
Haoshen Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1491135/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Large Reversible Li Storage of Graphene Nanosheet Families for Use in Rechargeable Lithium Ion Batteries. Nano Letters, 2008, 8, 2277-2282.	4.5	2,694
2	Towards sustainable and versatile energy storage devices: an overview of organic electrode materials. Energy and Environmental Science, 2013, 6, 2280.	15.6	1,213
3	Metal–organic framework-based separator for lithium–sulfur batteries. Nature Energy, 2016, 1, .	19.8	1,059
4	Enhancing the performances of Li-ion batteries by carbon-coating: present and future. Chemical Communications, 2012, 48, 1201-1217.	2.2	832
5	The Design of a LiFePO ₄ /Carbon Nanocomposite With a Core–Shell Structure and Its Synthesis by an Inâ€Situ Polymerization Restriction Method. Angewandte Chemie - International Edition, 2008, 47, 7461-7465.	7.2	816
6	Nanosize Effect on High-Rate Li-Ion Intercalation in LiCoO2Electrode. Journal of the American Chemical Society, 2007, 129, 7444-7452.	6.6	690
7	Lithium Storage in Ordered Mesoporous Carbon (CMK-3) with High Reversible Specific Energy Capacity and Good Cycling Performance. Advanced Materials, 2003, 15, 2107-2111.	11.1	570
8	Constructing a Super‧aturated Electrolyte Front Surface for Stable Rechargeable Aqueous Zinc Batteries. Angewandte Chemie - International Edition, 2020, 59, 9377-9381.	7.2	551
9	High-Energy Cathode Materials (Li ₂ MnO ₃ –LiMO ₂) for Lithium-Ion Batteries. Journal of Physical Chemistry Letters, 2013, 4, 1268-1280.	2.1	546
10	Core–Shellâ€Structured CNT@RuO ₂ Composite as a Highâ€Performance Cathode Catalyst for Rechargeable Li–O ₂ Batteries. Angewandte Chemie - International Edition, 2014, 53, 442-446.	7.2	495
11	Synthesis of Single Crystalline Spinel LiMn ₂ O ₄ Nanowires for a Lithium Ion Battery with High Power Density. Nano Letters, 2009, 9, 1045-1051.	4.5	493
12	Nano active materials for lithium-ion batteries. Nanoscale, 2010, 2, 1294.	2.8	492
13	Nanomaterials for lithium ion batteries. Nano Today, 2006, 1, 28-33.	6.2	470
14	Challenges of non-aqueous Li–O2 batteries: electrolytes, catalysts, and anodes. Energy and Environmental Science, 2013, 6, 1125.	15.6	453
15	Layered lithium transition metal oxide cathodes towards high energy lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 3680.	6.7	409
16	Superhydrophobic Perpendicular Nanopin Film by the Bottom-Up Process. Journal of the American Chemical Society, 2005, 127, 13458-13459.	6.6	401
17	Liâ~'Air Rechargeable Battery Based on Metal-free Graphene Nanosheet Catalysts. ACS Nano, 2011, 5, 3020-3026.	7.3	385
18	Critical Challenges in Rechargeable Aprotic Li–O ₂ Batteries. Advanced Energy Materials, 2016. 6. 1502303.	10.2	369

#	Article	IF	CITATIONS
19	Recent advances in titanium-based electrode materials for stationary sodium-ion batteries. Energy and Environmental Science, 2016, 9, 2978-3006.	15.6	368
20	Centimeterâ€Long V ₂ O ₅ Nanowires: From Synthesis to Fieldâ€Emission, Electrochemical, Electrical Transport, and Photoconductive Properties. Advanced Materials, 2010, 22, 2547-2552.	11.1	359
21	A reversible long-life lithium–air battery in ambient air. Nature Communications, 2013, 4, 1817.	5.8	357
22	The Fabrication of an Upright-Standing Zinc Oxide Nanosheet for Use in Dye-Sensitized Solar Cells. Advanced Materials, 2005, 17, 2091-2094.	11.1	342
23	Polyanthraquinone as a Reliable Organic Electrode for Stable and Fast Lithium Storage. Angewandte Chemie - International Edition, 2015, 54, 13947-13951.	7.2	333
24	Aromatic porous-honeycomb electrodes for a sodium-organic energy storage device. Nature Communications, 2013, 4, 1485.	5.8	327
25	Constructing a Superâ€Saturated Electrolyte Front Surface for Stable Rechargeable Aqueous Zinc Batteries. Angewandte Chemie, 2020, 132, 9463-9467.	1.6	327
26	Li-CO2 Electrochemistry: A New Strategy for CO2 Fixation and Energy Storage. Joule, 2017, 1, 359-370.	11.7	325
27	A Layered P2―and O3â€Type Composite as a Highâ€Energy Cathode for Rechargeable Sodiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2015, 54, 5894-5899.	7.2	321
28	Particle size dependence of the lithium storage capability and high rate performance of nanocrystalline anatase TiO2 electrode. Journal of Power Sources, 2007, 166, 239-243.	4.0	318
29	Olivine LiFePO ₄ : development and future. Energy and Environmental Science, 2011, 4, 805-817.	15.6	314
30	Sodium iron pyrophosphate: A novel 3.0 V iron-based cathode for sodium-ion batteries. Electrochemistry Communications, 2012, 24, 116-119.	2.3	313
31	Fe ₂ O ₃ nanocrystals anchored onto graphene nanosheets as the anode material for low-cost sodium-ion batteries. Chemical Communications, 2014, 50, 1215-1217.	2.2	297
32	Design and synthesis of self-ordered mesoporous nanocomposite through controlled in-situ crystallization. Nature Materials, 2004, 3, 65-72.	13.3	288
33	A Self-Ordered, Crystalline-Glass, Mesoporous Nanocomposite for Use as a Lithium-Based Storage Device with Both High Power and High Energy Densities. Angewandte Chemie - International Edition, 2005, 44, 797-802.	7.2	288
34	A reversible lithium–CO ₂ battery with Ru nanoparticles as a cathode catalyst. Energy and Environmental Science, 2017, 10, 972-978.	15.6	285
35	A lithium-air battery with a potential to continuously reduce O2 from air for delivering energy. Journal of Power Sources, 2010, 195, 358-361.	4.0	274
36	Poly(benzoquinonyl sulfide) as a Highâ€Energy Organic Cathode for Rechargeable Li and Na Batteries. Advanced Science, 2015, 2, 1500124.	5.6	267

#	Article	IF	CITATIONS
37	Direct Visualization of the Reversible O ^{2â^'} /O ^{â^'} Redox Process in Liâ€Rich Cathode Materials. Advanced Materials, 2018, 30, e1705197.	11.1	264
38	High-energy â€~composite' layered manganese-rich cathode materials via controlling Li2MnO3 phase activation for lithium-ion batteries. Physical Chemistry Chemical Physics, 2012, 14, 6584.	1.3	260
39	A quinone-based oligomeric lithium salt for superior Li–organic batteries. Energy and Environmental Science, 2014, 7, 4077-4086.	15.6	259
40	Lithium Metal Extraction from Seawater. Joule, 2018, 2, 1648-1651.	11.7	254
41	Synthesis and electrochemical performance of nano-sized Li4Ti5O12 with double surface modification of Ti(III) and carbon. Journal of Materials Chemistry, 2009, 19, 6789.	6.7	248
42	Direct Atomicâ€Resolution Observation of Two Phases in the Li _{1.2} Mn _{0.567} Ni _{0.166} Co _{0.067} O ₂ Cathode Material for Lithiumâ€ion Batteries. Angewandte Chemie - International Edition, 2013, 52, 5969-5973.	7.2	242
43	Ru/ITO: A Carbon-Free Cathode for Nonaqueous Li–O ₂ Battery. Nano Letters, 2013, 13, 4702-4707.	4.5	241
44	Mesoporous Titania Nanotubes: Their Preparation and Application as Electrode Materials for Rechargeable Lithium Batteries. Advanced Materials, 2007, 19, 3016-3020.	11.1	240
45	Solid-State Electrolytes for Lithium-Ion Batteries: Fundamentals, Challenges and Perspectives. Electrochemical Energy Reviews, 2019, 2, 574-605.	13.1	238
46	Controlled synthesis and quantum-size effect in gold-coated nanoparticles. Physical Review B, 1994, 50, 12052-12056.	1.1	231
47	Rechargeable Solidâ€State Li–Air and Li–S Batteries: Materials, Construction, and Challenges. Advanced Energy Materials, 2018, 8, 1701602.	10.2	229
48	High-Power Li-Metal Anode Enabled by Metal-Organic Framework Modified Electrolyte. Joule, 2018, 2, 2117-2132.	11.7	227
49	Li ₃ VO ₄ : A Promising Insertion Anode Material for Lithiumâ€lon Batteries. Advanced Energy Materials, 2013, 3, 428-432.	10.2	225
50	A self-defense redox mediator for efficient lithium–O ₂ batteries. Energy and Environmental Science, 2016, 9, 1024-1030.	15.6	224
51	Ultrasound-Triggered Smart Drug Release from a Poly(dimethylsiloxane)– Mesoporous Silica Composite. Advanced Materials, 2006, 18, 3083-3088.	11.1	223
52	Simultaneously Inhibiting Lithium Dendrites Growth and Polysulfides Shuttle by a Flexible MOFâ€Based Membrane in Li–S Batteries. Advanced Energy Materials, 2018, 8, 1802130.	10.2	223
53	Synthesis of MnO2 Nanoparticles Confined in Ordered Mesoporous Carbon Using a Sonochemical Method. Advanced Functional Materials, 2005, 15, 381-386.	7.8	222
54	A Metal–Organic Framework as a Multifunctional Ionic Sieve Membrane for Longâ€Life Aqueous Zinc–Iodide Batteries. Advanced Materials, 2020, 32, e2004240.	11.1	222

