4879	13	5
518	Oxygen-Deficient Ferric Oxide as an Electrochemical Cathode Catalyst for High-Energy Lithium-Sulfur Batteries. <i>Small</i> , 2020 , 16, e2000870	11	26
517	A low-cost anodic catalyst of transition metal oxides for lithium extraction from seawater. <i>Chemical Communications</i> , 2020 , 56, 6396-6399	5.8	6
516	A Liquid Anode of Lithium Biphenyl for Highly Safe Lithium-Air Battery with Hybrid Electrolyte. <i>Batteries and Supercaps</i> , 2020 , 3, 708-712	5.6	2
515	Revealing the Impact of Space-Charge Layers on the Li-Ion Transport in All-Solid-State Batteries. <i>Joule</i> , 2020 , 4, 1311-1323	27.8	47
514	A 500 Wh/kg Lithium-Metal Cell Based on Anionic Redox. <i>Joule</i> , 2020 , 4, 1445-1458	27.8	39
513	Constructing a Super-Saturated Electrolyte Front Surface for Stable Rechargeable Aqueous Zinc Batteries. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 9377-9381	16.4	234
512	Constructing a Super-Saturated Electrolyte Front Surface for Stable Rechargeable Aqueous Zinc Batteries. <i>Angewandte Chemie</i> , 2020 , 132, 9463-9467	3.6	31
511	A Safe Organic Oxygen Battery Built with Li-Based Liquid Anode and MOFs Separator. <i>Advanced Energy Materials</i> , 2020 , 10, 1903953	21.8	18
510	Stabilizing Reversible Oxygen Redox Chemistry in Layered Oxides for Sodium-Ion Batteries. <i>Advanced Energy Materials</i> , 2020 , 10, 1903785	21.8	35
509	Solar-driven all-solid-state lithium ir batteries operating at extreme low temperatures. <i>Energy and Environmental Science</i> , 2020 , 13, 1205-1211	35.4	19
508	Ni-Doped Layered Manganese Oxide as a Stable Cathode for Potassium-Ion Batteries. <i>ACS Applied Materials & ACS Applied & A</i>	9.5	23
507	A stable high-voltage lithium-ion battery realized by an in-built water scavenger. <i>Energy and Environmental Science</i> , 2020 , 13, 1197-1204	35.4	31
506	Dilution of the Electron Density in the EConjugated Skeleton of Organic Cathode Materials Improves the Discharge Voltage. <i>ChemSusChem</i> , 2020 , 13, 2264-2270	8.3	15
505	Using a Heme-Based Nanozyme as Bifunctional Redox Mediator for LiD2 Batteries. <i>Batteries and Supercaps</i> , 2020 , 3, 336-340	5.6	7
504	LiF Protective Layer on a Li Anode: Toward Improving the Performance of Li-O Batteries with a Redox Mediator. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 18490-18495	9.5	19

(2020-2020)

5	503	A Superlattice-Stabilized Layered Oxide Cathode for Sodium-Ion Batteries. <i>Advanced Materials</i> , 2020 , 32, e1907936	24	26	
5	;O2	Li-CO and Na-CO Batteries: Toward Greener and Sustainable Electrical Energy Storage. <i>Advanced Materials</i> , 2020 , 32, e1903790	24	82	
5	01	Superior efficient rechargeable lithium ir batteries using a bifunctional biological enzyme catalyst. <i>Energy and Environmental Science</i> , 2020 , 13, 144-151	35.4	9	
5	00	Towards a stable LittO2 battery: The effects of CO2 to the Li metal anode. <i>Energy Storage Materials</i> , 2020 , 26, 443-447	19.4	31	
4	199	Suppressing Cation Migration and Reducing Particle Cracks in a Layered Fe-Based Cathode for Advanced Sodium-Ion Batteries. <i>Small</i> , 2020 , 16, e1904388	11	28	
4	ļ98	Identifying Anionic Redox Activity within the Related O3- and P2-Type Cathodes for Sodium-Ion Battery. <i>ACS Applied Materials & Date of Sodium-Ion (Samp)</i> 12, 851-857	9.5	13	
4	197	Renewable Polysulfide Regulation by Versatile Films toward High-Loading Lithium-Sulfur Batteries. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 12, 47590-47598	9.5	5	
4	196	An in situ solidifying strategy enabling high-voltage all-solid-state Li-metal batteries operating at room temperature. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 25217-25225	13	7	
4	195	P2-Type Layered NaNiRuMnO Cathode Material with Excellent Rate Performance for Sodium-Ion Batteries. <i>ACS Applied Materials & </i>	9.5	10	
4	194	Elucidating Anionic Redox Chemistry in P3 Layered Cathode for Na-Ion Batteries. <i>ACS Applied Materials & ACS Applied</i> Materials & Interfaces, 2020 , 12, 38249-38255	9.5	9	
4	193	A Liquid Electrolyte with De-Solvated Lithium Ions for Lithium-Metal Battery. <i>Joule</i> , 2020 , 4, 1776-1789	27.8	62	
4	ļ92	A Metal-Organic Framework as a Multifunctional Ionic Sieve Membrane for Long-Life Aqueous Zinc-Iodide Batteries. <i>Advanced Materials</i> , 2020 , 32, e2004240	24	82	
4	191	Integrating P2 into O?3 toward a robust Mn-Based layered cathode for sodium-ion batteries. Journal of Materials Chemistry A, 2020 , 8, 23820-23826	13	5	
4	190	A Review of Solid-State LithiumBulfur Battery: Ion Transport and Polysulfide Chemistry. <i>Energy & Energy</i> 8. 11942-11961	4.1	26	
4	ļ89	Beyond the concentrated electrolyte: further depleting solvent molecules within a Li+ solvation sheath to stabilize high-energy-density lithium metal batteries. <i>Energy and Environmental Science</i> , 2020 , 13, 4122-4131	35.4	48	
4	.88	Tuning Interface Bridging Between MoSe and Three-Dimensional Carbon Framework by Incorporation of MoC Intermediate to Boost Lithium Storage Capability. <i>Nano-Micro Letters</i> , 2020 , 12, 171	19.5	15	
4	187	Anion Cation Synergetic Contribution to High Capacity, Structurally Stable Cathode Materials for Sodium-Ion Batteries. <i>Advanced Functional Materials</i> , 2020 , 30, 2005164	15.6	21	
4	.86	Fabricating better metal-organic frameworks separators for Liß batteries: Pore sizes effects inspired channel modification strategy. <i>Energy Storage Materials</i> , 2020 , 25, 164-171	19.4	46	

485	A high-performance layered Cr-Based cathode for sodium-ion batteries. <i>Nano Energy</i> , 2020 , 67, 104215	17.1	26
484	Restraining Oxygen Loss and Suppressing Structural Distortion in a Newly Ti-Substituted Layered Oxide P2-Na0.66Li0.22Ti0.15Mn0.63O2. <i>ACS Energy Letters</i> , 2019 , 4, 2409-2417	20.1	58
483	Rational Design of a Gel-Polymer-Inorganic Separator with Uniform Lithium-Ion Deposition for Highly Stable Lithium-Sulfur Batteries. <i>ACS Applied Materials & Design Separator</i> , 11, 35788-35795	9.5	17
482	Review on anionic redox in sodium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 23662-23678	313	45
481	Halogen conversion-intercalation chemistry promises high energy density Li-ion battery. <i>Science Bulletin</i> , 2019 , 64, 1393-1395	10.6	8
480	A New Type of Li-Rich Rock-Salt Oxide Li Ni Ru O with Reversible Anionic Redox Chemistry. <i>Advanced Materials</i> , 2019 , 31, e1807825	24	61
479	Na2Ru1⊠MnxO3 as the cathode for sodium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 4395	5-4399	14
478	Advances and Challenges for Aprotic Lithium-Oxygen Batteries using Redox Mediators. <i>Batteries and Supercaps</i> , 2019 , 2, 803-819	5.6	26
477	Developing A P olysulfide-Phobic trategy to Restrain Shuttle Effect in Lithium ulfur Batteries. <i>Angewandte Chemie</i> , 2019 , 131, 11900-11904	3.6	18
476	Developing A "Polysulfide-Phobic" Strategy to Restrain Shuttle Effect in Lithium-Sulfur Batteries. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 11774-11778	16.4	58
475	Killing two birds with one stone: a Cu ion redox mediator for a non-aqueous LiD2 battery. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 17261-17265	13	18
474	Enhanced K-ion kinetics in a layered cathode for potassium ion batteries. <i>Chemical Communications</i> , 2019 , 55, 7910-7913	5.8	26
473	Manganese-Based Na-Rich Materials Boost Anionic Redox in High-Performance Layered Cathodes for Sodium-Ion Batteries. <i>Advanced Materials</i> , 2019 , 31, e1807770	24	72
472	Integrated solid electrolyte with porous cathode by facilely one-step sintering for an all-solid-state Li-O battery. <i>Nanotechnology</i> , 2019 , 30, 364003	3.4	9
471	The potential of electrolyte filled MOF membranes as ionic sieves in rechargeable batteries. <i>Energy and Environmental Science</i> , 2019 , 12, 2327-2344	35.4	76
470	Materials for advanced Li-O2 batteries: Explorations, challenges and prospects. <i>Materials Today</i> , 2019 , 26, 87-99	21.8	70
469	Suppressed the High-Voltage Phase Transition of P2-Type Oxide Cathode for High-Performance Sodium-Ion Batteries. <i>ACS Applied Materials & Date of Sodium-Ion Batteries</i> . <i>ACS Applied Materials & Date of Sodium-Ion Batteries</i> .	9.5	40
468	Capturing Reversible Cation Migration in Layered Structure Materials for Na-Ion Batteries. Advanced Energy Materials, 2019 , 9, 1900189	21.8	29

(2019-2019)

467	A Dual-Ion Organic Symmetric Battery Constructed from Phenazine-Based Artificial Bipolar Molecules. <i>Angewandte Chemie</i> , 2019 , 131, 10007-10011	3.6	19
466	A Dual-Ion Organic Symmetric Battery Constructed from Phenazine-Based Artificial Bipolar Molecules. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 9902-9906	16.4	76
465	Exploration of Advanced Electrode Materials for Rechargeable Sodium-Ion Batteries. <i>Advanced Energy Materials</i> , 2019 , 9, 1800212	21.8	139
464	Adverse effects of interlayer-gliding in layered transition-metal oxides on electrochemical sodium-ion storage. <i>Energy and Environmental Science</i> , 2019 , 12, 825-840	35.4	138
463	Solid-State Electrolytes for Lithium-Ion Batteries: Fundamentals, Challenges and Perspectives. <i>Electrochemical Energy Reviews</i> , 2019 , 2, 574-605	29.3	113
462	Unraveling the anionic oxygen loss and related structural evolution within O3-type Na layered oxide cathodes. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 20405-20413	13	10
461	Improvement of preparation process for Li-ion conducting membranes composed of monolayered inorganic electrolyte particles and insulating polymer matrix. <i>Solid State Ionics</i> , 2019 , 341, 115037	3.3	1
460	The Design of Quaternary Nitrogen Redox Center for High-Performance Organic Battery Materials. <i>Matter</i> , 2019 , 1, 945-958	12.7	33
459	Sodium Alginate Enabled Advanced Layered Manganese-Based Cathode for Sodium-Ion Batteries. <i>ACS Applied Materials & District Managanese (Managanese - Based Cathode for Sodium-Ion Batteries).</i> 11, 26817-26823	9.5	17
458	H2O self-trapping air cathode of Li©2 battery enabling low charge potential operating in dry system. <i>Nano Energy</i> , 2019 , 64, 103945	17.1	16
457	A promising Mo-based lithium-rich phase for Li-ion batteries RSC Advances, 2019, 9, 17852-17855	3.7	2
456	Understanding the effect of the concentration of LiNO3 salt in LiD2 batteries. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 18318-18323	13	14
455	Advanced Hybrid Electrolyte Li-O2 Battery Realized by Dual Superlyophobic Membrane. <i>Joule</i> , 2019 , 3, 2986-3001	27.8	30
454	Designing a Multifunctional Separator for High-Performance Li-S Batteries at Elevated Temperature. <i>Small</i> , 2019 , 15, e1904332	11	21
453	Advances and Challenges for Aprotic Lithium-Oxygen Batteries using Redox Mediators. <i>Batteries and Supercaps</i> , 2019 , 2, 802-802	5.6	3
452	A high-energy-density and long-life lithium-ion battery via reversible oxideperoxide conversion. <i>Nature Catalysis</i> , 2019 , 2, 1035-1044	36.5	90
451	Hybrid polymer electrolyte for LiD2 batteries. <i>Green Energy and Environment</i> , 2019 , 4, 3-19	5.7	16
450	Revealing the Critical Role of Titanium in Layered Manganese-Based Oxides toward Advanced Sodium-Ion Batteries via a Combined Experimental and Theoretical Study. <i>Small Methods</i> , 2019 , 3, 1800	183 ⁸	20