#	Article	IF	CITATIONS
55	Environmentally stable interface of layered oxide cathodes for sodium-ion batteries. Nature Communications, 2017, 8, 135.	5.8	218
56	Germanium Thin Film Protected Lithium Aluminum Germanium Phosphate for Solid‣tate Li Batteries. Advanced Energy Materials, 2018, 8, 1702374.	10.2	217
57	Quantum confinement in semiconductor heterostructure nanometer-size particles. Physical Review B, 1993, 47, 1359-1365.	1.1	215
58	High-performance symmetric sodium-ion batteries using a new, bipolar O3-type material, Na _{0.8} Ni _{0.4} Ti _{0.6} O ₂ . Energy and Environmental Science, 2015, 8, 1237-1244.	15.6	215
59	Electrochemical capacitance of self-ordered mesoporous carbon. Journal of Power Sources, 2003, 122, 219-223.	4.0	214
60	Status and prospects of polymer electrolytes for solid-state Li–O ₂ (air) batteries. Energy and Environmental Science, 2017, 10, 860-884.	15.6	211
61	Synthesis of Mesoporous Thin TiO2 Films with Hexagonal Pore Structures Using Triblock Copolymer Templates. Advanced Materials, 2001, 13, 1377-1380.	11.1	206
62	The water catalysis at oxygen cathodes of lithium–oxygen cells. Nature Communications, 2015, 6, 7843.	5.8	206
63	Bimetallic Cyanide-Bridged Coordination Polymers as Lithium Ion Cathode Materials: Core@Shell Nanoparticles with Enhanced Cyclability. Journal of the American Chemical Society, 2013, 135, 2793-2799.	6.6	205
64	Adverse effects of interlayer-gliding in layered transition-metal oxides on electrochemical sodium-ion storage. Energy and Environmental Science, 2019, 12, 825-840.	15.6	205
65	Exploration of Advanced Electrode Materials for Rechargeable Sodiumâ€lon Batteries. Advanced Energy Materials, 2019, 9, 1800212.	10.2	204
66	Li–CO ₂ and Na–CO ₂ Batteries: Toward Greener and Sustainable Electrical Energy Storage. Advanced Materials, 2020, 32, e1903790.	11.1	200
67	Simultaneous voltammetric detection of dopamine and uric acid at their physiological level in the presence of ascorbic acid using poly(acrylic acid)-multiwalled carbon-nanotube composite-covered glassy-carbon electrode. Biosensors and Bioelectronics, 2007, 23, 74-80.	5.3	199
68	Mesoporous Carbon Nanofibers for Supercapacitor Application. Journal of Physical Chemistry C, 2009, 113, 1093-1097.	1.5	196
69	Study of the lithium/nickel ions exchange in the layered LiNi0.42Mn0.42Co0.16O2 cathode material for lithium ion batteries: experimental and first-principles calculations. Energy and Environmental Science, 2014, 7, 1068.	15.6	195
70	Fast Li-Ion Insertion into Nanosized LiMn ₂ O ₄ without Domain Boundaries. ACS Nano, 2010, 4, 741-752.	7.3	194
71	Developing a "Waterâ€Defendable―and "Dendriteâ€Free―Lithiumâ€Metal Anode Using a Simple and F GeCl ₄ Pretreatment Method. Advanced Materials, 2018, 30, e1705711.	Promising 11.1	186
72	New Insights into Improving Rate Performance of Lithiumâ€Rich Cathode Material. Advanced Materials, 2015. 27. 3915-3920.	11.1	185

5

#	Article	IF	CITATIONS
73	Exploring the electrochemical reaction mechanism of carbonate oxidation in Li–air/CO ₂ battery through tracing missing oxygen. Energy and Environmental Science, 2016, 9, 1650-1654.	15.6	183
74	From Li–O ₂ to Li–Air Batteries: Carbon Nanotubes/Ionic Liquid Gels with a Tricontinuous Passage of Electrons, Ions, and Oxygen. Angewandte Chemie - International Edition, 2012, 51, 11062-11067.	7.2	180
75	Novel titanium-based O3-type NaTi _{0.5} Ni _{0.5} O ₂ as a cathode material for sodium ion batteries. Chemical Communications, 2014, 50, 457-459.	2.2	179
76	Layered phosphorus-like GeP ₅ : a promising anode candidate with high initial coulombic efficiency and large capacity for lithium ion batteries. Energy and Environmental Science, 2015, 8, 3629-3636.	15.6	179
77	An Energy Storage Principle using Bipolar Porous Polymeric Frameworks. Angewandte Chemie - International Edition, 2012, 51, 7850-7854.	7.2	177
78	Biosensing Properties of TitanateNanotube Films: Selective Detection of Dopamine in the Presence of Ascorbate and Uric Acid. Advanced Functional Materials, 2006, 16, 371-376.	7.8	176
79	Solar energy storage in the rechargeable batteries. Nano Today, 2017, 16, 46-60.	6.2	175
80	A high-energy-density and long-life initial-anode-free lithium battery enabled by a Li2O sacrificial agent. Nature Energy, 2021, 6, 653-662.	19.8	175
81	Direct Electrochemistry of Myoglobin in Titanate Nanotubes Film. Analytical Chemistry, 2005, 77, 8068-8074.	3.2	168
82	Nb2O5 nanobelts: A lithium intercalation host with large capacity and high rate capability. Electrochemistry Communications, 2008, 10, 980-983.	2.3	167
83	A Concentrated Ternaryâ€Salts Electrolyte for High Reversible Li Metal Battery with Slight Excess Li. Advanced Energy Materials, 2019, 9, 1803372.	10.2	167
84	High-surface vanadium oxides with large capacities for lithium-ion batteries: from hydrated aerogel to nanocrystalline VO2(B), V6O13 and V2O5. Journal of Materials Chemistry, 2011, 21, 10999.	6.7	166
85	Effect of particle dispersion on high rate performance of nano-sized Li4Ti5O12 anode. Electrochimica Acta, 2007, 52, 6470-6475.	2.6	164
86	Reducing Water Activity by Zeolite Molecular Sieve Membrane for Long‣ife Rechargeable Zinc Battery. Advanced Materials, 2021, 33, e2102415.	11.1	164
87	Temperature-Sensitive Structure Evolution of Lithium–Manganese-Rich Layered Oxides for Lithium-Ion Batteries. Journal of the American Chemical Society, 2018, 140, 15279-15289.	6.6	163
88	Highly efficient dye-sensitized solar cells composed of mesoporous titanium dioxide. Journal of Materials Chemistry, 2006, 16, 1287.	6.7	159
89	High power Na-ion rechargeable battery with single-crystalline Na0.44MnO2 nanowire electrode. Journal of Power Sources, 2012, 217, 43-46.	4.0	158
90	Effective strategies for long-cycle life lithium–sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 6155-6182.	5.2	157

#	Article	IF	CITATIONS
91	Performance-improved Li–O ₂ battery with Ru nanoparticles supported on binder-free multi-walled carbon nanotube paper as cathode. Energy and Environmental Science, 2014, 7, 1648-1652.	15.6	156
92	Carbon supported TiN nanoparticles: an efficient bifunctional catalyst for non-aqueous Li–O2 batteries. Chemical Communications, 2013, 49, 1175.	2.2	154
93	The pursuit of rechargeable solid-state Li–air batteries. Energy and Environmental Science, 2013, 6, 2302.	15.6	154
94	MOF-Based Separator in an Li–O ₂ Battery: An Effective Strategy to Restrain the Shuttling of Dual Redox Mediators. ACS Energy Letters, 2018, 3, 463-468.	8.8	151
95	Suppressed Activation Energy for Interfacial Charge Transfer of a Prussian Blue Analog Thin Film Electrode with Hydrated Ions (Li ⁺ , Na ⁺ , and Mg ²⁺). Journal of Physical Chemistry C, 2013, 117, 10877-10882.	1.5	150
96	A high-energy-density and long-life lithium-ion battery via reversible oxide–peroxide conversion. Nature Catalysis, 2019, 2, 1035-1044.	16.1	150
97	Status and challenges facing representative anode materials for rechargeable lithium batteries. Journal of Energy Chemistry, 2022, 66, 260-294.	7.1	149
98	Ordered Porous Carbon with Tailored Pore Size for Electrochemical Hydrogen Storage Application. Journal of Physical Chemistry B, 2006, 110, 4875-4880.	1.2	147
99	Synthesis of the CoOOH fine nanoflake film with the high rate capacitance property. Journal of Power Sources, 2006, 158, 779-783.	4.0	147
100	Reducing the charging voltage of a Li–O ₂ battery to 1.9 V by incorporating a photocatalyst. Energy and Environmental Science, 2015, 8, 2664-2667.	15.6	147
101	A Liquid Electrolyte with De-Solvated Lithium Ions for Lithium-Metal Battery. Joule, 2020, 4, 1776-1789.	11.7	146
102	Electrochemical performance and reaction mechanism of all-solid-state lithium–air batteries composed of lithium, Li1+xAlyGe2â~'y(PO4)3 solid electrolyte and carbon nanotube air electrode. Energy and Environmental Science, 2012, 5, 9077.	15.6	145
103	N-Doped graphene nanosheets for Li–air fuel cells under acidic conditions. Energy and Environmental Science, 2012, 5, 6928.	15.6	145
104	To draw an air electrode of a Li–air battery by pencil. Energy and Environmental Science, 2011, 4, 1704.	15.6	143
105	Hierarchical micro/nano porous silicon Li-ion battery anodes. Chemical Communications, 2012, 48, 5079.	2.2	142
106	Nanocrystalline Rutile TiO[sub 2] Electrode for High-Capacity and High-Rate Lithium Storage. Electrochemical and Solid-State Letters, 2007, 10, A127.	2.2	141
107	Electrochemical kinetics of the 0.5Li2MnO3·0.5LiMn0.42Ni0.42Co0.16O2 â€~composite' layered cathode material for lithium-ion batteries. RSC Advances, 2012, 2, 8797.	1.7	141
108	Superior Performance of a Li–O ₂ Battery with Metallic RuO ₂ Hollow Spheres as the Carbonâ€Free Cathode. Advanced Energy Materials, 2015, 5, 1500294.	10.2	139

#	Article	IF	CITATIONS
109	Liâ€Redox Flow Batteries Based on Hybrid Electrolytes: At the Cross Road between Liâ€ion and Redox Flow Batteries. Advanced Energy Materials, 2012, 2, 770-779.	10.2	138
110	Facile synthesis of NaV6O15 nanorods and its electrochemical behavior as cathode material in rechargeable lithium batteries. Journal of Materials Chemistry, 2009, 19, 7885.	6.7	136
111	Electrochemical insertion/deinsertion of sodium on NaV6O15 nanorods as cathode material of rechargeable sodium-based batteries. Journal of Power Sources, 2011, 196, 814-819.	4.0	135
112	Mesoporous NiO with a single-crystalline structure utilized as a noble metal-free catalyst for non-aqueous Li–O ₂ batteries. Journal of Materials Chemistry A, 2015, 3, 16177-16182.	5.2	135
113	Fabrication of morphology and crystal structure controlled nanorod and nanosheet cobalt hydroxide based on the difference of oxygen-solubility between water and methanol, and conversion into Co3O4. Journal of Materials Chemistry, 2005, 15, 1938.	6.7	134
114	Liâ€O ₂ Battery Based on Highly Efficient Sbâ€Doped Tin Oxide Supported Ru Nanoparticles. Advanced Materials, 2014, 26, 4659-4664.	11.1	133
115	From O ₂ ^{â^'} to HO ₂ ^{â^'} : Reducing Byâ€Products and Overpotential in Liâ€O ₂ Batteries by Water Addition. Angewandte Chemie - International Edition, 2017, 56, 4960-4964.	7.2	133
116	Effect of Chemical Doping on Cathodic Performance of Bicontinuous Nanoporous Graphene for Liâ€O ₂ Batteries. Advanced Energy Materials, 2016, 6, 1501870.	10.2	132
117	An aqueous dissolved polysulfide cathode for lithium–sulfur batteries. Energy and Environmental Science, 2014, 7, 3307-3312.	15.6	131
118	Tuning the Morphologies of MnO/C Hybrids by Space Constraint Assembly of Mn-MOFs for High Performance Li Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 5254-5262.	4.0	129
119	A Superâ€Hydrophobic Quasiâ€Solid Electrolyte for Liâ€O ₂ Battery with Improved Safety and Cycle Life in Humid Atmosphere. Advanced Energy Materials, 2017, 7, 1601759.	10.2	128
120	Synthesis of spinel LiMn2O4 nanoparticles through one-step hydrothermal reaction. Journal of Power Sources, 2007, 172, 410-415.	4.0	127
121	Two-phase transition of Li-intercalation compounds in Li-ion batteries. Materials Today, 2014, 17, 451-463.	8.3	127
122	An Ultrastable Anode for Longâ€Life Roomâ€Temperature Sodiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2014, 53, 8963-8969.	7.2	126
123	A Highâ€Voltage and Ultralongâ€Life Sodium Full Cell for Stationary Energy Storage. Angewandte Chemie - International Edition, 2015, 54, 11701-11705.	7.2	126
124	Reversible anionic redox activity in Na ₃ RuO ₄ cathodes: a prototype Na-rich layered oxide. Energy and Environmental Science, 2018, 11, 299-305.	15.6	126
125	Design and synthesis of a novel nanothorn VO2(B) hollow microsphere and their application in lithium-ion batteries. Journal of Materials Chemistry, 2009, 19, 2835.	6.7	125
126	The potential of electrolyte filled MOF membranes as ionic sieves in rechargeable batteries. Energy and Environmental Science, 2019, 12, 2327-2344.	15.6	125

#	Article	IF	CITATIONS
127	Preparation and rate capability of Li4Ti5O12 hollow-sphere anode material. Journal of Power Sources, 2007, 166, 514-518.	4.0	124
128	A Dualâ€lon Organic Symmetric Battery Constructed from Phenazineâ€Based Artificial Bipolar Molecules. Angewandte Chemie - International Edition, 2019, 58, 9902-9906.	7.2	123
129	Monodispersed hierarchical Co ₃ O ₄ spheres intertwined with carbon nanotubes for use as anode materials in sodium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 13805.	5.2	122
130	Beyond the concentrated electrolyte: further depleting solvent molecules within a Li ⁺ solvation sheath to stabilize high-energy-density lithium metal batteries. Energy and Environmental Science, 2020, 13, 4122-4131.	15.6	122
131	Poly(acrylic acid)-wrapped multi-walled carbon nanotubes composite solubilization in water: definitive spectroscopic properties. Nanotechnology, 2006, 17, 2845-2849.	1.3	121
132	Synthesis of Triaxial LiFePO ₄ Nanowire with a VGCF Core Column and a Carbon Shell through the Electrospinning Method. ACS Applied Materials & amp; Interfaces, 2010, 2, 212-218.	4.0	121
133	A long-life lithium–sulphur battery by integrating zinc–organic framework based separator. Journal of Materials Chemistry A, 2016, 4, 16812-16817.	5.2	121
134	Fabrication of a Cyanide-Bridged Coordination Polymer Electrode for Enhanced Electrochemical Ion Storage Ability. Journal of Physical Chemistry C, 2012, 116, 8364-8369.	1.5	120
135	Li ₂ CO ₃ -free Li–O ₂ /CO ₂ battery with peroxide discharge product. Energy and Environmental Science, 2018, 11, 1211-1217.	15.6	120
136	Materials for advanced Li-O2 batteries: Explorations, challenges and prospects. Materials Today, 2019, 26, 87-99.	8.3	120
137	Synthesis of a Perpendicular TiO2 Nanosheet Film with the Superhydrophilic Property without UV Irradiation. Langmuir, 2007, 23, 7447-7450.	1.6	118
138	Chlorophyll- <i>a</i> Derivatives with Various Hydrocarbon Ester Groups for Efficient Dye-Sensitized Solar Cells: Static and Ultrafast Evaluations on Electron Injection and Charge Collection Processes. Langmuir, 2010, 26, 6320-6327.	1.6	118
139	Enabling Catalytic Oxidation of Li ₂ O ₂ at the Liquid–Solid Interface: The Evolution of an Aprotic Li–O ₂ Battery. ChemSusChem, 2015, 8, 600-602.	3.6	117
140	Surface Photovoltage NO Gas Sensor with Properties Dependent on the Structure of the Self-Ordered Mesoporous Silicate Film. Advanced Materials, 2002, 14, 812.	11.1	116
141	Electrochemical Performance of Solid‣tate Lithium–Air Batteries Using Carbon Nanotube Catalyst in the Air Electrode. Advanced Energy Materials, 2012, 2, 889-894.	10.2	115
142	High capacity Na–O2 batteries with carbon nanotube paper as binder-free air cathode. Journal of Power Sources, 2014, 251, 466-469.	4.0	115
143	Crystalline Grain Interior Configuration Affects Lithium Migration Kinetics in Li-Rich Layered Oxide. Nano Letters, 2016, 16, 2907-2915.	4.5	115
144	Coated Semiconductor Nanoparticles: The CdS/PbS System's Photoluminescence Properties. Chemistry of Materials, 1994, 6, 1534-1541.	3.2	114