449	A Versatile Halide Ester Enabling Li-Anode Stability and a High Rate Capability in Lithium Dxygen Batteries. <i>Angewandte Chemie</i> , 2019 , 131, 2377-2381	3.6	7
448	A Versatile Halide Ester Enabling Li-Anode Stability and a High Rate Capability in Lithium-Oxygen Batteries. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 2355-2359	16.4	40
447	High-energy Mn-based layered cathodes for sodium-ion batteries. Science Bulletin, 2019, 64, 149-150	10.6	3
446	NonAqueous, Metal-Free, and Hybrid Electrolyte Li-Ion O Battery with a Single-Ion-Conducting Separator. <i>ACS Applied Materials & amp; Interfaces</i> , 2019 , 11, 4908-4914	9.5	11
445	A Concentrated Ternary-Salts Electrolyte for High Reversible Li Metal Battery with Slight Excess Li. <i>Advanced Energy Materials</i> , 2019 , 9, 1803372	21.8	108
444	Effective strategies for long-cycle life lithiumBulfur batteries. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 6155-6182	13	125
443	Electrochemical Oscillation in Li-Ion Batteries. <i>Joule</i> , 2018 , 2, 1265-1277	27.8	29
442	Recent advances in functional modification of separators in lithium-sulfur batteries. <i>Dalton Transactions</i> , 2018 , 47, 6881-6887	4.3	38
441	Both Cationic and Anionic Co-(de)intercalation into a Metal-Oxide Material. <i>Joule</i> , 2018 , 2, 1134-1145	27.8	70
440	Direct Visualization of the Reversible O /O Redox Process in Li-Rich Cathode Materials. <i>Advanced Materials</i> , 2018 , 30, e1705197	24	190
439	Germanium Thin Film Protected Lithium Aluminum Germanium Phosphate for Solid-State Li Batteries. <i>Advanced Energy Materials</i> , 2018 , 8, 1702374	21.8	146
438	Cation-mixing stabilized layered oxide cathodes for sodium-ion batteries. <i>Science Bulletin</i> , 2018 , 63, 370	6- ∄8. €	50
437	Reversible anionic redox activity in Na3RuO4 cathodes: a prototype Na-rich layered oxide. <i>Energy and Environmental Science</i> , 2018 , 11, 299-305	35.4	90
436	Tailoring Sodium Anodes for Stable Sodium Dxygen Batteries. <i>Advanced Functional Materials</i> , 2018 , 28, 1706374	15.6	41
435	MOF-Based Separator in an LiD2 Battery: An Effective Strategy to Restrain the Shuttling of Dual Redox Mediators. <i>ACS Energy Letters</i> , 2018 , 3, 463-468	20.1	116
434	Research progresses on materials and electrode design towards key challenges of Li-air batteries. <i>Energy Storage Materials</i> , 2018 , 13, 29-48	19.4	63
433	Amorphous PS/C Composite as High-Performance Anode Materials for Sodium-Ion Batteries. <i>ACS Applied Materials & District Applied Materials & District Aces</i> , 2018 , 10, 16-20	9.5	13
432	Fabrication and impedance analysis for designed composite layers with polymer and inorganic electrolytes leading to high conductivity. <i>Solid State Ionics</i> , 2018 , 316, 29-33	3.3	10

431	Clean Electrocatalysis in a Li2O2 Redox-Based Li D 2 Battery Built with a Hydrate-Melt Electrolyte. <i>ACS Catalysis</i> , 2018 , 8, 1082-1089	13.1	21
430	A single ion conducting separator and dual mediator-based electrolyte for high-performance lithiumBxygen batteries with non-carbon cathodes. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 9816-9822	13	33
429	Porous hybrid aerogels with ultrahigh sulfur loading for lithium ulfur batteries. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 9032-9040	13	28
428	A bottom-up synthetic hierarchical buffer structure of copper silicon nanowire hybrids as ultra-stable and high-rate lithium-ion battery anodes. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 7877-78	8 6	27
427	Li2CO3-free LiD2/CO2 battery with peroxide discharge product. <i>Energy and Environmental Science</i> , 2018 , 11, 1211-1217	35.4	84
426	Solar-driven efficient Li2O2 oxidation in solid-state Li-ion O2 batteries. <i>Energy Storage Materials</i> , 2018 , 11, 170-175	19.4	35
425	Rechargeable Solid-State Lillir and Lill Batteries: Materials, Construction, and Challenges. <i>Advanced Energy Materials</i> , 2018 , 8, 1701602	21.8	165
424	A Hybrid Electrolytes Design for Capacity-Equivalent Dual-Graphite Battery with Superior Long-Term Cycle Life. <i>Advanced Energy Materials</i> , 2018 , 8, 1801120	21.8	33
423	A current collector covering nanostructured villous oxygen-deficient NiO fabricated by rapid laser-scan for Li-O2 batteries. <i>Nano Energy</i> , 2018 , 51, 83-90	17.1	41
422	Research Progress for the Development of Li-Air Batteries: Addressing Parasitic Reactions Arising from Air Composition. <i>Energy and Environmental Materials</i> , 2018 , 1, 61-74	13	32
421	A phase-transition-free cathode for sodium-ion batteries with ultralong cycle life. <i>Nano Energy</i> , 2018 , 52, 88-94	17.1	36
420	An ultrafast rechargeable lithium metal battery. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 15517-15522	13	28
419	Developing a "Water-Defendable" and "Dendrite-Free" Lithium-Metal Anode Using a Simple and Promising GeCl Pretreatment Method. <i>Advanced Materials</i> , 2018 , 30, e1705711	24	142
418	A High-Crystalline NaV1.25Ti0.75O4 Anode for Wide-Temperature Sodium-Ion Battery. <i>Advanced Energy Materials</i> , 2018 , 8, 1801162	21.8	23
417	Lithium Borocarbide LiBC as an Anode Material for Rechargeable Li-Ion Batteries. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 18231-18236	3.8	13
416	Boosting the Cycle Life of Aprotic Li D 2 Batteries via a Photo-Assisted Hybrid Li2O2-Scavenging Strategy. <i>Small Methods</i> , 2018 , 2, 1700284	12.8	28
415	An ultra-stable and enhanced reversibility lithium metal anode with a sufficient O2 design for Li-O2 battery. <i>Energy Storage Materials</i> , 2018 , 12, 176-182	19.4	29
414	Ultra-fine surface solid-state electrolytes for long cycle life all-solid-state lithium lir batteries. Journal of Materials Chemistry A, 2018, 6, 21248-21254	13	43

413	Minimizing the Abnormal High-Potential Discharge Process Related to Redox Mediators in Lithium-Oxygen Batteries. <i>Journal of Physical Chemistry Letters</i> , 2018 , 9, 6761-6766	6.4	9
412	High-Voltage Li-Ion Full-Cells with Ultralong Term Cycle Life at Elevated Temperature. <i>Advanced Energy Materials</i> , 2018 , 8, 1802322	21.8	22
411	Lithium Metal Extraction from Seawater. <i>Joule</i> , 2018 , 2, 1648-1651	27.8	121
410	High-Power Li-Metal Anode Enabled by Metal-Organic Framework Modified Electrolyte. <i>Joule</i> , 2018 , 2, 2117-2132	27.8	153
409	Simultaneously Inhibiting Lithium Dendrites Growth and Polysulfides Shuttle by a Flexible MOF-Based Membrane in LiB Batteries. <i>Advanced Energy Materials</i> , 2018 , 8, 1802130	21.8	158
408	Stable Voltage Cutoff Cycle Cathode with Tunable and Ordered Porous Structure for Li-O Batteries. Small, 2018 , 14, e1803607	11	14
407	A Multifunctional Silly-Putty Nanocomposite Spontaneously Repairs Cathode Composite for Advanced Liß Batteries. <i>Advanced Functional Materials</i> , 2018 , 28, 1804777	15.6	33
406	Temperature-Sensitive Structure Evolution of Lithium-Manganese-Rich Layered Oxides for Lithium-Ion Batteries. <i>Journal of the American Chemical Society</i> , 2018 , 140, 15279-15289	16.4	108
405	Exploring a high capacity O3-type cathode for sodium-ion batteries and its structural evolution during an electrochemical process. <i>Chemical Communications</i> , 2018 , 54, 12167-12170	5.8	20
404	Intensive investigation on all-solid-state Li-air batteries with cathode catalysts of single-walled carbon nanotube/RuO2. <i>Journal of Power Sources</i> , 2018 , 395, 439-443	8.9	26
403	Effects of nanostructuring on the bond strength and disorder in VO cathode material for rechargeable ion-batteries. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 15288-15292	3.6	4
402	In situ X-ray diffraction and thermal analysis of LiNi0.8Co0.15Al0.05O2 synthesized via co-precipitation method. <i>Journal of Energy Chemistry</i> , 2018 , 27, 1655-1660	12	19
401	Tuning the Morphologies of MnO/C Hybrids by Space Constraint Assembly of Mn-MOFs for High Performance Li Ion Batteries. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 5254-5262	9.5	96
400	Highly reversible sodium storage in a GeP5/C composite anode with large capacity and low voltage. Journal of Materials Chemistry A, 2017 , 5, 4413-4420	13	77
399	Intensive Study on the Catalytical Behavior of N-Methylphenothiazine as a Soluble Mediator to Oxidize the LiO Cathode of the Li-O Battery. <i>ACS Applied Materials & District Materials & District Materials & District Materials & District Mediator &</i>	9.5	51
398	Status and prospects of polymer electrolytes for solid-state LiD2 (air) batteries. <i>Energy and Environmental Science</i> , 2017 , 10, 860-884	35.4	153
397	Carbon-Free O Cathode with Three-Dimensional Ultralight Nickel Foam-Supported Ruthenium Electrocatalysts for Li-O Batteries. <i>ChemSusChem</i> , 2017 , 10, 2714-2719	8.3	31
396	Boosting the Cycle Life of LiD2 Batteries at Elevated Temperature by Employing a Hybrid PolymerDeramic Solid Electrolyte. <i>ACS Energy Letters</i> , 2017 , 2, 1378-1384	20.1	49

(2017-2017)