9

#	Article	IF	CITATIONS
145	An oxygen cathode with stable full discharge–charge capability based on 2D conducting oxide. Energy and Environmental Science, 2015, 8, 1992-1997.	15.6	113
146	Manganeseâ€Based Naâ€Rich Materials Boost Anionic Redox in Highâ€Performance Layered Cathodes for Sodiumâ€Ion Batteries. Advanced Materials, 2019, 31, e1807770.	11.1	113
147	One-Step Synthesis of Nano–Micro Chestnut TiO ₂ with Rutile Nanopins on the Microanatase Octahedron. ACS Nano, 2007, 1, 273-278.	7.3	112
148	Surface coating of lithium–manganese-rich layered oxides with delaminated MnO2 nanosheets as cathode materials for Li-ion batteries. Journal of Materials Chemistry A, 2014, 2, 4422.	5.2	112
149	Restraining Oxygen Loss and Suppressing Structural Distortion in a Newly Ti-Substituted Layered Oxide P2-Na _{0.66} Li _{0.22} Ti _{0.15} Mn _{0.63} O ₂ . ACS Energy Letters, 2019, 4, 2409-2417.	8.8	112
150	Characterization of Gold Nanoparticles Synthesized Using Sucrose by Seeding Formation in the Solid Phase and Seeding Growth in Aqueous Solution. Journal of Physical Chemistry B, 2004, 108, 7006-7011.	1.2	111
151	Revealing the Impact of Space-Charge Layers on the Li-Ion Transport in All-Solid-State Batteries. Joule, 2020, 4, 1311-1323.	11.7	111
152	Synthesis and electrochemical properties of single-crystalline LiV3O8 nanorods as cathode materials for rechargeable lithium batteries. Journal of Power Sources, 2009, 192, 668-673.	4.0	110
153	Highly Connected Silicon–Copper Alloy Mixture Nanotubes as Highâ€Rate and Durable Anode Materials for Lithiumâ€Ion Batteries. Advanced Functional Materials, 2016, 26, 524-531.	7.8	110
154	Initial Coulombic efficiency improvement of the Li1.2Mn0.567Ni0.166Co0.067O2 lithium-rich material by ruthenium substitution for manganese. Journal of Materials Chemistry, 2012, 22, 15507.	6.7	109
155	Highâ€Loading Nanoâ€5nO ₂ Encapsulated in situ in Threeâ€Dimensional Rigid Porous Carbon for Superior Lithiumâ€lon Batteries. Chemistry - A European Journal, 2016, 22, 4915-4923.	1.7	109
156	Advanced cobalt-free cathode materials for sodium-ion batteries. Chemical Society Reviews, 2021, 50, 13189-13235.	18.7	109
157	Preparation of Nanohybrid Solid-State Electrolytes with Liquidlike Mobilities by Solidifying Ionic Liquids with Silica Particles. Chemistry of Materials, 2007, 19, 5216-5221.	3.2	108
158	Enhanced Cycling Performance of Liâ€O ₂ Batteries by the Optimized Electrolyte Concentration of LiTFSA in Glymes. Advanced Energy Materials, 2013, 3, 532-538.	10.2	108
159	Both Cationic and Anionic Co-(de)intercalation into a Metal-Oxide Material. Joule, 2018, 2, 1134-1145.	11.7	107
160	Synthesis of single-crystal manganese dioxide nanowires by a soft chemical process. Nanotechnology, 2005, 16, 245-249.	1.3	106
161	A Li-air fuel cell with recycle aqueous electrolyte for improved stability. Electrochemistry Communications, 2010, 12, 1686-1689.	2.3	106
162	Rechargeable Ni-Li Battery Integrated Aqueous/Nonaqueous System. Journal of the American Chemical Society, 2009, 131, 15098-15099.	6.6	105

#	Article	IF	CITATIONS
163	Stabilization of polysulfides via lithium bonds for Li–S batteries. Journal of Materials Chemistry A, 2016, 4, 5406-5409.	5.2	105
164	Integrating a Photocatalyst into a Hybrid Lithium–Sulfur Battery for Direct Storage of Solar Energy. Angewandte Chemie - International Edition, 2015, 54, 9271-9274.	7.2	104
165	Liquidâ€Crystalline Electrolytes for Lithiumâ€Ion Batteries: Ordered Assemblies of a Mesogenâ€Containing Carbonate and a Lithium Salt. Advanced Functional Materials, 2015, 25, 1206-1212.	7.8	104
166	Nanoporous Ru as a Carbon―and Binderâ€Free Cathode for Li–O ₂ Batteries. ChemSusChem, 2015, 8, 1429-1434.	3.6	104
167	Cage-Type Highly Graphitic Porous Carbon–Co ₃ O ₄ Polyhedron as the Cathode of Lithium–Oxygen Batteries. ACS Applied Materials & Interfaces, 2016, 8, 2796-2804.	4.0	102
168	Unraveling the Complex Role of Iodide Additives in Li–O ₂ Batteries. ACS Energy Letters, 2017, 2, 1869-1878.	8.8	102
169	Multi-walled carbon nanotube papers as binder-free cathodes for large capacity and reversible non-aqueous Li–O2 batteries. Journal of Materials Chemistry A, 2013, 1, 13076.	5.2	101
170	Understanding sodium-ion diffusion in layered P2 and P3 oxides via experiments and first-principles calculations: a bridge between crystal structure and electrochemical performance. NPG Asia Materials, 2016, 8, e266-e266.	3.8	101
171	Progress in research on Li–CO2 batteries: Mechanism, catalyst and performance. Chinese Journal of Catalysis, 2016, 37, 1016-1024.	6.9	101
172	Single-crystal H ₂ V ₃ O ₈ nanowires: a competitive anode with large capacity for aqueous lithium-ion batteries. Journal of Materials Chemistry, 2011, 21, 1780-1787.	6.7	100
173	Developing A "Polysulfideâ€Phobic―Strategy to Restrain Shuttle Effect in Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2019, 58, 11774-11778.	7.2	100
174	Amperometric biosensor based on tyrosinase-conjugated polysacchride hybrid film: Selective determination of nanomolar neurotransmitters metabolite of 3,4-dihydroxyphenylacetic acid (DOPAC) in biological fluid. Biosensors and Bioelectronics, 2005, 21, 809-816.	5.3	98
175	Highly reversible sodium storage in a GeP ₅ /C composite anode with large capacity and low voltage. Journal of Materials Chemistry A, 2017, 5, 4413-4420.	5.2	97
176	A New Metastable Phase of Crystallized V2O4·0.25H2O Nanowires: Synthesis and Electrochemical Measurements. Advanced Materials, 2005, 17, 2964-2969.	11.1	96
177	Utilization of Titanate Nanotubes as an Electrode Material in Dye-Sensitized Solar Cells. Journal of the Electrochemical Society, 2006, 153, A1232.	1.3	95
178	Efficient Dye-Sensitized Solar Cell Based on <i>oxo</i> -Bacteriochlorin Sensitizers with Broadband Absorption Capability. Journal of Physical Chemistry C, 2009, 113, 7954-7961.	1.5	95
179	Fabrication and Performance of All-Solid-State Li–Air Battery with SWCNTs/LAGP Cathode. ACS Applied Materials & Interfaces, 2015, 7, 17307-17310.	4.0	94
180	Lithium–Air Batteries with Hybrid Electrolytes. Journal of Physical Chemistry Letters, 2016, 7, 1267-1280.	2.1	94

#	Article	IF	CITATIONS
181	Regulating Water Activity for Rechargeable Zinc-Ion Batteries: Progress and Perspective. ACS Energy Letters, 2022, 7, 2515-2530.	8.8	94
182	A Highâ€Capacity, Lowâ€Cost Layered Sodium Manganese Oxide Material as Cathode for Sodiumâ€lon Batteries. ChemSusChem, 2014, 7, 2115-2119.	3.6	93
183	A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments. Nature Communications, 2022, 13, 1510.	5.8	93
184	Enhanced optical properties of metal oated nanoparticles. Journal of Applied Physics, 1993, 73, 1043-1048.	1.1	92
185	Carbon-free and binder-free Li-Al alloy anode enabling an all-solid-state Li-S battery with high energy and stability. Science Advances, 2022, 8, eabn4372.	4.7	91
186	A nanoscale meshed electrode of single-crystalline SnO for lithium-ion rechargeable batteries. Electrochemistry Communications, 2008, 10, 52-55.	2.3	90
187	A New Type of Liâ€Rich Rockâ€Salt Oxide Li ₂ Ni _{1/3} Ru _{2/3} O ₃ with Reversible Anionic Redox Chemistry. Advanced Materials, 2019, 31, e1807825.	11.1	90
188	Fabrication of FePO4 layer coated LiNi1/3Co1/3Mn1/3O2: Towards high-performance cathode materials for lithium ion batteries. Electrochimica Acta, 2012, 83, 253-258.	2.6	89
189	Novel Stable Gel Polymer Electrolyte: Toward a High Safety and Long Life Li–Air Battery. ACS Applied Materials & Interfaces, 2015, 7, 23798-23804.	4.0	89
190	A long-life lithium ion oxygen battery based on commercial silicon particles as the anode. Energy and Environmental Science, 2016, 9, 3262-3271.	15.6	89
191	The Development of a New Type of Rechargeable Batteries Based on Hybrid Electrolytes. ChemSusChem, 2010, 3, 1009-1019.	3.6	88
192	A lithium–air capacitor–battery based on a hybrid electrolyte. Energy and Environmental Science, 2011, 4, 4994.	15.6	88
193	Stabilizing Reversible Oxygen Redox Chemistry in Layered Oxides for Sodiumâ€lon Batteries. Advanced Energy Materials, 2020, 10, 1903785.	10.2	87
194	Synthesis of single-crystal niobium pentoxide nanobelts. Acta Materialia, 2008, 56, 2488-2494.	3.8	86
195	PEDOT modified LiNi 1/3 Co 1/3 Mn 1/3 O 2 with enhanced electrochemical performance for lithium ion batteries. Journal of Power Sources, 2013, 243, 374-380.	4.0	86
196	Determination of Activation Energy for Li Ion Diffusion in Electrodes. Journal of Physical Chemistry B, 2009, 113, 2840-2847.	1.2	84
197	Ionâ€Induced Transformation of Magnetism in a Bimetallic CuFe Prussian Blue Analogue. Angewandte Chemie - International Edition, 2011, 50, 6269-6273.	7.2	84
198	Research progresses on materials and electrode design towards key challenges of Li-air batteries. Energy Storage Materials, 2018, 13, 29-48.	9.5	84