395	Development and perspective of the insertion anode Li 3 VO 4 for lithium-ion batteries. <i>Energy Storage Materials</i> , 2017 , 7, 17-31	19.4	45
394	Enhanced Cycle Stability of Rechargeable Li-O Batteries by the Synergy Effect of a LiF Protective Layer on the Li and DMTFA Additive. <i>ACS Applied Materials & Description (Control of the Li and DMTFA)</i> 21307-21313	9.5	29
393	A reversible lithium ICO2 battery with Ru nanoparticles as a cathode catalyst. <i>Energy and Environmental Science</i> , 2017 , 10, 972-978	35.4	201
392	From O to HO: Reducing By-Products and Overpotential in Li-O Batteries by Water Addition. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 4960-4964	16.4	107
391	From O2Ito HO2IReducing By-Products and Overpotential in Li-O2 Batteries by Water Addition. <i>Angewandte Chemie</i> , 2017 , 129, 5042-5046	3.6	20
390	A Li-ion oxygen battery with Li-Si alloy anode prepared by a mechanical method. <i>Electrochemistry Communications</i> , 2017 , 78, 11-15	5.1	21
389	Solar energy storage in the rechargeable batteries. <i>Nano Today</i> , 2017 , 16, 46-60	17.9	112
388	A Design of Solid-State Li-S Cell with Evaporated Lithium Anode To Eliminate Shuttle Effects. <i>ACS Applied Materials & Design of Solid-State Li-S Cell with Evaporated Lithium Anode To Eliminate Shuttle Effects. ACS Applied Materials & Design of Solid-State Li-S Cell with Evaporated Lithium Anode To Eliminate Shuttle Effects. <i>ACS Applied Materials & Design of Solid-State Li-S Cell with Evaporated Lithium Anode To Eliminate Shuttle Effects. ACS Applied Materials & Design of Solid-State Li-S Cell with Evaporated Lithium Anode To Eliminate Shuttle Effects. <i>ACS Applied Materials & Design of Solid-State Li-S Cell with Evaporated Lithium Anode To Eliminate Shuttle Effects. ACS Applied Materials & Design of Solid-State Li-S Cell with Evaporated Lithium Anode To Eliminate Shuttle Effects. <i>ACS Applied Materials & Design of Solid-State Li-S Cell with Evaporated Lithium Anode To Eliminate Shuttle Effects. ACS Applied Materials & Design of Solid-State Lithium Anode To Eliminate Shuttle Effects. ACS Applied Materials & Design of Solid-State Lithium Anode To Eliminate Shuttle Effects Account Design of Solid-State Lithium Anode To Eliminate Shuttle Effects Account Design of Solid-State Lithium Anode To Eliminate Shuttle Effects Account Design of Solid-State Lithium Anode To Eliminate Shuttle Effects Account Design of Solid-State Lithium Anode To Eliminate Shuttle Effects Account Design of Solid-State Lithium Anode To Eliminate Shuttle Effects Account Design of Solid-State Lithium Anode To Eliminate Shuttle Effects Account Design of Solid-State Lithium Anode To Eliminate Shuttle Effects Account Design of Solid-State Lithium Anode To Eliminate Shuttle Effects Account Design of Solid-State Lithium Anode To Eliminate Shuttle Effects Account Design of Solid-State Lithium Anode To Eliminate Shuttle Effects Account Design of Solid-State Lithium Anode To Eliminate Shuttle Effects Account Design of Solid-State Lithium Anode To Eliminate Shuttle Effects Account Design of Solid-State Lithium Anode To Eliminate Shuttle Effects Account </i></i></i></i>	9.5	32
387	MnCo2O4 decorated Magnli phase titanium oxide as a carbon-free cathode for LiD2 batteries. Journal of Materials Chemistry A, 2017 , 5, 19991-19996	13	18
386	Tunable Electrochemistry via Controlling Lattice Water in Layered Oxides of Sodium-Ion Batteries. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 34909-34914	9.5	9
385	Advances in Lithium-Containing Anodes of Aprotic LiD2 Batteries: Challenges and Strategies for Improvements. <i>Small Methods</i> , 2017 , 1, 1700135	12.8	61
384	A Postspinel Anode Enabling Sodium-Ion Ultralong Cycling and Superfast Transport via 1D Channels. <i>Advanced Energy Materials</i> , 2017 , 7, 1700361	21.8	12
383	Unraveling the Complex Role of Iodide Additives in LiD2 Batteries. ACS Energy Letters, 2017, 2, 1869-18	728 0.1	72
382	Environmentally stable interface of layered oxide cathodes for sodium-ion batteries. <i>Nature Communications</i> , 2017 , 8, 135	17.4	166
381	Li-CO2 Electrochemistry: A New Strategy for CO2 Fixation and Energy Storage. <i>Joule</i> , 2017 , 1, 359-370	27.8	207
380	A Super-Hydrophobic Quasi-Solid Electrolyte for Li-O2 Battery with Improved Safety and Cycle Life in Humid Atmosphere. <i>Advanced Energy Materials</i> , 2017 , 7, 1601759	21.8	95
379	Study on the Aqueous Hybrid Supercapacitor Based on Carbon-coated NaTi2(PO4)3 and Activated Carbon Electrode Materials. <i>Acta Chimica Sinica</i> , 2017 , 75, 241	3.3	3
378	Synthesis of hierarchical and bridging carbon-coated LiMn 0.9 Fe 0.1 PO 4 nanostructure as cathode material with improved performance for lithium ion battery. <i>Journal of Power Sources</i> , 2017 , 359, 408-4	 1 ⁸ 49	21

377	Organic hydrogen peroxide-driven low charge potentials for high-performance lithium-oxygen batteries with carbon cathodes. <i>Nature Communications</i> , 2017 , 8, 15607	17.4	49
376	Reversible Lithium-Ion Uptake in Poly(methylmethacrylate) Thin-Film via Lithiation/Delithiation at In Situ Formed Intramolecular Cyclopentanedione. <i>Advanced Energy Materials</i> , 2016 , 6, 1601375	21.8	32
375	A long-life lithium ion oxygen battery based on commercial silicon particles as the anode. <i>Energy and Environmental Science</i> , 2016 , 9, 3262-3271	35.4	78
374	Understanding sodium-ion diffusion in layered P2 and P3 oxides via experiments and first-principles calculations: a bridge between crystal structure and electrochemical performance. <i>NPG Asia Materials</i> , 2016 , 8, e266-e266	10.3	74
373	Recent advances in titanium-based electrode materials for stationary sodium-ion batteries. <i>Energy and Environmental Science</i> , 2016 , 9, 2978-3006	35.4	293
372	Enhanced cycle stability of hybrid LiBir batteries with carbon nanofiber grown on carbon black. <i>RSC Advances</i> , 2016 , 6, 74195-74200	3.7	5
371	Correlation between the O 2p Orbital and Redox Reaction in LiMn Fe PO Nanowires Studied by Soft X-ray Absorption. <i>ChemPhysChem</i> , 2016 , 17, 4110-4115	3.2	2
370	MetalBrganic framework-based separator for lithiumBulfur batteries. <i>Nature Energy</i> , 2016 , 1,	62.3	801
369	Hierarchical nanoporosity enhanced reversible capacity of bicontinuous nanoporous metal based Li-O2 battery. <i>Scientific Reports</i> , 2016 , 6, 33466	4.9	42
368	Progress in research on LiCO2 batteries: Mechanism, catalyst and performance. <i>Chinese Journal of Catalysis</i> , 2016 , 37, 1016-1024	11.3	77
367	Lowering the charge voltage of LiD2 batteries via an unmediated photoelectrochemical oxidation approach. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 12411-12415	13	37
366	A green and cost-effective rechargeable battery with high energy density based on a deep eutectic catholyte. <i>Energy and Environmental Science</i> , 2016 , 9, 2267-2272	35.4	51
365	Carbon Cathodes in Rechargeable Lithium-Oxygen Batteries Based on Double-Lithium-Salt Electrolytes. <i>ChemSusChem</i> , 2016 , 9, 1249-54	8.3	8
364	Highly Connected Silicontopper Alloy Mixture Nanotubes as High-Rate and Durable Anode Materials for Lithium-Ion Batteries. <i>Advanced Functional Materials</i> , 2016 , 26, 524-531	15.6	92
363	A Synergistic System for Lithium Dxygen Batteries in Humid Atmosphere Integrating a Composite Cathode and a Hydrophobic Ionic Liquid-Based Electrolyte. <i>Advanced Functional Materials</i> , 2016 , 26, 32	91-329	8 ⁶²
362	Fabrication of High-Energy Li-Ion Cells with Li4 Ti5 O12 Microspheres as Anode and 0.5 Li2 MnO3 ?0.5 LiNi0.4 Co0.2 Mn0.4 O2 Microspheres as Cathode. <i>Chemistry - an Asian Journal</i> , 2016 , 11, 1273-80	4.5	10
361	Ruthenium functionalized graphene aerogels with hierarchical and three-dimensional porosity as a free-standing cathode for rechargeable lithium-oxygen batteries. <i>NPG Asia Materials</i> , 2016 , 8, e239-e23	39 ^{10.3}	73
360	Cage-Type Highly Graphitic Porous Carbon-Co3O4 Polyhedron as the Cathode of Lithium-Oxygen Batteries. <i>ACS Applied Materials & Daterials & Acs Applied Materials & Daterials &</i>	9.5	89

359	Lithium-Air Batteries with Hybrid Electrolytes. <i>Journal of Physical Chemistry Letters</i> , 2016 , 7, 1267-80	6.4	78
358	Electrochemical characteristic of based on carbon mixed with organic metal complex (Co(mqph)) in alkaline media Lilir battery. <i>Journal of Power Sources</i> , 2016 , 307, 474-480	8.9	2
357	Stabilization of polysulfides via lithium bonds for LiB batteries. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 5406-5409	13	87
356	Hierarchical Porous Nickel Cobaltate Nanoneedle Arrays as Flexible Carbon-Protected Cathodes for High-Performance Lithium-Oxygen Batteries. <i>ACS Applied Materials & Acs Applied & Acs App</i>	9.5	69
355	Fabrication and Performance of High Energy Li-Ion Battery Based on the Spherical Li[Li(0.2)Ni(0.16)Co(0.1)Mn(0.54)]O2 Cathode and Si Anode. <i>ACS Applied Materials & Discrete Amp; Interfaces</i> , 2016 , 8, 208-14	9.5	16
354	A self-defense redox mediator for efficient lithium D2 batteries. <i>Energy and Environmental Science</i> , 2016 , 9, 1024-1030	35.4	185
353	Ordered mesoporous TiC-C composites as cathode materials for Li-O2 batteries. <i>Chemical Communications</i> , 2016 , 52, 2713-6	5.8	46
352	Interfacial construction of Li2O2 for a performance-improved polymer LiD2 battery. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 2403-2407	13	33
351	A battery with sulphur cathode and lithiated graphite anode based on Lithium shuttle reaction. <i>Materials Technology</i> , 2016 , 31, 517-520	2.1	6
350	Stable Litrganic Batteries with Nafion-Based Sandwich-Type Separators. <i>Advanced Energy Materials</i> , 2016 , 6, 1501780	21.8	45
349	Effect of Chemical Doping on Cathodic Performance of Bicontinuous Nanoporous Graphene for Li-O2 Batteries. <i>Advanced Energy Materials</i> , 2016 , 6, 1501870	21.8	116
348	High-Safety and Low-Cost Photoassisted Chargeable Aqueous Sodium-Ion Batteries with 90% Input Electric Energy Savings. <i>Advanced Energy Materials</i> , 2016 , 6, 1600632	21.8	52
347	Critical Challenges in Rechargeable Aprotic LiD2 Batteries. Advanced Energy Materials, 2016, 6, 150230	321.8	305
346	High-Loading Nano-SnO2 Encapsulated in situ in Three-Dimensional Rigid Porous Carbon for Superior Lithium-Ion Batteries. <i>Chemistry - A European Journal</i> , 2016 , 22, 4915-23	4.8	98
345	Material/element-dependent fluorescence-yield modes on soft X-ray absorption spectroscopy of cathode materials for Li-ion batteries. <i>AIP Advances</i> , 2016 , 6, 035105	1.5	28
344	Exploring the electrochemical reaction mechanism of carbonate oxidation in Lillir/CO2 battery through tracing missing oxygen. <i>Energy and Environmental Science</i> , 2016 , 9, 1650-1654	35.4	140
343	Facilitating the Oxygen Evolution Reaction of Lithium Peroxide via Molecular Adsorption. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 10237-10243	3.8	8
342	Scalable synthesis and excellent catalytic effect of hydrangea-like RuO2 mesoporous materials for lithium D2 batteries. <i>Energy Storage Materials</i> , 2016 , 2, 8-13	19.4	36

341	Research on Effective Oxygen Window Influencing the Capacity of Li-O2 Batteries. <i>ACS Applied Materials & Acs Applied Materials & Acs Applied</i>	9.5	18
340	Crystalline Grain Interior Configuration Affects Lithium Migration Kinetics in Li-Rich Layered Oxide. <i>Nano Letters</i> , 2016 , 16, 2907-15	11.5	83
339	Exploration of LiO2 by the method of electrochemical quartz crystal microbalance in TEGDME based Li-O2 battery. <i>Journal of Power Sources</i> , 2016 , 329, 525-529	8.9	16
338	A long-life lithiumBulphur battery by integrating zincBrganic framework based separator. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 16812-16817	13	96
337	A Unique Hybrid Quasi-Solid-State Electrolyte for Li-O2 Batteries with Improved Cycle Life and Safety. <i>ChemSusChem</i> , 2016 , 9, 2391-6	8.3	47
336	A multi-layered Fe2O3/graphene composite with mesopores as a catalyst for rechargeable aprotic lithium-oxygen batteries. <i>Nanotechnology</i> , 2016 , 27, 365402	3.4	17
335	The water catalysis at oxygen cathodes of lithium-oxygen cells. <i>Nature Communications</i> , 2015 , 6, 7843	17.4	178
334	Promotional recyclable Li-ion batteries by a magnetic binder with anti-vibration and non-fatigue performance. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 15403-15407	13	10
333	Mesoporous NiO with a single-crystalline structure utilized as a noble metal-free catalyst for non-aqueous LiD2 batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 16177-16182	13	116
332	Fabrication and Performance of All-Solid-State Li-Air Battery with SWCNTs/LAGP Cathode. <i>ACS Applied Materials & District Materials & D</i>	9.5	76
331	Fabrication of Transparent ZnO Thick Film with Unusual Orientation by the Chemical Bath Deposition. <i>Crystal Growth and Design</i> , 2015 , 15, 3150-3156	3.5	9
330	Doping-induced memory effect in Li-ion batteries: the case of Al-doped LiTiO. <i>Chemical Science</i> , 2015 , 6, 4066-4070	9.4	21
329	Facile in Situ Preparation of Graphitic-CN@carbon Paper As an Efficient Metal-Free Cathode for Nonaqueous Li-OBattery. <i>ACS Applied Materials & Discrete States</i> , 2015, 7, 10823-7	9.5	65
328	Liquid Crystals: Liquid-Crystalline Electrolytes for Lithium-Ion Batteries: Ordered Assemblies of a Mesogen-Containing Carbonate and a Lithium Salt (Adv. Funct. Mater. 8/2015). <i>Advanced Functional Materials</i> , 2015 , 25, 1205-1205	15.6	2
327	Nanoporous Ru as a carbon- and binder-free cathode for Li-O2 batteries. <i>ChemSusChem</i> , 2015 , 8, 1429-	3\$.3	93
326	Binder-free carbonized bacterial cellulose-supported ruthenium nanoparticles for Li-O2 batteries. <i>Chemical Communications</i> , 2015 , 51, 7302-4	5.8	67
325	Superior Performance of a LiD2 Battery with Metallic RuO2 Hollow Spheres as the Carbon-Free Cathode. <i>Advanced Energy Materials</i> , 2015 , 5, 1500294	21.8	122
324	A Layered P2- and O3-Type Composite as a High-Energy Cathode for Rechargeable Sodium-Ion Batteries. <i>Angewandte Chemie</i> , 2015 , 127, 5992-5997	3.6	44

(2015-2015)

323	Layered phosphorus-like GeP5: a promising anode candidate with high initial coulombic efficiency and large capacity for lithium ion batteries. <i>Energy and Environmental Science</i> , 2015 , 8, 3629-3636	35.4	143
322	Saving electric energy by integrating a photoelectrode into a Li-ion battery. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 20903-20907	13	39
321	Low charge overpotentials in lithium-oxygen batteries based on tetraglyme electrolytes with a limited amount of water. <i>Chemical Communications</i> , 2015 , 51, 16860-3	5.8	52
320	Reaction and degradation mechanism in all-solid-state lithium-air batteries. <i>Chemical Communications</i> , 2015 , 51, 17560-3	5.8	18
319	A High-Voltage and Ultralong-Life Sodium Full Cell for Stationary Energy Storage. <i>Angewandte Chemie</i> , 2015 , 127, 11867-11871	3.6	12
318	A new layered sodium molybdenum oxide anode for full intercalation-type sodium-ion batteries. Journal of Materials Chemistry A, 2015 , 3, 22012-22016	13	41
317	Novel Stable Gel Polymer Electrolyte: Toward a High Safety and Long Life Li-Air Battery. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> , 7, 23798-804	9.5	73
316	Reducing the charging voltage of a LiD2 battery to 1.9 V by incorporating a photocatalyst. <i>Energy and Environmental Science</i> , 2015 , 8, 2664-2667	35.4	101
315	Phase transitions in a LiMn2O4 nanowire battery observed by operando electron microscopy. <i>ACS Nano</i> , 2015 , 9, 626-32	16.7	41
314	Synthesis of quasi-spherical micro-size lithium titanium oxide by an easy sol-gel method. <i>Journal of Solid State Electrochemistry</i> , 2015 , 19, 299-305	2.6	7
313	Fabrication of transparent conductive zinc oxide films by chemical bath deposition using solutions containing Zn2+ and Al3+ ions. <i>Journal of the Ceramic Society of Japan</i> , 2015 , 123, 329-334	1	1
312	All-solid-state lithium-oxygen battery with high safety in wide ambient temperature range. <i>Scientific Reports</i> , 2015 , 5, 13271	4.9	52
311	In-situ STEM Observation of Strain Field Movement in a LiMn2O4 Nanowire Battery. <i>Microscopy and Microanalysis</i> , 2015 , 21, 953-954	0.5	3
310	New Insights into Improving Rate Performance of Lithium-Rich Cathode Material. <i>Advanced Materials</i> , 2015 , 27, 3915-20	24	151
309	Sponge-Like Cathode Material Self-Assembled from Two-Dimensional V2O5 Nanosheets for Sodium-Ion Batteries. <i>ChemElectroChem</i> , 2015 , 2, 1660-1664	4.3	47
308	A High-Voltage and Ultralong-Life Sodium Full Cell for Stationary Energy Storage. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 11701-5	16.4	112
307	Polyanthraquinone as a Reliable Organic Electrode for Stable and Fast Lithium Storage. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 13947-51	16.4	243
306	Integrating a Photocatalyst into a Hybrid Lithium-Sulfur Battery for Direct Storage of Solar Energy. Angewandte Chemie - International Edition, 2015, 54, 9271-4	16.4	79

305	Liquid-Crystalline Electrolytes for Lithium-Ion Batteries: Ordered Assemblies of a Mesogen-Containing Carbonate and a Lithium Salt. <i>Advanced Functional Materials</i> , 2015 , 25, 1206-1212	15.6	78
304	Integrating a Photocatalyst into a Hybrid LithiumBulfur Battery for Direct Storage of Solar Energy. Angewandte Chemie, 2015, 127, 9403-9406	3.6	20
303	Polyanthraquinone as a Reliable Organic Electrode for Stable and Fast Lithium Storage. <i>Angewandte Chemie</i> , 2015 , 127, 14153-14157	3.6	87
302	A layered P2- and O3-type composite as a high-energy cathode for rechargeable sodium-ion batteries. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 5894-9	16.4	245
301	An oxygen cathode with stable full dischargedharge capability based on 2D conducting oxide. <i>Energy and Environmental Science</i> , 2015 , 8, 1992-1997	35.4	103
300	Poly(benzoquinonyl sulfide) as a High-Energy Organic Cathode for Rechargeable Li and Na Batteries. <i>Advanced Science</i> , 2015 , 2, 1500124	13.6	198
299	Operando soft x-ray emission spectroscopy of LiMn2O4 thin film involving Lifon extraction/insertion reaction. <i>Electrochemistry Communications</i> , 2015 , 50, 93-96	5.1	24
298	Enabling catalytic oxidation of Li2O2 at the liquid-solid interface: the evolution of an aprotic Li-O2 battery. <i>ChemSusChem</i> , 2015 , 8, 600-2	8.3	111
297	High-performance symmetric sodium-ion batteries using a new, bipolar O3-type material, Na0.8Ni0.4Ti0.6O2. <i>Energy and Environmental Science</i> , 2015 , 8, 1237-1244	35.4	193
296	Core-shell-structured CNT@RuO(2) composite as a high-performance cathode catalyst for rechargeable Li-O(2) batteries. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 442-6	16.4	453
295	Bipolar porous polymeric frameworks for low-cost, high-power, long-life all-organic energy storage devices. <i>Journal of Power Sources</i> , 2014 , 245, 553-556	8.9	53
294	Distinguishing between High- and Low-Spin States for Divalent Mn in Mn-Based Prussian Blue Analogue by High-Resolution Soft X-ray Emission Spectroscopy. <i>Journal of Physical Chemistry Letters</i> , 2014 , 5, 4008-13	6.4	19
293	An Ultrastable Anode for Long-Life Room-Temperature Sodium-Ion Batteries. <i>Angewandte Chemie</i> , 2014 , 126, 9109-9115	3.6	34
292	Monodispersed hierarchical Co3O4 spheres intertwined with carbon nanotubes for use as anode materials in sodium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 13805	13	110
291	Influence of CO2 on the stability of discharge performance for Lillir batteries with a hybrid electrolyte based on graphene nanosheets. <i>RSC Advances</i> , 2014 , 4, 11798	3.7	15
290	Two-electron migration orthosilicate cathode materials for Na-ion batteries. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 11574	13	15
289	A high-capacity, low-cost layered sodium manganese oxide material as cathode for sodium-ion batteries. <i>ChemSusChem</i> , 2014 , 7, 2115-9	8.3	83
288	Performance-improved LiD2 battery with Ru nanoparticles supported on binder-free multi-walled carbon nanotube paper as cathode. <i>Energy and Environmental Science</i> , 2014 , 7, 1648-1652	35.4	140

287	Fe2O3 nanocrystals anchored onto graphene nanosheets as the anode material for low-cost sodium-ion batteries. <i>Chemical Communications</i> , 2014 , 50, 1215-7	5.8	266
286	Anisotropic charge-transfer effects in the asymmetric Fe(CN)5NO octahedron of sodium nitroprusside: a soft X-ray absorption spectroscopy study. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 7031-6	3.6	16
285	A novel tunnel Na(0.61)Ti(0.48)Mn(0.52)Olæathode material for sodium-ion batteries. <i>Chemical Communications</i> , 2014 , 50, 7998-8001	5.8	54
284	Study of the lithium/nickel ions exchange in the layered LiNi0.42Mn0.42Co0.16O2 cathode material for lithium ion batteries: experimental and first-principles calculations. <i>Energy and Environmental Science</i> , 2014 , 7, 1068	35.4	151
283	Gel-derived cation-Istacking films of carbon nanotube-graphene complexes as oxygen cathodes. <i>ChemSusChem</i> , 2014 , 7, 2845-52	8.3	21
282	Study on the capacity fading of pristine and FePO 4 coated LiNi 1/3 Co 1/3 Mn 1/3 O 2 by Electrochemical and Magnetical techniques. <i>Electrochimica Acta</i> , 2014 , 148, 26-32	6.7	10
281	Hybrid electrolyte Li-air rechargeable batteries based on nitrogen- and phosphorus-doped graphene nanosheets. <i>RSC Advances</i> , 2014 , 4, 13119-13122	3.7	16
2 80	Li-O(2) battery based on highly efficient Sb-doped tin oxide supported Ru nanoparticles. <i>Advanced Materials</i> , 2014 , 26, 4659-64	24	127
279	Novel titanium-based O3-type NaTi(0.5)Ni(0.5)O2 as a cathode material for sodium ion batteries. <i>Chemical Communications</i> , 2014 , 50, 457-9	5.8	163
278	An aqueous dissolved polysulfide cathode for lithiumBulfur batteries. <i>Energy and Environmental Science</i> , 2014 , 7, 3307-3312	35.4	113
277	High stable post-spinel NaMn2O4 cathode of sodium ion battery. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 14822-14826	13	49
276	Surface coating of lithium thanganese-rich layered oxides with delaminated MnO2 nanosheets as cathode materials for Li-ion batteries. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 4422	13	95
275	High capacity NaD2 batteries with carbon nanotube paper as binder-free air cathode. <i>Journal of Power Sources</i> , 2014 , 251, 466-469	8.9	106
274	Electrochemical properties of LiMnxFe1NPO4 (x´=´0, 0.2, 0.4, 0.6, 0.8 and 1.0)/vapor grown carbon fiber coreSheath composite nanowire synthesized by electrospinning method. <i>Journal of Power Sources</i> , 2014 , 248, 615-620	8.9	20
273	An ultrastable anode for long-life room-temperature sodium-ion batteries. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 8963-9	16.4	116
272	Single Crystallization of Olivine Lithium Phosphate Nanowires using Oriented Attachments. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 7678-7682	3.8	9
271	The Size-Dependent Phase Transition of LiFePO4 Particles during Charging and Discharging in Lithium-Ion Batteries. <i>Energy Technology</i> , 2014 , 2, 542-547	3.5	18
270	CoreBhell-Structured CNT@RuO2 Composite as a High-Performance Cathode Catalyst for Rechargeable LiD2 Batteries. <i>Angewandte Chemie</i> , 2014 , 126, 452-456	3.6	49