#	Article	IF	CITATIONS
199	Fabricating better metal-organic frameworks separators for Li–S batteries: Pore sizes effects inspired channel modification strategy. Energy Storage Materials, 2020, 25, 164-171.	9.5	83
200	A Review of Solid-State Lithium–Sulfur Battery: Ion Transport and Polysulfide Chemistry. Energy & Fuels, 2020, 34, 11942-11961.	2.5	83
201	Formation of nanotubes TiO2 from layered titanate particles by a soft chemical process. Solid State Communications, 2005, 133, 493-497.	0.9	80
202	A 500 Wh/kg Lithium-Metal Cell Based on Anionic Redox. Joule, 2020, 4, 1445-1458.	11.7	80
203	Ruthenium functionalized graphene aerogels with hierarchical and three-dimensional porosity as a free-standing cathode for rechargeable lithium-oxygen batteries. NPG Asia Materials, 2016, 8, e239-e239.	3.8	79
204	Synthesis of single crystalline electro-conductive Na0.44MnO2 nanowires with high aspect ratio for the fast charge–discharge Li ion battery. Journal of Power Sources, 2008, 182, 349-352.	4.0	78
205	Synthesis and Applications of SnO Nanosheets: Parallel Control of Oxidation State and Nanostructure Through an Aqueous Solution Route. Small, 2010, 6, 776-781.	5.2	78
206	Advances in Lithium-Containing Anodes of Aprotic Li-O ₂ Batteries: Challenges and Strategies for Improvements. Small Methods, 2017, 1, 1700135.	4.6	78
207	Hierarchical Porous Nickel Cobaltate Nanoneedle Arrays as Flexible Carbon-Protected Cathodes for High-Performance Lithium–Oxygen Batteries. ACS Applied Materials & Interfaces, 2016, 8, 8427-8435.	4.0	77
208	Review on anionic redox in sodium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 23662-23678.	5.2	77
209	A Li–Liquid Cathode Battery Based on a Hybrid Electrolyte. ChemSusChem, 2011, 4, 1087-1090.	3.6	76
210	A Synergistic System for Lithium–Oxygen Batteries in Humid Atmosphere Integrating a Composite Cathode and a Hydrophobic Ionic Liquidâ€Based Electrolyte. Advanced Functional Materials, 2016, 26, 3291-3298.	7.8	76
211	Ultra-fine surface solid-state electrolytes for long cycle life all-solid-state lithium–air batteries. Journal of Materials Chemistry A, 2018, 6, 21248-21254.	5.2	76
212	Facile in Situ Preparation of Graphitic-C ₃ N ₄ @carbon Paper As an Efficient Metal-Free Cathode for Nonaqueous Li–O ₂ Battery. ACS Applied Materials & Interfaces, 2015, 7, 10823-10827.	4.0	75
213	Cation-mixing stabilized layered oxide cathodes for sodium-ion batteries. Science Bulletin, 2018, 63, 376-384.	4.3	75
214	Improvement of electrochemical properties of LiNi1/3Co1/3Mn1/3O2 by coating with V2O5 layer. Journal of Alloys and Compounds, 2013, 552, 76-82.	2.8	73
215	Application of a cubic-like mesoporous silica film to a surface photovoltage gas sensing system. Microporous and Mesoporous Materials, 2002, 54, 269-276.	2.2	72
216	Extension of π-conjugation length along the Qy axis of a chlorophyll a derivative for efficient dye-sensitized solar cells. Chemical Communications, 2009, , 1523.	2.2	72

#	Article	IF	CITATIONS
217	A Self-Ordered, Crystalline Glass, Mesoporous Nanocomposite with High Proton Conductivity of 2 × 10-2S cm-1at Intermediate Temperature. Journal of the American Chemical Society, 2005, 127, 13092-13093.	6.6	71
218	Boosting the Cycle Life of Li–O ₂ Batteries at Elevated Temperature by Employing a Hybrid Polymer–Ceramic Solid Electrolyte. ACS Energy Letters, 2017, 2, 1378-1384.	8.8	71
219	The Design of Quaternary Nitrogen Redox Center for High-Performance Organic Battery Materials. Matter, 2019, 1, 945-958.	5.0	71
220	Titanium nitride catalyst cathode in a Li–air fuel cell with an acidic aqueous solution. Chemical Communications, 2011, 47, 10701.	2.2	70
221	Pinning Effect Enhanced Structural Stability toward a Zeroâ€Strain Layered Cathode for Sodiumâ€lon Batteries. Angewandte Chemie - International Edition, 2021, 60, 13366-13371.	7.2	70
222	Synthesis of phthalocyanine-doped silica mesostructured materials by ferrocenyl surfactant. Journal of Materials Chemistry, 1998, 8, 515-516.	6.7	69
223	Binder-free carbonized bacterial cellulose-supported ruthenium nanoparticles for Li–O ₂ batteries. Chemical Communications, 2015, 51, 7302-7304.	2.2	69
224	Self-Assembly of the Mesoporous Electrode Material Li3Fe2(PO4)3 Using a Cationic Surfactant as the Template. Advanced Materials, 2004, 16, 2012-2017.	11.1	67
225	Effect of solution pH and ionic strength on the stability of poly(acrylic acid)-encapsulated multiwalled carbon nanotubes aqueous dispersion and its application for NADH sensor. Biosensors and Bioelectronics, 2006, 22, 694-699.	5.3	67
226	A lithium–air fuel cell using copper to catalyze oxygen-reduction based on copper-corrosion mechanism. Chemical Communications, 2010, 46, 6305.	2.2	67
227	Highâ€Safety and Lowâ€Cost Photoassisted Chargeable Aqueous Sodiumâ€Ion Batteries with 90% Input Electric Energy Savings. Advanced Energy Materials, 2016, 6, 1600632.	10.2	67
228	A stable high-voltage lithium-ion battery realized by an in-built water scavenger. Energy and Environmental Science, 2020, 13, 1197-1204.	15.6	67
229	Stabilizing Anionic Redox Chemistry in a Mnâ€Based Layered Oxide Cathode Constructed by Liâ€Deficient Pristine State. Advanced Materials, 2021, 33, e2004280.	11.1	67
230	New energy storage devices for post lithium-ion batteries. Energy and Environmental Science, 2013, 6, 2256.	15.6	66
231	Bipolar porous polymeric frameworks for low-cost, high-power, long-life all-organic energy storage devices. Journal of Power Sources, 2014, 245, 553-556.	4.0	66
232	A green and cost-effective rechargeable battery with high energy density based on a deep eutectic catholyte. Energy and Environmental Science, 2016, 9, 2267-2272.	15.6	66
233	Tailoring the Solvation Sheath of Cations by Constructing Electrode Frontâ€Faces for Rechargeable Batteries. Advanced Materials, 2022, 34, e2201339.	11.1	66
234	Spongeâ€Like Cathode Material Selfâ€Assembled from Twoâ€Dimensional V ₂ O ₅ Nanosheets for Sodiumâ€Ion Batteries. ChemElectroChem, 2015, 2, 1660-1664.	1.7	65

#	Article	IF	CITATIONS
235	Intensive Study on the Catalytical Behavior of <i>N</i> -Methylphenothiazine as a Soluble Mediator to Oxidize the Li ₂ O ₂ Cathode of the Li–O ₂ Battery. ACS Applied Materials & Interfaces, 2017, 9, 3733-3739.	4.0	65
236	Long-Life Aqueous Zn–I ₂ Battery Enabled by a Low-Cost Multifunctional Zeolite Membrane Separator. Nano Letters, 2022, 22, 2538-2546.	4.5	65
237	Biomimetic Solidâ€Solution Precursors of Metal Carbonate for Nanostructured Metal Oxides: MnO/Co and MnOâ€CoO Nanostructures and Their Electrochemical Properties. Advanced Functional Materials, 2011, 21, 3673-3680.	7.8	64
238	Impedance spectroscopic study on interfacial ion transfers in cyanide-bridged coordination polymer electrode with organic electrolyte. Electrochimica Acta, 2012, 63, 139-145.	2.6	64
239	In Situ TEM Observation of Local Phase Transformation in a Rechargeable LiMn2O4 Nanowire Battery. Journal of Physical Chemistry C, 2013, 117, 24236-24241.	1.5	64
240	In-situ/operando characterization techniques in lithium-ion batteries and beyond. Journal of Energy Chemistry, 2021, 59, 191-211.	7.1	64
241	Pore size controlled mesoporous silicate powder prepared by triblock copolymer templates. Materials Letters, 2002, 56, 93-96.	1.3	63
242	The high power and high energy densities Li ion storage device by nanocrystalline and mesoporous Ni/NiO covered structure. Electrochemistry Communications, 2006, 8, 284-288.	2.3	63
243	The effect of alkalinity and temperature on the performance of lithium-air fuel cell with hybrid electrolytes. Journal of Power Sources, 2011, 196, 5611-5616.	4.0	63
244	Low charge overpotentials in lithium–oxygen batteries based on tetraglyme electrolytes with a limited amount of water. Chemical Communications, 2015, 51, 16860-16863.	2.2	63
245	Tailoring Sodium Anodes for Stable Sodium–Oxygen Batteries. Advanced Functional Materials, 2018, 28, 1706374.	7.8	63
246	All-solid-state lithium-oxygen battery with high safety in wide ambient temperature range. Scientific Reports, 2015, 5, 13271.	1.6	62
247	A Unique Hybrid Quasiâ€Solidâ€State Electrolyte for Li–O ₂ Batteries with Improved Cycle Life and Safety. ChemSusChem, 2016, 9, 2391-2396.	3.6	62
248	Restraining Oxygen Release and Suppressing Structure Distortion in Singleâ€Crystal Liâ€Rich Layered Cathode Materials. Advanced Functional Materials, 2022, 32, 2110295.	7.8	62
249	A novel tunnel Na0.61Ti0.48Mn0.52O2 cathode material for sodium-ion batteries. Chemical Communications, 2014, 50, 7998.	2.2	61
250	Stable Li–Organic Batteries with Nafionâ€Based Sandwichâ€Type Separators. Advanced Energy Materials, 2016, 6, 1501780.	10.2	61
251	Development and perspective of the insertion anode Li 3 VO 4 for lithium-ion batteries. Energy Storage Materials, 2017, 7, 17-31.	9.5	61
252	Recent advances in functional modification of separators in lithium–sulfur batteries. Dalton Transactions, 2018, 47, 6881-6887.	1.6	61

#	Article	IF	CITATIONS
253	Layer-by-Layer Fabrication and Characterization of Gold-Nanoparticle/Myoglobin Nanocomposite Films. Advanced Functional Materials, 2006, 16, 377-386.	7.8	60
254	Significant enhancement in the power-conversion efficiency of chlorophyll co-sensitized solar cells by mimicking the principles of natural photosynthetic light-harvesting complexes. Biosensors and Bioelectronics, 2010, 25, 1970-1976.	5.3	60
255	Carbon nanocages with nanographene shell for high-rate lithium ion batteries. Journal of Materials Chemistry, 2010, 20, 9748.	6.7	60
256	Suppressed the High-Voltage Phase Transition of P2-Type Oxide Cathode for High-Performance Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 14848-14853.	4.0	60
257	Sonochemical synthesis of amorphous manganese oxide coated on carbon and application to high power battery. Journal of Power Sources, 2004, 125, 85-89.	4.0	59
258	Fabrication of Porous Cubic Architecture of ZnO Using Zn-terephthalate MOFs with Characteristic Microstructures. Inorganic Chemistry, 2013, 52, 14028-14033.	1.9	59
259	High stable post-spinel NaMn ₂ O ₄ cathode of sodium ion battery. Journal of Materials Chemistry A, 2014, 2, 14822-14826.	5.2	59
260	Lowering the charge voltage of Li–O ₂ batteries via an unmediated photoelectrochemical oxidation approach. Journal of Materials Chemistry A, 2016, 4, 12411-12415.	5.2	59
261	Single crystal nanobelts of V3O7·H2O: A lithium intercalation host with a large capacity. Electrochimica Acta, 2009, 54, 1115-1118.	2.6	58
262	A phase-transition-free cathode for sodium-ion batteries with ultralong cycle life. Nano Energy, 2018, 52, 88-94.	8.2	58
263	Saving electric energy by integrating a photoelectrode into a Li-ion battery. Journal of Materials Chemistry A, 2015, 3, 20903-20907.	5.2	56
264	Advanced Hybrid Electrolyte Li-O2 Battery Realized by Dual Superlyophobic Membrane. Joule, 2019, 3, 2986-3001.	11.7	56
265	A Versatile Halide Ester Enabling Liâ€Anode Stability and a High Rate Capability in Lithium–Oxygen Batteries. Angewandte Chemie - International Edition, 2019, 58, 2355-2359.	7.2	56
266	A simple method to synthesize nanowires titanium dioxide from layered titanate particles. Chemical Physics Letters, 2004, 400, 231-234.	1.2	55
267	Effect of Tin Addition on Mesoporous Silica Thin Film and Its Application for Surface Photovoltage NO2Gas Sensor. Analytical Chemistry, 2004, 76, 6719-6726.	3.2	55
268	Nano- and micro-sized TiN as the electrocatalysts for ORR in Li–air fuel cell with alkaline aqueous electrolyte. Journal of Materials Chemistry, 2012, 22, 15549.	6.7	55
269	Synthesis of semicrystallized mesoporous TiO2 thin films using triblock copolymer templates. Materials Science and Engineering C, 2003, 23, 487-494.	3.8	54
270	TiO2- and ZnO-based solar cells using a chlorophyll a derivative sensitizer for light-harvesting and energy conversion. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 210, 145-152.	2.0	54

#	Article	IF	CITATIONS
271	A new layered sodium molybdenum oxide anode for full intercalation-type sodium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 22012-22016.	5.2	54
272	A current collector covering nanostructured villous oxygen-deficient NiO fabricated by rapid laser-scan for Li-O2 batteries. Nano Energy, 2018, 51, 83-90.	8.2	54
273	Development of MEMS-based direct methanol fuel cell with high power density using nanoimprint technology. Electrochemistry Communications, 2007, 9, 1365-1368.	2.3	53
274	Synthesis of Nanocrystalline Li[sub 4]Ti[sub 5]O[sub 12] by Chemical Lithiation of Anatase Nanocrystals and Postannealing. Journal of the Electrochemical Society, 2008, 155, A553.	1.3	53
275	Tuning Interface Bridging Between MoSe2 and Three-Dimensional Carbon Framework by Incorporation of MoC Intermediate to Boost Lithium Storage Capability. Nano-Micro Letters, 2020, 12, 171.	14.4	53
276	Organic hydrogen peroxide-driven low charge potentials for high-performance lithium-oxygen batteries with carbon cathodes. Nature Communications, 2017, 8, 15607.	5.8	53
277	Hierarchical nanoporosity enhanced reversible capacity of bicontinuous nanoporous metal based Li-O2 battery. Scientific Reports, 2016, 6, 33466.	1.6	52
278	A Multifunctional Sillyâ€Putty Nanocomposite Spontaneously Repairs Cathode Composite for Advanced Liâ^'S Batteries. Advanced Functional Materials, 2018, 28, 1804777.	7.8	52
279	Towards a stable Li–CO2 battery: The effects of CO2 to the Li metal anode. Energy Storage Materials, 2020, 26, 443-447.	9.5	52
280	Size effect on electrochemical property of nanocrystalline LiCoO2 synthesized from rapid thermal annealing method. Solid State Ionics, 2009, 180, 612-615.	1.3	51
281	Electrospinning Synthesis of Wire-Structured LiCoO ₂ for Electrode Materials of High-Power Li-Ion Batteries. Journal of Physical Chemistry C, 2012, 116, 10774-10780.	1.5	51
282	Solar-driven efficient Li2O2 oxidation in solid-state Li-ion O2 batteries. Energy Storage Materials, 2018, 11, 170-175.	9.5	51
283	Fabrication of Nano/Micro Hierarchical Fe[sub 2]O[sub 3]â^•Ni Micrometer-Wire Structure and Characteristics for High Rate Li Rechargeable Battery. Journal of the Electrochemical Society, 2006, 153, A1273.	1.3	50
284	Three-dimensional architectures of spinel-type LiMn2O4 prepared from biomimetic porous carbonates and their application to a cathode for lithium-ion batteries. Journal of Materials Chemistry, 2009, 19, 4012.	6.7	50
285	Designing high-capacity cathode materials for sodium-ion batteries. Electrochemistry Communications, 2013, 34, 215-218.	2.3	50
286	A Hybrid Electrolytes Design for Capacityâ€Equivalent Dualâ€Graphite Battery with Superior Longâ€Term Cycle Life. Advanced Energy Materials, 2018, 8, 1801120.	10.2	50
287	A Superlattice‣tabilized Layered Oxide Cathode for Sodiumâ€lon Batteries. Advanced Materials, 2020, 32, e1907936.	11.1	50
288	Designing Cation–Solvent Fully Coordinated Electrolyte for Highâ€Energyâ€Density Lithium–Sulfur Full Cell Based On Solid–Solid Conversion. Angewandte Chemie - International Edition, 2021, 60, 17726-17734.	7.2	50