269	A quinone-based oligomeric lithium salt for superior LiBrganic batteries. <i>Energy and Environmental Science</i> , 2014 , 7, 4077-4086	35.4	210
268	Two-phase transition of Li-intercalation compounds in Li-ion batteries. <i>Materials Today</i> , 2014 , 17, 451-4	63 1.8	83
267	Towards sustainable and versatile energy storage devices: an overview of organic electrode materials. <i>Energy and Environmental Science</i> , 2013 , 6, 2280	35.4	982
266	Designing high-capacity cathode materials for sodium-ion batteries. <i>Electrochemistry Communications</i> , 2013 , 34, 215-218	5.1	44
265	Bimetallic cyanide-bridged coordination polymers as lithium ion cathode materials: core@shell nanoparticles with enhanced cyclability. <i>Journal of the American Chemical Society</i> , 2013 , 135, 2793-9	16.4	173
264	Direct atomic-resolution observation of two phases in the Li(1.2)Mn(0.567)Ni(0.166)Co(0.067)O2 cathode material for lithium-ion batteries. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 5969-73	3 ^{16.} 4	196
263	Fe phthalocyanine supported by graphene nanosheet as catalyst in Lillir battery with the hybrid electrolyte. <i>Journal of Power Sources</i> , 2013 , 244, 429-434	8.9	24
262	Fabrication of porous cubic architecture of ZnO using Zn-terephthalate MOFs with characteristic microstructures. <i>Inorganic Chemistry</i> , 2013 , 52, 14028-33	5.1	51
261	Carbon supported TiN nanoparticles: an efficient bifunctional catalyst for non-aqueous Li-O2 batteries. <i>Chemical Communications</i> , 2013 , 49, 1175-7	5.8	150
2 60	Multi-walled carbon nanotube papers as binder-free cathodes for large capacity and reversible non-aqueous LiD2 batteries. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 13076	13	89
259	Ru/ITO: a carbon-free cathode for nonaqueous Li-O2 battery. <i>Nano Letters</i> , 2013 , 13, 4702-7	11.5	230
258	Formation of nanostructured MnO/Co/solid-electrolyte interphase ternary composites as a durable anode material for lithium-ion batteries. <i>Chemistry - an Asian Journal</i> , 2013 , 8, 760-4	4.5	12
257	VGCF-core@LiMn0.4Fe0.6PO4-sheath heterostructure nanowire for high rate Li-ion batteries. <i>CrystEngComm</i> , 2013 , 15, 6638	3.3	9
256	Improvement of electrochemical properties of LiNi1/3Co1/3Mn1/3O2 by coating with V2O5 layer. <i>Journal of Alloys and Compounds</i> , 2013 , 552, 76-82	5.7	62
255	One-Dimensional Nanostructured Metal Oxides for Lithium Ion Batteries 2013 , 295-320		1
254	Reversible contrast in focus series of annular bright field images of a crystalline LiMn D Ihanowire. <i>Ultramicroscopy</i> , 2013 , 125, 43-8	3.1	26
253	A hybrid phase-transition model of olivine LiFePO4 for the charge and discharge processes. <i>Journal of Power Sources</i> , 2013 , 233, 299-303	8.9	13
252	Aromatic porous-honeycomb electrodes for a sodium-organic energy storage device. <i>Nature Communications</i> , 2013 , 4, 1485	17.4	274

(2012-2013)

251	Challenges of non-aqueous LiD2 batteries: electrolytes, catalysts, and anodes. <i>Energy and Environmental Science</i> , 2013 , 6, 1125	35.4	418
250	Reversible solid state redox of an octacyanometallate-bridged coordination polymer by electrochemical ion insertion/extraction. <i>Inorganic Chemistry</i> , 2013 , 52, 3772-9	5.1	29
249	High-Energy Cathode Materials (Li2MnO3-LiMO2) for Lithium-Ion Batteries. <i>Journal of Physical Chemistry Letters</i> , 2013 , 4, 1268-80	6.4	465
248	Enhanced Cycling Performance of Li-O2 Batteries by the Optimized Electrolyte Concentration of LiTFSA in Glymes. <i>Advanced Energy Materials</i> , 2013 , 3, 532-538	21.8	90
247	Li3VO4: A Promising Insertion Anode Material for Lithium-Ion Batteries. <i>Advanced Energy Materials</i> , 2013 , 3, 428-432	21.8	188
246	Synthesis of Li-Mn-O mesocrystals with controlled crystal phases through topotactic transformation of MnCO□ <i>Nanoscale</i> , 2013 , 5, 2352-7	7.7	37
245	Synthesis of LiNi0.5Mn1.5O4 and 0.5Li2MnO3\overline{\mathbb{0}}.5LiNi1/3Co1/3Mn1/3O2 hollow nanowires by electrospinning. <i>CrystEngComm</i> , 2013 , 15, 2592	3.3	36
244	A reversible long-life lithium-air battery in ambient air. <i>Nature Communications</i> , 2013 , 4, 1817	17.4	318
243	Suppressed Activation Energy for Interfacial Charge Transfer of a Prussian Blue Analog Thin Film Electrode with Hydrated Ions (Li+, Na+, and Mg2+). <i>Journal of Physical Chemistry C</i> , 2013 , 117, 10877-10)8 ³ 8 ⁸ 2	134
242	PEDOT modified LiNi 1/3 Co 1/3 Mn 1/3 O 2 with enhanced electrochemical performance for lithium ion batteries. <i>Journal of Power Sources</i> , 2013 , 243, 374-380	8.9	73
241	The pursuit of rechargeable solid-state Lillir batteries. <i>Energy and Environmental Science</i> , 2013 , 6, 2302	35.4	142
240	In Situ TEM Observation of Local Phase Transformation in a Rechargeable LiMn2O4 Nanowire Battery. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 24236-24241	3.8	58
239	Synthesis and Electrical Properties of Garnet-type Solid Oxide Electrolyte Thin Films from Solution Route. <i>Materials Research Society Symposia Proceedings</i> , 2013 , 1496, 1		
238	Direct Atomic-Resolution Observation of Two Phases in the Li1.2Mn0.567Ni0.166Co0.067O2 Cathode Material for Lithium-Ion Batteries. <i>Angewandte Chemie</i> , 2013 , 125, 6085-6089	3.6	30
237	Impedance spectroscopic study on interfacial ion transfers in cyanide-bridged coordination polymer electrode with organic electrolyte. <i>Electrochimica Acta</i> , 2012 , 63, 139-145	6.7	52
236	Fabrication of FePO4 layer coated LiNi1/3Co1/3Mn1/3O2: Towards high-performance cathode materials for lithium ion batteries. <i>Electrochimica Acta</i> , 2012 , 83, 253-258	6.7	76
235	Electrochemical performance and reaction mechanism of all-solid-state lithium ir batteries composed of lithium, Li1+xAlyGe2 (PO4)3 solid electrolyte and carbon nanotube air electrode. <i>Energy and Environmental Science</i> , 2012 , 5, 9077	35.4	125
234	From LiD2 to LiAir Batteries: Carbon Nanotubes/Ionic Liquid Gels with a Tricontinuous Passage of Electrons, Ions, and Oxygen. <i>Angewandte Chemie</i> , 2012 , 124, 11224-11229	3.6	58

233	From Li-O2 to Li-air batteries: carbon nanotubes/ionic liquid gels with a tricontinuous passage of electrons, ions, and oxygen. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 11062-7	16.4	164
232	Electrospinning Synthesis of Wire-Structured LiCoO2 for Electrode Materials of High-Power Li-Ion Batteries. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 10774-10780	3.8	45
231	Electrochemical kinetics of the 0.5Li2MnO3D.5LiMn0.42Ni0.42Co0.16O2 dompositeDayered cathode material for lithium-ion batteries. <i>RSC Advances</i> , 2012 , 2, 8797	3.7	125
230	An unsymmetrical lithium-ion pathway between charge and discharge processes in a two-phase stage of Li4Ti5O12. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 9086-91	3.6	16
229	Initial Coulombic efficiency improvement of the Li1.2Mn0.567Ni0.166Co0.067O2 lithium-rich material by ruthenium substitution for manganese. <i>Journal of Materials Chemistry</i> , 2012 , 22, 15507		104
228	Fabrication of a Cyanide-Bridged Coordination Polymer Electrode for Enhanced Electrochemical Ion Storage Ability. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 8364-8369	3.8	93
227	Configuration-Interaction Full-Multiplet Calculation to Analyze the Electronic Structure of a Cyano-Bridged Coordination Polymer Electrode. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 24896-2490	13.8	25
226	High power Na-ion rechargeable battery with single-crystalline Na0.44MnO2 nanowire electrode. Journal of Power Sources, 2012, 217, 43-46	8.9	139
225	Enhancing the performances of Li-ion batteries by carbon-coating: present and future. <i>Chemical Communications</i> , 2012 , 48, 1201-17	5.8	730
224	Hierarchical micro/nano porous silicon Li-ion battery anodes. <i>Chemical Communications</i> , 2012 , 48, 5079-	851 .8	132
223	Layered lithium transition metal oxide cathodes towards high energy lithium-ion batteries. <i>Journal of Materials Chemistry</i> , 2012 , 22, 3680		361
222	Sodium iron pyrophosphate: A novel 3.0 V iron-based cathode for sodium-ion batteries. <i>Electrochemistry Communications</i> , 2012 , 24, 116-119	5.1	268
221	Precise electrochemical control of ferromagnetism in a cyanide-bridged bimetallic coordination polymer. <i>Inorganic Chemistry</i> , 2012 , 51, 10311-6	5.1	45
220	High-energy 'composite' layered manganese-rich cathode materials via controlling Li2MnO3 phase activation for lithium-ion batteries. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 6584-95	3.6	232
219	Crystal-Growth Process of Single-Crystal-like Mesoporous ZnO through a Competitive Reaction in Solution. <i>Crystal Growth and Design</i> , 2012 , 12, 2923-2931	3.5	19
218	Nano- and micro-sized TiN as the electrocatalysts for ORR in LiBir fuel cell with alkaline aqueous electrolyte. <i>Journal of Materials Chemistry</i> , 2012 , 22, 15549		50
217	N-Doped graphene nanosheets for LiBir fuel cells under acidic conditions. <i>Energy and Environmental Science</i> , 2012 , 5, 6928	35.4	133
216	Electrochemical Performance of Solid-State LithiumAir Batteries Using Carbon Nanotube Catalyst in the Air Electrode. <i>Advanced Energy Materials</i> , 2012 , 2, 889-894	21.8	101

215	Li-Redox Flow Batteries Based on Hybrid Electrolytes: At the Cross Road between Li-ion and Redox Flow Batteries. <i>Advanced Energy Materials</i> , 2012 , 2, 770-779	21.8	119
214	Ein Energiespeicherprinzip auf Basis bipolarer porßer Polymernetzwerke. <i>Angewandte Chemie</i> , 2012 , 124, 7972-7976	3.6	26
213	An energy storage principle using bipolar porous polymeric frameworks. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 7850-4	16.4	150
212	ZnO nano-rectangular framework-like structure from zinc hydroxide acetate plates. <i>Journal of the Ceramic Society of Japan</i> , 2012 , 120, 171-174	1	6
211	Li-air rechargeable battery based on metal-free graphene nanosheet catalysts. ACS Nano, 2011, 5, 3020	-6 6.7	353
210	Olivine LiFePO4: development and future. <i>Energy and Environmental Science</i> , 2011 , 4, 805-817	35.4	273
209	To draw an air electrode of a LiBir battery by pencil. <i>Energy and Environmental Science</i> , 2011 , 4, 1704	35.4	132
208	Electrochemical insertion/deinsertion of sodium on NaV6O15 nanorods as cathode material of rechargeable sodium-based batteries. <i>Journal of Power Sources</i> , 2011 , 196, 814-819	8.9	124
207	Biomimetic Solid-Solution Precursors of Metal Carbonate for Nanostructured Metal Oxides: MnO/Co and MnO-CoO Nanostructures and Their Electrochemical Properties. <i>Advanced Functional Materials</i> , 2011 , 21, 3673-3680	15.6	63
206	A Li-liquid cathode battery based on a hybrid electrolyte. <i>ChemSusChem</i> , 2011 , 4, 1087-90	8.3	70
205	Ion-Induced Transformation of Magnetism in a Bimetallic CuFe Prussian Blue Analogue. <i>Angewandte Chemie</i> , 2011 , 123, 6393-6397	3.6	18
204	Ion-induced transformation of magnetism in a bimetallic CuFe Prussian blue analogue. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 6269-73	16.4	80
203	A lithiumBir capacitorBattery based on a hybrid electrolyte. <i>Energy and Environmental Science</i> , 2011 , 4, 4994	35.4	82
202	Single-crystal H2V3O8 nanowires: a competitive anode with large capacity for aqueous lithium-ion batteries. <i>Journal of Materials Chemistry</i> , 2011 , 21, 1780-1787		90
201	Titanium nitride catalyst cathode in a Li-air fuel cell with an acidic aqueous solution. <i>Chemical Communications</i> , 2011 , 47, 10701-3	5.8	66
200	High-surface vanadium oxides with large capacities for lithium-ion batteries: from hydrated aerogel to nanocrystalline VO2(B), V6O13 and V2O5. <i>Journal of Materials Chemistry</i> , 2011 , 21, 10999		143
199	A large capacity of LiV3O8 cathode material for rechargeable lithium-based batteries. <i>Electrochimica Acta</i> , 2011 , 56, 1392-1398	6.7	44
198	The effect of alkalinity and temperature on the performance of lithium-air fuel cell with hybrid electrolytes. <i>Journal of Power Sources</i> , 2011 , 196, 5611-5616	8.9	59