#	Article	IF	CITATIONS
289	Ordered mesoporous TiC–C composites as cathode materials for Li–O ₂ batteries. Chemical Communications, 2016, 52, 2713-2716.	2.2	49
290	Oxygenâ€Deficient Ferric Oxide as an Electrochemical Cathode Catalyst for Highâ€Energy Lithium–Sulfur Batteries. Small, 2020, 16, e2000870.	5.2	49
291	Ionâ€Exchange: A Promising Strategy to Design Liâ€Rich and Liâ€Excess Layered Cathode Materials for Liâ€lon Batteries. Advanced Energy Materials, 2022, 12, 2003972.	10.2	49
292	Precise Electrochemical Control of Ferromagnetism in a Cyanide-Bridged Bimetallic Coordination Polymer. Inorganic Chemistry, 2012, 51, 10311-10316.	1.9	48
293	Material/element-dependent fluorescence-yield modes on soft X-ray absorption spectroscopy of cathode materials for Li-ion batteries. AIP Advances, 2016, 6, .	0.6	48
294	Solar-driven all-solid-state lithium–air batteries operating at extreme low temperatures. Energy and Environmental Science, 2020, 13, 1205-1211.	15.6	48
295	A large capacity of LiV3O8 cathode material for rechargeable lithium-based batteries. Electrochimica Acta, 2011, 56, 1392-1398.	2.6	47
296	Boosting the Cycle Life of Aprotic Li–O ₂ Batteries via a Photoâ€Assisted Hybrid Li ₂ O ₂ ‣cavenging Strategy. Small Methods, 2018, 2, 1700284.	4.6	47
297	Research Progress for the Development of Liâ€Air Batteries: Addressing Parasitic Reactions Arising from Air Composition. Energy and Environmental Materials, 2018, 1, 61-74.	7.3	46
298	Achieving stable anionic redox chemistry in Li-excess O2-type layered oxide cathode via chemical ion-exchange strategy. Energy Storage Materials, 2021, 38, 1-8.	9.5	46
299	Experimental and Theoretical NOxPhysisorption Analyses of Mesoporous Film (SBA-15 and SBA-16) Constructed Surface Photo Voltage (SPV) Sensor. Journal of Physical Chemistry B, 2004, 108, 13341-13346.	1.2	45
300	Anisotropic Surface Effect on Electronic Structures and Electrochemical Properties of LiCoO ₂ . Journal of Physical Chemistry C, 2009, 113, 15337-15342.	1.5	45
301	Phase Transitions in a LiMn ₂ O ₄ Nanowire Battery Observed by Operando Electron Microscopy. ACS Nano, 2015, 9, 626-632.	7.3	45
302	A Design of Solid-State Li-S Cell with Evaporated Lithium Anode To Eliminate Shuttle Effects. ACS Applied Materials & Interfaces, 2017, 9, 33735-33739.	4.0	45
303	Anion–Cation Synergetic Contribution to High Capacity, Structurally Stable Cathode Materials for Sodiumâ€ion Batteries. Advanced Functional Materials, 2020, 30, 2005164.	7.8	45
304	Ultralong single-crystal TiO2-B nanowires: Synthesis and electrochemical measurements. Chemical Physics Letters, 2006, 424, 316-320.	1.2	44
305	Electrochemical Oscillation in Li-Ion Batteries. Joule, 2018, 2, 1265-1277.	11.7	44
306	A bottom-up synthetic hierarchical buffer structure of copper silicon nanowire hybrids as ultra-stable and high-rate lithium-ion battery anodes. Journal of Materials Chemistry A, 2018, 6, 7877-7886.	5.2	44

#	Article	IF	CITATIONS
307	Ni-Doped Layered Manganese Oxide as a Stable Cathode for Potassium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 10490-10495.	4.0	44
308	Recent Advances in Rechargeable Li–CO ₂ Batteries. Energy & Fuels, 2021, 35, 9165-9186.	2.5	44
309	Synthesis of Self-Assembled Photosensitive Molecules in Mesostructured Materials. Chemistry of Materials, 1998, 10, 103-108.	3.2	43
310	Rapid discharge performance of composite electrode of hydrated sodium manganese oxide and acetylene black. Electrochimica Acta, 2004, 49, 5209-5216.	2.6	43
311	Vanadium-oxide nanotubes: Synthesis and template-related electrochemical properties. Electrochemistry Communications, 2007, 9, 1766-1771.	2.3	43
312	Synthesis of Li–Mn–O mesocrystals with controlled crystal phases through topotactic transformation of MnCO3. Nanoscale, 2013, 5, 2352.	2.8	43
313	Reversible Lithiumâ€lon Uptake in Poly(methylmethacrylate) Thinâ€Film via Lithiation/Delithiation at In Situ Formed Intramolecular Cyclopentanedione. Advanced Energy Materials, 2016, 6, 1601375.	10.2	43
314	An ultrafast rechargeable lithium metal battery. Journal of Materials Chemistry A, 2018, 6, 15517-15522.	5.2	43
315	Sustainable Lithiumâ€Metal Battery Achieved by a Safe Electrolyte Based on Recyclable and Lowâ€Cost Molecular Sieve. Angewandte Chemie - International Edition, 2021, 60, 15572-15581.	7.2	43
316	Building a Beyond Concentrated Electrolyte for Highâ€Voltage Anodeâ€Free Rechargeable Sodium Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	43
317	Metal-free organic dye sensitized solar cell based on perpendicular zinc oxide nanosheet thick films with high conversion efficiency. Dalton Transactions, 2008, , 5439.	1.6	42
318	Synthesis and characterisation of ordered arrays of mesoporous carbon nanofibres. Journal of Materials Chemistry, 2009, 19, 1331.	6.7	42
319	Synthesis and optical properties of coated nanoparticle composites. Journal of Luminescence, 1996, 70, 21-34.	1.5	41
320	Humidity sensor based on localized surface plasmon resonance of multilayer thin films of gold nanoparticles linked with myoglobin. Optics Letters, 2006, 31, 1854.	1.7	41
321	An ultra-stable and enhanced reversibility lithium metal anode with a sufficient O2 design for Li-O2 battery. Energy Storage Materials, 2018, 12, 176-182.	9.5	41
322	A Highâ€Crystalline NaV _{1.25} Ti _{0.75} O ₄ Anode for Wideâ€Temperature Sodiumâ€Ion Battery. Advanced Energy Materials, 2018, 8, 1801162.	10.2	41
323	Capturing Reversible Cation Migration in Layered Structure Materials for Naâ€ion Batteries. Advanced Energy Materials, 2019, 9, 1900189.	10.2	41
324	Suppressing Cation Migration and Reducing Particle Cracks in a Layered Feâ€Based Cathode for Advanced Sodiumâ€ l on Batteries. Small, 2020, 16, e1904388.	5.2	41

#	Article	IF	CITATIONS
325	Reversible anionic redox chemistry in layered Li4/7[â−¡1/7Mn6/7]O2 enabled by stable Li–O-vacancy configuration. Joule, 2022, 6, 1290-1303.	11.7	41
326	Separate Detection of BTX Mixture Gas by a Microfluidic Device Using a Function of Nanosized Pores of Mesoporous Silica Adsorbent. Analytical Chemistry, 2002, 74, 5257-5262.	3.2	40
327	Aqueous solution synthesis of SnO nanostructures with tuned optical absorption behavior and photoelectrochemical properties through morphological evolution. Nanoscale, 2010, 2, 2424.	2.8	40
328	Scalable synthesis and excellent catalytic effect of hydrangea-like RuO2 mesoporous materials for lithium–O2 batteries. Energy Storage Materials, 2016, 2, 8-13.	9.5	40
329	Interfacial construction of Li ₂ O ₂ for a performance-improved polymer Li–O ₂ battery. Journal of Materials Chemistry A, 2016, 4, 2403-2407.	5.2	40
330	A high-performance layered Cr-Based cathode for sodium-ion batteries. Nano Energy, 2020, 67, 104215.	8.2	40
331	Achieving long cycle life for all-solid-state rechargeable Li-12 battery by a confined dissolution strategy. Nature Communications, 2022, 13, 125.	5.8	40
332	Preparation of room temperature NO2 gas sensors based on W- and V-modified mesoporous MCM-41 thin films employing surface photovoltage technique. Sensors and Actuators B: Chemical, 2006, 114, 109-119.	4.0	39
333	Synthesis of LiNi0.5Mn1.5O4 and 0.5Li2MnO3–0.5LiNi1/3Co1/3Mn1/3O2 hollow nanowires by electrospinning. CrystEngComm, 2013, 15, 2592.	1.3	39
334	Carbonâ€Free O ₂ Cathode with Threeâ€Dimensional Ultralight Nickel Foamâ€Supported Ruthenium Electrocatalysts for Li–O ₂ Batteries. ChemSusChem, 2017, 10, 2714-2719.	3.6	39
335	Intensive investigation on all-solid-state Li-air batteries with cathode catalysts of single-walled carbon nanotube/RuO2. Journal of Power Sources, 2018, 395, 439-443.	4.0	39
336	Realizing the compatibility of a Li metal anode in an all-solid-state Liâ^'S battery by chemical iodine–vapor deposition. Energy and Environmental Science, 2022, 15, 3236-3245.	15.6	39
337	Synthesis of nanometerâ€size silver coated polymerized diacetylene composite particles. Applied Physics Letters, 1996, 68, 1288-1290.	1.5	38
338	Self-Assembling Functional Molecules in Mesoporous Silicate Materials: Optical Properties and Mesophase of Dye-Doped M41S. Advanced Materials, 1998, 10, 1532-1536.	11,1	38
339	Lithium insertion in ultra-thin nanobelts of Ag2V4O11/Ag. Electrochimica Acta, 2008, 53, 8134-8137.	2.6	38
340	Electron delocalization in cyanide-bridged coordination polymer electrodes for Li-ion batteries studied by soft x-ray absorption spectroscopy. Physical Review B, 2011, 84, .	1.1	38
341	Title is missing!. Journal of Materials Science Letters, 1998, 17, 2089-2092.	0.5	37
342	Dye-Doped Photosensitive Mesostructure Materials. Advanced Materials, 1999, 11, 683-685.	11.1	37