197	Electron delocalization in cyanide-bridged coordination polymer electrodes for Li-ion batteries studied by soft x-ray absorption spectroscopy. <i>Physical Review B</i> , 2011 , 84,	3.3	32
196	Fast Li-Ion insertion into nanosized LiMn(2)O(4) without domain boundaries. ACS Nano, 2010 , 4, 741-52	16.7	169
195	Chlorophyll-a derivatives with various hydrocarbon ester groups for efficient dye-sensitized solar cells: static and ultrafast evaluations on electron injection and charge collection processes. <i>Langmuir</i> , 2010 , 26, 6320-7	4	110
194	Nano active materials for lithium-ion batteries. <i>Nanoscale</i> , 2010 , 2, 1294-305	7.7	443
193	Atomic and Electronic Structures of Li0.44MnO2 Nanowires and Li2MnO3 Byproducts in the Formation Process of LiMn2O4 Nanowires. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 18358-18365	3.8	11
192	A novel direct borohydride fuel cell using an acidElkaline hybrid electrolyte. <i>Energy and Environmental Science</i> , 2010 , 3, 1515	35.4	23
191	Synthesis of triaxial LiFePO4 nanowire with a VGCF core column and a carbon shell through the electrospinning method. <i>ACS Applied Materials & amp; Interfaces</i> , 2010 , 2, 212-8	9.5	111
190	A lithium-air fuel cell using copper to catalyze oxygen-reduction based on copper-corrosion mechanism. <i>Chemical Communications</i> , 2010 , 46, 6305-7	5.8	59
189	A novel rechargeable Li-AgO battery with hybrid electrolytes. <i>Chemical Communications</i> , 2010 , 46, 2055	-₹ .8	21
188	Carbon nanocages with nanographene shell for high-rate lithium ion batteries. <i>Journal of Materials Chemistry</i> , 2010 , 20, 9748		56
187	Aqueous solution synthesis of SnO nanostructures with tuned optical absorption behavior and photoelectrochemical properties through morphological evolution. <i>Nanoscale</i> , 2010 , 2, 2424-30	7.7	36
186	Biomimetic synthesis of metal ion-doped hierarchical crystals using a gel matrix: formation of cobalt-doped LiMn(2)O(4) with improved electrochemical properties through a cobalt-doped MnCO(3) precursor. <i>Chemistry - an Asian Journal</i> , 2010 , 5, 792-8	4.5	10
185	Synthesis of single crystalline Li0.44MnO2 nanowires with large specific capacity and good high current density property for a positive electrode of Li ion battery. <i>Journal of Power Sources</i> , 2010 , 195, 7098-7101	8.9	16
184	Flowerlike vanadium sesquioxide: solvothermal preparation and electrochemical properties. <i>ChemPhysChem</i> , 2010 , 11, 3273-80	3.2	34
183	Controllable hydrogen generation from water. <i>ChemSusChem</i> , 2010 , 3, 571-4	8.3	21
182	The development of a new type of rechargeable batteries based on hybrid electrolytes. <i>ChemSusChem</i> , 2010 , 3, 1009-19	8.3	78
181	Centimeter-long V2O5 nanowires: from synthesis to field-emission, electrochemical, electrical transport, and photoconductive properties. <i>Advanced Materials</i> , 2010 , 22, 2547-52	24	312
180	Formation of regular magnetic domains on spontaneously nanostructured cobalt filaments. <i>Advanced Materials</i> , 2010 , 22, 2711-6	24	9

179	Large single-crystal anatase TiO2 Bipyramids. Journal of Crystal Growth, 2010, 312, 213-219	1.6	18
178	A lithium-air battery with a potential to continuously reduce O2 from air for delivering energy. Journal of Power Sources, 2010 , 195, 358-361	8.9	255
177	TiO2- and ZnO-based solar cells using a chlorophyll a derivative sensitizer for light-harvesting and energy conversion. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2010 , 210, 145-152	4.7	47
176	Significant enhancement in the power-conversion efficiency of chlorophyll co-sensitized solar cells by mimicking the principles of natural photosynthetic light-harvesting complexes. <i>Biosensors and Bioelectronics</i> , 2010 , 25, 1970-6	11.8	54
175	A Li-air fuel cell with recycle aqueous electrolyte for improved stability. <i>Electrochemistry Communications</i> , 2010 , 12, 1686-1689	5.1	100
174	Synthesis and applications of SnO nanosheets: parallel control of oxidation state and nanostructure through an aqueous solution route. <i>Small</i> , 2010 , 6, 776-81	11	69
173	Effects of the nanoimprint pattern on the performance of a MEMS-based micro direct methanol fuel cell. <i>Journal of Micromechanics and Microengineering</i> , 2009 , 19, 015003	2	19
172	Enhanced benzene selectivity of mesoporous silica SPV sensors by incorporating phenylene groups in the silica framework. <i>Sensors and Actuators B: Chemical</i> , 2009 , 138, 417-421	8.5	23
171	Size effect on electrochemical property of nanocrystalline LiCoO2 synthesized from rapid thermal annealing method. <i>Solid State Ionics</i> , 2009 , 180, 612-615	3.3	47
170	Lithium insertion into nanometer-sized rutile-type TixSn1 IkO2 solid solutions. <i>Solid State Ionics</i> , 2009 , 180, 956-960	3.3	22
169	Synthesis and electrochemical properties of single-crystalline LiV3O8 nanorods as cathode materials for rechargeable lithium batteries. <i>Journal of Power Sources</i> , 2009 , 192, 668-673	8.9	101
168	A new type rechargeable lithium battery based on a Cu-cathode. <i>Electrochemistry Communications</i> , 2009 , 11, 1834-1837	5.1	29
167	Single crystal nanobelts of V3O7[H2O: A lithium intercalation host with a large capacity. <i>Electrochimica Acta</i> , 2009 , 54, 1115-1118	6.7	51
166	Efficient Dye-Sensitized Solar Cell Based on oxo-Bacteriochlorin Sensitizers with Broadband Absorption Capability. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 7954-7961	3.8	92
165	Determination of activation energy for Li ion diffusion in electrodes. <i>Journal of Physical Chemistry B</i> , 2009 , 113, 2840-7	3.4	66
164	Three-dimensional architectures of spinel-type LiMn2O4 prepared from biomimetic porous carbonates and their application to a cathode for lithium-ion batteries. <i>Journal of Materials Chemistry</i> , 2009 , 19, 4012		50
163	Mesoporous Carbon Nanofibers for Supercapacitor Application. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 1093-1097	3.8	174
162	Design and synthesis of a novel nanothorn VO2(B) hollow microsphere and their application in lithium-ion batteries. <i>Journal of Materials Chemistry</i> , 2009 , 19, 2835		111

161	Synthesis of single crystalline spinel LiMn2O4 nanowires for a lithium ion battery with high power density. <i>Nano Letters</i> , 2009 , 9, 1045-51	11.5	457
160	Rechargeable Ni-Li battery integrated aqueous/nonaqueous system. <i>Journal of the American Chemical Society</i> , 2009 , 131, 15098-9	16.4	95
159	Synthesis and characterisation of ordered arrays of mesoporous carbon nanofibres. <i>Journal of Materials Chemistry</i> , 2009 , 19, 1331		38
158	Anisotropic Surface Effect on Electronic Structures and Electrochemical Properties of LiCoO2. Journal of Physical Chemistry C, 2009 , 113, 15337-15342	3.8	39
157	Extension of pi-conjugation length along the Qy axis of a chlorophyll a derivative for efficient dye-sensitized solar cells. <i>Chemical Communications</i> , 2009 , 1523-5	5.8	64
156	Synthesis and electrochemical performance of nano-sized Li4Ti5O12 with double surface modification of Ti(III) and carbon. <i>Journal of Materials Chemistry</i> , 2009 , 19, 6789		228
155	Facile synthesis of NaV6O15 nanorods and its electrochemical behavior as cathode material in rechargeable lithium batteries. <i>Journal of Materials Chemistry</i> , 2009 , 19, 7885		123
154	Superhydrophobic property of the perpendicular nanosheet film by hot water treatment of the metal aluminum. <i>Journal of the Ceramic Society of Japan</i> , 2009 , 117, 299-301	1	6
153	Application of Nanoimprint Technology in MEMS-Based Micro Direct-Methanol Fuel Cell (\$mu\$-DMFC). <i>Journal of Microelectromechanical Systems</i> , 2008 , 17, 1020-1028	2.5	30
152	Metal-free organic dye sensitized solar cell based on perpendicular zinc oxide nanosheet thick films with high conversion efficiency. <i>Dalton Transactions</i> , 2008 , 5439-41	4.3	40
151	Synthesis of Nanocrystalline Li[sub 4]Ti[sub 5]O[sub 12] by Chemical Lithiation of Anatase Nanocrystals and Postannealing. <i>Journal of the Electrochemical Society</i> , 2008 , 155, A553	3.9	48
150	Fabrication of MnOOH nanorods on a substrate in an oxygen bubbled solution with superhydrophobic properties. <i>Nanotechnology</i> , 2008 , 19, 395605	3.4	16
149	The design of a LiFePO4/carbon nanocomposite with a core-shell structure and its synthesis by an in situ polymerization restriction method. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 7461-5	16.4	756
148	The Design of a LiFePO4/Carbon Nanocomposite With a CoreBhell Structure and Its Synthesis by an In Situ Polymerization Restriction Method. <i>Angewandte Chemie</i> , 2008 , 120, 7571-7575	3.6	80
147	Synthesis of single crystalline electro-conductive Na0.44MnO2 nanowires with high aspect ratio for the fast chargedischarge Li ion battery. <i>Journal of Power Sources</i> , 2008 , 182, 349-352	8.9	67
146	Phonon confinement effect on nanocrystalline LiCoO2 studied with Raman spectroscopy. <i>Journal of Physics and Chemistry of Solids</i> , 2008 , 69, 2911-2915	3.9	11
145	High rate performances of hydrogen titanate nanowires electrodes. <i>Electrochemistry Communications</i> , 2008 , 10, 1164-1167	5.1	30
144	Synthesis of single-crystal niobium pentoxide nanobelts. <i>Acta Materialia</i> , 2008 , 56, 2488-2494	8.4	84

(2007-2008)

143	A nanoscale meshed electrode of single-crystalline SnO for lithium-ion rechargeable batteries. <i>Electrochemistry Communications</i> , 2008 , 10, 52-55	5.1	85
142	Nb2O5 nanobelts: A lithium intercalation host with large capacity and high rate capability. <i>Electrochemistry Communications</i> , 2008 , 10, 980-983	5.1	153
141	Lithium insertion in ultra-thin nanobelts of Ag2V4O11/Ag. Electrochimica Acta, 2008, 53, 8134-8137	6.7	36
140	Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. <i>Nano Letters</i> , 2008 , 8, 2277-82	11.5	2453
139	Nanoimprint of Proton Exchange Membrane for MEMS-based Fuel Cell Application 2007,		6
138	Supercritical fluid processing of mesoporous crystalline TiO2 thin films for highly efficient dye-sensitized solar cells. <i>Journal of Materials Chemistry</i> , 2007 , 17, 3888		29
137	Preparation of Nanohybrid Solid-State Electrolytes with Liquidlike Mobilities by Solidifying Ionic Liquids with Silica Particles. <i>Chemistry of Materials</i> , 2007 , 19, 5216-5221	9.6	98
136	Synthesis of a perpendicular TiO2 nanosheet film with the superhydrophilic property without UV irradiation. <i>Langmuir</i> , 2007 , 23, 7447-50	4	112
135	Mesoporous Titania Nanotubes: Their Preparation and Application as Electrode Materials for Rechargeable Lithium Batteries. <i>Advanced Materials</i> , 2007 , 19, 3016-3020	24	232
134	Thin films composed of multiwalled carbon nanotubes, gold nanoparticles and myoglobin for humidity detection at room temperature. <i>ChemPhysChem</i> , 2007 , 8, 264-9	3.2	11
133	Synthesis of heteropoly oxometalate/amphiphilic block copolymer composite thin films with self-ordered mesostructures. <i>Thin Solid Films</i> , 2007 , 515, 2842-2846	2.2	4
132	Vanadium-oxide nanotubes: Synthesis and template-related electrochemical properties. <i>Electrochemistry Communications</i> , 2007 , 9, 1766-1771	5.1	42
131	Development of MEMS-based direct methanol fuel cell with high power density using nanoimprint technology. <i>Electrochemistry Communications</i> , 2007 , 9, 1365-1368	5.1	44
130	Effect of particle dispersion on high rate performance of nano-sized Li4Ti5O12 anode. <i>Electrochimica Acta</i> , 2007 , 52, 6470-6475	6.7	152
129	Synthesis and characterization of hybrid nano-crystallites inside self-ordered mesoporous carbon. <i>Microporous and Mesoporous Materials</i> , 2007 , 100, 227-232	5.3	3
128	Preparation and rate capability of Li4Ti5O12 hollow-sphere anode material. <i>Journal of Power Sources</i> , 2007 , 166, 514-518	8.9	119
127	Synthesis of spinel LiMn2O4 nanoparticles through one-step hydrothermal reaction. <i>Journal of Power Sources</i> , 2007 , 172, 410-415	8.9	108
126	Simultaneous voltammetric detection of dopamine and uric acid at their physiological level in the presence of ascorbic acid using poly(acrylic acid)-multiwalled carbon-nanotube composite-covered glassy-carbon electrode. <i>Biosensors and Bioelectronics</i> , 2007 , 23, 74-80	11.8	182

125	Particle size dependence of the lithium storage capability and high rate performance of nanocrystalline anatase TiO2 electrode. <i>Journal of Power Sources</i> , 2007 , 166, 239-243	8.9	287
124	High-Rate Lithium Ion Batteries with Flat Plateau Based on Self-Nanoporous Structure of Tin Electrode. <i>Journal of the Electrochemical Society</i> , 2007 , 154, A146	3.9	27
123	Nanocrystalline Rutile TiO[sub 2] Electrode for High-Capacity and High-Rate Lithium Storage. <i>Electrochemical and Solid-State Letters</i> , 2007 , 10, A127		127
122	Single-crystal ZnO nanorods fabricated with different end morphologies. <i>Nanotechnology</i> , 2007 , 18, 09	5 6.0 8	7
121	Switchable titanate-nanotube electrode sensitive to nitrate. <i>Applied Physics Letters</i> , 2007 , 90, 253112	3.4	9
120	Broadband surface plasmon resonance spectroscopy for determination of refractive-index dispersion of dielectric thin films. <i>Applied Physics Letters</i> , 2007 , 90, 181112	3.4	14
119	Nanoporous leaky waveguide based chemical and biological sensors with broadband spectroscopy. <i>Applied Physics Letters</i> , 2007 , 90, 011102	3.4	23
118	Mesostructured powder of tungsten oxidesurfactant compound: influence of calcination on the materials structure. <i>Studies in Surface Science and Catalysis</i> , 2007 , 291-299	1.8	1
117	Benzene sensors based on surface photo voltage of mesoporous organo-silica hybrid thin films. <i>Studies in Surface Science and Catalysis</i> , 2007 , 165, 893-896	1.8	1
116	Systematic characterization of spectral surface plasmon resonance sensors with absorbance measurement. <i>Applied Optics</i> , 2007 , 46, 7963-9	1.7	4
115	Synthesis of one-dimensional sodium titanate nanostructures. <i>Journal of Nanoscience and Nanotechnology</i> , 2007 , 7, 1065-8	1.3	5
114	One-step synthesis of nano-micro chestnut TiO2 with rutile nanopins on the microanatase octahedron. <i>ACS Nano</i> , 2007 , 1, 273-8	16.7	108
113	Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode. <i>Journal of the American Chemical Society</i> , 2007 , 129, 7444-52	16.4	568
112	Effect of solution pH and ionic strength on the stability of poly(acrylic acid)-encapsulated multiwalled carbon nanotubes aqueous dispersion and its application for NADH sensor. <i>Biosensors and Bioelectronics</i> , 2006 , 22, 694-9	11.8	58
111	Biosensing Properties of TitanateNanotube Films: Selective Detection of Dopamine in the Presence of Ascorbate and Uric Acid. <i>Advanced Functional Materials</i> , 2006 , 16, 371-376	15.6	152
110	Layer-by-Layer Fabrication and Characterization of Gold-Nanoparticle/Myoglobin Nanocomposite Films. <i>Advanced Functional Materials</i> , 2006 , 16, 377-386	15.6	58
109	Ultrasound-Triggered Smart Drug Release from a Poly(dimethylsiloxane)[Mesoporous Silica Composite. <i>Advanced Materials</i> , 2006 , 18, 3083-3088	24	199
108	Ordered-mesoporous-silica-thin-film-based chemical gas sensors with integrated optical polarimetric interferometry. <i>Applied Physics Letters</i> , 2006 , 88, 053503	3.4	25

(2006-2006)

107	Lithium doping of pentacene for electrochemical hydrogen storage. <i>Applied Physics Letters</i> , 2006 , 89, 023102	3.4	12
106	Sensitive slab optical waveguides composed of mesoporous metal-oxide thin films on the tin-diffused layers of float glass substrates. <i>Journal of Applied Physics</i> , 2006 , 100, 083102	2.5	1
105	Fabrication of Nano/Micro Hierarchical Fe[sub 2]O[sub 3]Ni Micrometer-Wire Structure and Characteristics for High Rate Li Rechargeable Battery. <i>Journal of the Electrochemical Society</i> , 2006 , 153, A1273	3.9	49
104	Utilization of Titanate Nanotubes as an Electrode Material in Dye-Sensitized Solar Cells. <i>Journal of the Electrochemical Society</i> , 2006 , 153, A1232	3.9	91
103	Electrochemical hydrogen storage in Li-doped pentacene. <i>Journal of Chemical Physics</i> , 2006 , 124, 20471	8 3.9	6
102	Synthesis of tubular titanate via a self-assembly and self-removal process. <i>Inorganic Chemistry</i> , 2006 , 45, 5684-90	5.1	21
101	Highly efficient dye-sensitized solar cells composed of mesoporous titanium dioxide. <i>Journal of Materials Chemistry</i> , 2006 , 16, 1287		153
100	Fabrication of ordered mesoporous thin films for optical waveguiding and interferometric chemical sensing. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 10590-4	3.4	27
99	Chemical gas sensor application of open-pore mesoporous thin films based on integrated optical polarimetric interferometry. <i>Analytical Chemistry</i> , 2006 , 78, 1034-41	7.8	30
98	Poly(acrylic acid)-wrapped multi-walled carbon nanotubes composite solubilization in water: definitive spectroscopic properties. <i>Nanotechnology</i> , 2006 , 17, 2845-2849	3.4	104
97	Ordered porous carbon with tailored pore size for electrochemical hydrogen storage application. Journal of Physical Chemistry B, 2006 , 110, 4875-80	3.4	134
96	Humidity sensor based on localized surface plasmon resonance of multilayer thin films of gold nanoparticles linked with myoglobin. <i>Optics Letters</i> , 2006 , 31, 1854-6	3	38
95	Nanomaterials for lithium ion batteries. <i>Nano Today</i> , 2006 , 1, 28-33	17.9	419
94	Multilayered mesoporous titanate nanocomposite film: Fabrication by layer-by-layer self-assembly and its electrochemical properties with H+ intercalation. <i>Electrochemistry Communications</i> , 2006 , 8, 206	-210	9
93	Ultralong single-crystal TiO2-B nanowires: Synthesis and electrochemical measurements. <i>Chemical Physics Letters</i> , 2006 , 424, 316-320	2.5	43
92	The high power and high energy densities Li ion storage device by nanocrystalline and mesoporous Ni/NiO covered structure. <i>Electrochemistry Communications</i> , 2006 , 8, 284-288	5.1	59
91	One-dimensional proton conductor under high vapor pressure condition employing titanate nanotube. <i>Electrochemistry Communications</i> , 2006 , 8, 1549-1552	5.1	25
90	Synthesis of the CoOOH fine nanoflake film with the high rate capacitance property. <i>Journal of Power Sources</i> , 2006 , 158, 779-783	8.9	139

89	Corrigendum to Bynthesis of the CoOOH fine nanoflake film with the high rate capacitance property[J. Power Sources 158 (2006) 779\(\textbf{B}83 \)]. Journal of Power Sources, 2006 , 160, 764	8.9	3
88	Preparation of room temperature NO2 gas sensors based on W- and V-modified mesoporous MCM-41 thin films employing surface photovoltage technique. <i>Sensors and Actuators B: Chemical</i> , 2006 , 114, 109-119	8.5	34
87	Synthesis of single-crystal vanadium dioxide nanosheets by the hydrothermal process. <i>Journal of Crystal Growth</i> , 2006 , 296, 1-5	1.6	13
86	Structure and electrical properties of heat-treated fullerene nanowhiskers as potential energy device materials. <i>Journal of the European Ceramic Society</i> , 2006 , 26, 429-434	6	24
85	Preparation of Self-Standing, Submillimeter-Thick Porous Titania Films with Anatase Nanocrystallites Using Evaporation-Induced Self-Assembly. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2006 , 16, 169-173	3.2	6
84	Electrochemical investigation of the permselectivity of a novel positively-charged solgel silicate prepared from tetraethyloxysilane and N-octadecyldimethyl[3-(trimethoxysilyl)propyl]ammonium chloride. <i>Electrochemistry Communications</i> , 2005 , 7, 1-4	5.1	20
83	Synthesis of single-crystal manganese dioxide nanowires by a soft chemical process. <i>Nanotechnology</i> , 2005 , 16, 245-9	3.4	95
82	Fabrication of highly porous and micropatterned SnO2 films by oxygen bubbles generated on the anode electrode. <i>Chemical Communications</i> , 2005 , 2609-11	5.8	9
81	Tin-diffused glass slab waveguides locally covered with tapered thin TiO2 films for application as a polarimetric interference sensor with an improved performance. <i>Analytical Chemistry</i> , 2005 , 77, 1163-6	7.8	18
8o	Direct electrochemistry of myoglobin in titanate nanotubes film. <i>Analytical Chemistry</i> , 2005 , 77, 8068-74	4 7.8	160
79	Fabrication of morphology and crystal structure controlled nanorod and nanosheet cobalt hydroxide based on the difference of oxygen-solubility between water and methanol, and conversion into Co3O4. <i>Journal of Materials Chemistry</i> , 2005 , 15, 1938		127
78	Superhydrophobic perpendicular nanopin film by the bottom-up process. <i>Journal of the American Chemical Society</i> , 2005 , 127, 13458-9	16.4	368
77	A self-ordered, crystalline glass, mesoporous nanocomposite with high proton conductivity of 2 x 10(-2) S cm-1 at intermediate temperature. <i>Journal of the American Chemical Society</i> , 2005 , 127, 13092-3	3 ^{16.4}	65
76	Hexagonally ordered mesoporous ternary Li2O-TiO2-P2O5 oxides with high lithium content. <i>Chemical Communications</i> , 2005 , 5187-9	5.8	4
75	A Simple Method for Fabrication of Mesoporous Films Using a Rapid Heating Process. <i>Chemistry Letters</i> , 2005 , 34, 328-329	1.7	4
74	Electrode properties of manganese oxide synthesized by sonochemical method in non-aqueous system. <i>Journal of Power Sources</i> , 2005 , 146, 304-309	8.9	8
73	Formation of nanotubes TiO2 from layered titanate particles by a soft chemical process. <i>Solid State Communications</i> , 2005 , 133, 493-497	1.6	75
72	Amperometric biosensor based on tyrosinase-conjugated polysaccharide hybrid film: selective determination of nanomolar neurotransmitters metabolite of 3,4-dihydroxyphenylacetic acid (DOPAC) in biological fluid. <i>Biosensors and Bioelectronics</i> , 2005 , 21, 809-16	11.8	85

(2004-2005)

71	Electrochemical biosensor based on protein bolysaccharide hybrid for selective detection of nanomolar dopamine metabolite of 3,4-dihydroxyphenylacetic acid (DOPAC). <i>Electrochemistry Communications</i> , 2005 , 7, 233-236	5.1	29
70	A self-ordered, crystalline-glass, mesoporous nanocomposite for use as a lithium-based storage device with both high power and high energy densities. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 797-802	16.4	272
69	A Self-Ordered, Crystalline © lass, Mesoporous Nanocomposite for Use as a Lithium-Based Storage Device with Both High Power and High Energy Densities. <i>Angewandte Chemie</i> , 2005 , 117, 807-812	3.6	23
68	Synthesis of MnO2 Nanoparticles Confined in Ordered Mesoporous Carbon Using a Sonochemical Method. <i>Advanced Functional Materials</i> , 2005 , 15, 381-386	15.6	211
67	The Fabrication of an Upright-Standing Zinc Oxide Nanosheet for Use in Dye-Sensitized Solar Cells. <i>Advanced Materials</i> , 2005 , 17, 2091-2094	24	326
66	A New Metastable Phase of Crystallized V2O4[0.25H2O Nanowires: Synthesis and Electrochemical Measurements. <i>Advanced Materials</i> , 2005 , 17, 2964-2969	24	88
65	High benzene selectivity of mesoporous silicate for BTX gas sensing microfluidic devices. <i>Analytical and Bioanalytical Chemistry</i> , 2005 , 382, 804-9	4.4	17
64	Cathode Properties of Nanocrystalline Manganese Oxide Synthesized Through Soft Solution Processing. <i>Journal of the Electrochemical Society</i> , 2005 , 152, A1568	3.9	7
63	Optimization of Sonochemical Synthesis Condition of Manganese Oxide/Acetylene Black Nanocomposite for High Power Lithium-Ion Batteries. <i>Journal of the Electrochemical Society</i> , 2005 , 152, A1217	3.9	9
62	Electrochemical lithium doping of a pentacene molecule semiconductor. <i>Applied Physics Letters</i> , 2005 , 86, 261909	3.4	17
61	Enhancement of Specific Capacity of Manganese Oxide/Carbon Composite Synthesized by Sonochemical Method. <i>Electrochemical and Solid-State Letters</i> , 2005 , 8, A253-A255		6
60	Sonochemical synthesis of amorphous manganese oxide coated on carbon and application to high power battery. <i>Journal of Power Sources</i> , 2004 , 125, 85-89	8.9	53
59	Design and synthesis of self-ordered mesoporous nanocomposite through controlled in-situ crystallization. <i>Nature Materials</i> , 2004 , 3, 65-72	27	268
58	Characterization of the dependence on temperature of the formation of carbon film on the internal surfaces of SBA-15 silica. <i>Materials Chemistry and Physics</i> , 2004 , 88, 202-206	4.4	16
57	Self-Assembly of the Mesoporous Electrode Material Li3Fe2(PO4)3 Using a Cationic Surfactant as the Template. <i>Advanced Materials</i> , 2004 , 16, 2012-2017	24	64
56	Synthesis of a surface photovoltage sensor using self-ordered tin-modified MCM-41 films: enhanced NO2 gas sensing. <i>ChemPhysChem</i> , 2004 , 5, 261-5	3.2	18
55	Rapid discharge performance of composite electrode of hydrated sodium manganese oxide and acetylene black. <i>Electrochimica Acta</i> , 2004 , 49, 5209-5216	6.7	41
54	Methane gas storage in self-ordered mesoporous carbon (CMK-3). <i>Chemical Physics Letters</i> , 2004 , 396, 252-255	2.5	30

53	A simple method to synthesize nanowires titanium dioxide from layered titanate particles. <i>Chemical Physics Letters</i> , 2004 , 400, 231-234	2.5	52
52	Synthesis, characterization and optical gas-sensing application of block copolymer templated mesostructured peroxopolytungstic acid films. <i>Journal of Materials Chemistry</i> , 2004 , 14, 3540		11
51	Experimental and Theoretical NOx Physisorption Analyses of Mesoporous Film (SBA-15 and SBA-16) Constructed Surface Photo Voltage (SPV) Sensor. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 13341-13346	3.4	40
50	Characterization of Gold Nanoparticles Synthesized Using Sucrose by Seeding Formation in the Solid Phase and Seeding Growth in Aqueous Solution. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 7006-7	₫1 4	100
49	Synthesis of self-standing mesoporous nanocrystalline titania-phosphorus oxide composite films. <i>Chemical Communications</i> , 2004 , 2836-7	5.8	11
48	Effect of tin addition on mesoporous silica thin film and its application for surface photovoltage NO2 gas sensor. <i>Analytical Chemistry</i> , 2004 , 76, 6719-26	7.8	51
47	Synthesis of Hexagonal Mesostructured FePO4Using Cationic Surfactant as the Template. <i>Chemistry Letters</i> , 2004 , 33, 774-775	1.7	12
46	Sol-gel Synthesis of Porous Crystalline TiO2 B 2O5 Oxide with Thermal Stability. <i>Journal of Materials Research</i> , 2003 , 18, 2743-2746	2.5	1
45	A Possibility of Block-Copolymer Templated Mesoporous Silica Films Applied to Surface Photo Voltage (SPV) type NOx Gas Sensor. <i>Studies in Surface Science and Catalysis</i> , 2003 , 146, 783-786	1.8	2
44	The SPV NO2Gas Sensor Fabricated by Mesoporous Tin Oxide Film. <i>Chemistry Letters</i> , 2003 , 32, 510-511	1.7	16
43	Synthesis of Mesoporous Carbon-Containing Ferrocene Derivative and Its Electrochemical Property. <i>Chemistry Letters</i> , 2003 , 32, 132-133	1.7	19
42	Lithium Storage in Ordered Mesoporous Carbon (CMK-3) with High Reversible Specific Energy Capacity and Good Cycling Performance. <i>Advanced Materials</i> , 2003 , 15, 2107-2111	24	538
41	Platinum Surface Modification of SBA-15 by Radiation Treatment. <i>Advanced Materials</i> , 2003 , 15, 511-51	3 4	19
40	Electrochemical capacitance of self-ordered mesoporous carbon. <i>Journal of Power Sources</i> , 2003 , 122, 219-223	8.9	199
39	Portable automatic BTX measurement system with microfluidic device using mesoporous silicate adsorbent with nano-sized pores. <i>Sensors and Actuators B: Chemical</i> , 2003 , 95, 282-286	8.5	25
38	Synthesis of semicrystallized mesoporous TiO2 thin films using triblock copolymer templates. <i>Materials Science and Engineering C</i> , 2003 , 23, 487-494	8.3	50
37	Two-step addition of acetylene black to hydrated sodium manganese oxide: its effect on the performance of rapid discharge cathode. <i>Journal of Power Sources</i> , 2003 , 124, 143-147	8.9	29
36	Synthesis and electrochemical properties of mesostructured 12-phosphotungstic acid thin films with hierarchical structures by triblock copolymer templating. <i>Materials Research Society Symposia Proceedings</i> , 2003 , 788, 761		

35	Surface Photovoltage NO Gas Sensor with Properties Dependent on the Structure of the Self-Ordered Mesoporous Silicate Film. <i>Advanced Materials</i> , 2002 , 14, 812	24	111
34	High nonlinear optical coefficient (B=10II esu) of cyanine dye J aggregates doped silica film synthesized by a simple solgel method. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2002 , 95, 180-186	3.1	19
33	Application of a cubic-like mesoporous silica film to a surface photovoltage gas sensing system. <i>Microporous and Mesoporous Materials</i> , 2002 , 54, 269-276	5.3	64
32	Separate detection of BTX mixture gas by a microfluidic device using a function of nanosized pores of mesoporous silica adsorbent. <i>Analytical Chemistry</i> , 2002 , 74, 5257-62	7.8	33
31	One-step synthesis of PWA containing large pore mesoporous SiO2 using triblock copolymer templates. <i>Journal of Materials Science Letters</i> , 2002 , 21, 1501-1503		3
30	Low-temperature chemical synthesis of nanocrystalline KTiOPO4. <i>Journal of Materials Research</i> , 2002 , 17, 723-726	2.5	4
29	Pore size controlled mesoporous silicate powder prepared by triblock copolymer templates. <i>Materials Letters</i> , 2002 , 56, 93-96	3.3	55
28	Encapsulation of H aggregates in silica film with high nonlinear optical coefficient (B=3.0110B esu) by a simple solgel method. <i>Materials Letters</i> , 2002 , 57, 589-593	3.3	16
27	Synthesis of Mesoporous Thin TiO2 Films with Hexagonal Pore Structures Using Triblock Copolymer Templates. <i>Advanced Materials</i> , 2001 , 13, 1377-1380	24	183
26	NO Gas Sensor Based on Surface Photovoltage System Fabricated by Self-Ordered Hexagonal Mesoporous Silicate Film. <i>Japanese Journal of Applied Physics</i> , 2001 , 40, 7098-7102	1.4	21
25	Mesostructural Transformation of Vanadium OxideHexadecyltrimethylammonium Composite by Low-Temperature Calcination. <i>Langmuir</i> , 2001 , 17, 1328-1330	4	8
24	Size control of oriented hexagonal mesoporous silicate thin film prepared by triblock copolymer templates. <i>Journal of Materials Science Letters</i> , 2000 , 19, 2167-2169		19
23	Synthesis and Nonlinear Optical Susceptibility of Cyanine Dye J-Aggregates Doped Silica Film (II). Journal of Sol-Gel Science and Technology, 2000 , 19, 803-806	2.3	18
22	Synthesis and Nonlinear Optical Susceptibility of Cyanine Dye J-Aggregate Doped Silica Film (I). <i>Journal of Sol-Gel Science and Technology</i> , 2000 , 19, 257-261	2.3	14
21	Nonlinear Optical Susceptibility of Fe2O3 Thin Film Synthesized by a Modified Sol-Gel Method. Journal of Sol-Gel Science and Technology, 2000 , 19, 539-541	2.3	30
20	Determination of Third-Order Optical Nonlinearity Dispersion of 1-Methyl-1?-Octadecyl-2,2?-Cyanine Perchlorate Langmuir-Blodgett Films Using Electroabsorption Spectroscopy. <i>Japanese Journal of Applied Physics</i> , 2000 , 39, 5838-5841	1.4	5
19	Conductive Self-Assembled Meso-Structured Silica Films Synthesized by Ferrocenyl Surfactant. Japanese Journal of Applied Physics, 1999 , 38, L958-L960	1.4	5
18	Synthesis of oriented meso-structure silica functional thin film. <i>Journal of the European Ceramic Society</i> , 1999 , 19, 1361-1364	6	10

17	Third-Order Nonlinear Optical Susceptibility Measurement in 1-Methyl-1?-Octadecyl-2,2?-Cyanine Perchlorate Langmuir-Blodgett Films by Means of Electroabsorption Spectroscopy. <i>Molecular Crystals and Liquid Crystals</i> , 1999 , 327, 31-35		1
16	Thermally Induced Structural Changes of Lamellar and One-dimensional Hexagonal Mesoporous Silica Thin Films. <i>Journal of Materials Science Letters</i> , 1998 , 17, 2089-2092		29
15	Self-Assembling Functional Molecules in Mesoporous Silicate Materials: Optical Properties and Mesophase of Dye-Doped M41S. <i>Advanced Materials</i> , 1998 , 10, 1532-1536	24	34
14	Synthesis of Self-Assembled Photosensitive Molecules in Mesostructured Materials. <i>Chemistry of Materials</i> , 1998 , 10, 103-108	9.6	38
13	Synthesis of phthalocyanine-doped silica mesostructured materials by ferrocenyl surfactant. Journal of Materials Chemistry, 1998 , 8, 515-516		67
12	Synthesis of Chlorophyll Doped Silica-mesostructure Materials. <i>Chemistry Letters</i> , 1998 , 27, 973-974	1.7	14
11	Synthesis and optical properties of nanocomposite silverpolydiacetylene. <i>Synthetic Metals</i> , 1996 , 81, 129-132	3.6	30
10	Synthesis and optical properties of coated nanoparticle composites. <i>Journal of Luminescence</i> , 1996 , 70, 21-34	3.8	37
9	Synthesis of nanometer-size silver coated polymerized diacetylene composite particles. <i>Applied Physics Letters</i> , 1996 , 68, 1288-1290	3.4	36
8	Controlled synthesis and quantum-size effect in gold-coated nanoparticles. <i>Physical Review B</i> , 1994 , 50, 12052-12056	3.3	203
7	Coated Semiconductor Nanoparticles: The CdS/PbS System's Photoluminescence Properties. <i>Chemistry of Materials</i> , 1994 , 6, 1534-1541	9.6	103
6	Quantum confinement in semiconductor heterostructure nanometer-size particles. <i>Physical Review B</i> , 1993 , 47, 1359-1365	3.3	200
5	Enhanced optical properties of metal-coated nanoparticles. <i>Journal of Applied Physics</i> , 1993 , 73, 1043-1	04.8	85
4	Restraining Oxygen Release and Suppressing Structure Distortion in Single-Crystal Li-Rich Layered Cathode Materials. <i>Advanced Functional Materials</i> ,2110295	15.6	9
3	Ion-Exchange: A Promising Strategy to Design Li-Rich and Li-Excess Layered Cathode Materials for Li-Ion Batteries. <i>Advanced Energy Materials</i> ,2003972	21.8	9
2	An ultrafast process for the fabrication of a Li metal ī horganic solid electrolyte interface. <i>Energy</i> and Environmental Science,	35.4	6
1	Recent advances in sulfide electrolytes toward high specific energy solid-state lithium batteries. Materials Chemistry Frontiers,	7.8	10