#	Article	IF	CITATIONS
343	Chemical Gas Sensor Application of Open-Pore Mesoporous Thin Films Based on Integrated Optical Polarimetric Interferometry. Analytical Chemistry, 2006, 78, 1034-1041.	3.2	37
344	Flowerlike Vanadium Sesquioxide: Solvothermal Preparation and Electrochemical Properties. ChemPhysChem, 2010, 11, 3273-3280.	1.0	37
345	A single ion conducting separator and dual mediator-based electrolyte for high-performance lithium–oxygen batteries with non-carbon cathodes. Journal of Materials Chemistry A, 2018, 6, 9816-9822.	5.2	37
346	Designing a Multifunctional Separator for Highâ€₽erformance Li–S Batteries at Elevated Temperature. Small, 2019, 15, e1904332.	5.2	37
347	Synthesis and optical properties of nanocomposite silver—polydiacetylene. Synthetic Metals, 1996, 81, 129-132.	2.1	36
348	Application of Nanoimprint Technology in MEMS-Based Micro Direct-Methanol Fuel Cell () Tj ETQq0 0 0 rgBT /O	verlock 10 1.7	Tf 50 542 Td
349	Enhanced Cycle Stability of Rechargeable Li–O ₂ Batteries by the Synergy Effect of a LiF Protective Layer on the Li and DMTFA Additive. ACS Applied Materials & Interfaces, 2017, 9, 21307-21313.	4.0	36
350	Advances and Challenges for Aprotic Lithiumâ€Oxygen Batteries using Redox Mediators. Batteries and Supercaps, 2019, 2, 803-819.	2.4	36
351	A new type rechargeable lithium battery based on a Cu-cathode. Electrochemistry Communications, 2009, 11, 1834-1837.	2.3	35
352	Two-dimensional Mo-based compounds for the Li-O2 batteries: Catalytic performance and electronic structure studies. Energy Storage Materials, 2021, 41, 650-655.	9.5	35
353	Highâ€Voltage Liâ€Ion Fullâ€Cells with Ultralong Term Cycle Life at Elevated Temperature. Advanced Energy Materials, 2018, 8, 1802322.	10.2	34
354	Killing two birds with one stone: a Cu ion redox mediator for a non-aqueous Li–O ₂ battery. Journal of Materials Chemistry A, 2019, 7, 17261-17265.	5.2	34
355	Dilution of the Electron Density in the π onjugated Skeleton of Organic Cathode Materials Improves the Discharge Voltage. ChemSusChem, 2020, 13, 2264-2270.	3.6	34
356	Methane gas storage in self-ordered mesoporous carbon (CMK-3). Chemical Physics Letters, 2004, 396, 252-255.	1.2	33
357	Porous hybrid aerogels with ultrahigh sulfur loading for lithium–sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 9032-9040.	5.2	33
358	A Safe Organic Oxygen Battery Built with Liâ€Based Liquid Anode and MOFs Separator. Advanced Energy Materials, 2020, 10, 1903953.	10.2	33
359	Supercritical fluid processing of mesoporous crystalline TiO2 thin films for highly efficient dye-sensitized solar cells. Journal of Materials Chemistry, 2007, 17, 3888.	6.7	32
360	High rate performances of hydrogen titanate nanowires electrodes. Electrochemistry Communications, 2008, 10, 1164-1167.	2.3	32

#	Article	IF	CITATIONS
361	Reversible Solid State Redox of an Octacyanometallate-Bridged Coordination Polymer by Electrochemical Ion Insertion/Extraction. Inorganic Chemistry, 2013, 52, 3772-3779.	1.9	32
362	Enhanced K-ion kinetics in a layered cathode for potassium ion batteries. Chemical Communications, 2019, 55, 7910-7913.	2.2	32
363	A Dualâ€Ion Organic Symmetric Battery Constructed from Phenazineâ€Based Artificial Bipolar Molecules. Angewandte Chemie, 2019, 131, 10007-10011.	1.6	32
364	Revealing the Critical Role of Titanium in Layered Manganeseâ€Based Oxides toward Advanced Sodiumâ€ion Batteries via a Combined Experimental and Theoretical Study. Small Methods, 2019, 3, 1800183.	4.6	32
365	Highly safe and stable lithium–metal batteries based on a quasi-solid-state electrolyte. Journal of Materials Chemistry A, 2022, 10, 651-663.	5.2	32
366	Nonlinear Optical Susceptibility of Fe2O3 Thin Film Synthesized by a Modified Sol-Gel Method. Journal of Sol-Gel Science and Technology, 2000, 19, 539-541.	1.1	31
367	Two-step addition of acetylene black to hydrated sodium manganese oxide: its effect on the performance of rapid discharge cathode. Journal of Power Sources, 2003, 124, 143-147.	4.0	31
368	Electrochemical biosensor based on protein–polysaccharide hybrid for selective detection of nanomolar dopamine metabolite of 3,4-dihydroxyphenylacetic acid (DOPAC). Electrochemistry Communications, 2005, 7, 233-236.	2.3	31
369	Nanoporous leaky waveguide based chemical and biological sensors with broadband spectroscopy. Applied Physics Letters, 2007, 90, 011102.	1.5	31
370	From O ₂ ^{â^'} to HO ₂ ^{â^'} : Reducing Byâ€Products and Overpotential in Liâ€O ₂ Batteries by Water Addition. Angewandte Chemie, 2017, 129, 5042-5046.	1.6	31
371	Hybrid polymer electrolyte for Li–O2 batteries. Green Energy and Environment, 2019, 4, 3-19.	4.7	31
372	Recent advances in sulfide electrolytes toward high specific energy solid-state lithium batteries. Materials Chemistry Frontiers, 2021, 5, 4892-4911.	3.2	31
373	Structure and electrical properties of heat-treated fullerene nanowhiskers as potential energy device materials. Journal of the European Ceramic Society, 2006, 26, 429-434.	2.8	30
374	Enhanced benzene selectivity of mesoporous silica SPV sensors by incorporating phenylene groups in the silica framework. Sensors and Actuators B: Chemical, 2009, 138, 417-421.	4.0	30
375	Elucidating Anionic Redox Chemistry in P3 Layered Cathode for Na-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 38249-38255.	4.0	30
376	Operando soft x-ray emission spectroscopy of LiMn2O4 thin film involving Li–ion extraction/insertion reaction. Electrochemistry Communications, 2015, 50, 93-96.	2.3	29
377	In situ X-ray diffraction and thermal analysis of LiNi0.8Co0.15Al0.05O2 synthesized via co-precipitation method. Journal of Energy Chemistry, 2018, 27, 1655-1660.	7.1	29
378	Oxygen vacancy promising highly reversible phase transition in layered cathodes for sodium-ion batteries. Nano Research, 2021, 14, 4100-4106.	5.8	29

#	Article	IF	CITATIONS
379	Electrolyte Sieving Chemistry in Suppressing Gas Evolution of Sodiumâ€Metal Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	29
380	Fe phthalocyanine supported by graphene nanosheet as catalyst in Li–air battery with the hybrid electrolyte. Journal of Power Sources, 2013, 244, 429-434.	4.0	28
381	Reversible contrast in focus series of annular bright field images of a crystalline LiMn2O4 nanowire. Ultramicroscopy, 2013, 125, 43-48.	0.8	28
382	Identifying Anionic Redox Activity within the Related O3- and P2-Type Cathodes for Sodium-Ion Battery. ACS Applied Materials & Interfaces, 2020, 12, 851-857.	4.0	28
383	LiF Protective Layer on a Li Anode: Toward Improving the Performance of Li–O ₂ Batteries with a Redox Mediator. ACS Applied Materials & Interfaces, 2020, 12, 18490-18495.	4.0	28
384	A low-charge-overpotential lithium-CO ₂ cell based on a binary molten salt electrolyte. Energy and Environmental Science, 2021, 14, 4107-4114.	15.6	28
385	Dual Honeycomb‣uperlattice Enables Doubleâ€High Activity and Reversibility of Anion Redox for Sodiumâ€Ion Battery Layered Cathodes. Angewandte Chemie - International Edition, 2022, 61, .	7.2	28
386	Portable automatic BTX measurement system with microfluidic device using mesoporous silicate adsorbent with nano-sized pores. Sensors and Actuators B: Chemical, 2003, 95, 282-286.	4.0	27
387	Fabrication of Ordered Mesoporous Thin Films for Optical Waveguiding and Interferometric Chemical Sensing. Journal of Physical Chemistry B, 2006, 110, 10590-10594.	1.2	27
388	High-Rate Lithium Ion Batteries with Flat Plateau Based on Self-Nanoporous Structure of Tin Electrode. Journal of the Electrochemical Society, 2007, 154, A146.	1.3	27
389	Electrochemical properties of LiMnxFe1â^'xPO4 (xÂ=Â0, 0.2, 0.4, 0.6, 0.8 and 1.0)/vapor grown carbon fiber core–sheath composite nanowire synthesized by electrospinning method. Journal of Power Sources, 2014, 248, 615-620.	4.0	27
390	A Li-ion oxygen battery with Li-Si alloy anode prepared by a mechanical method. Electrochemistry Communications, 2017, 78, 11-15.	2.3	27
391	MnCo ₂ O ₄ decorated Magnéli phase titanium oxide as a carbon-free cathode for Li–O ₂ batteries. Journal of Materials Chemistry A, 2017, 5, 19991-19996.	5.2	27
392	Sodium Alginate Enabled Advanced Layered Manganese-Based Cathode for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 26817-26823.	4.0	27
393	Synergetic Anion–Cation Redox Ensures a Highly Stable Layered Cathode for Sodiumâ€lon Batteries. Advanced Science, 2022, 9, e2105280.	5.6	27
394	One-dimensional proton conductor under high vapor pressure condition employing titanate nanotube. Electrochemistry Communications, 2006, 8, 1549-1552.	2.3	26
395	Ordered-mesoporous-silica-thin-film-based chemical gas sensors with integrated optical polarimetric interferometry. Applied Physics Letters, 2006, 88, 053503.	1.5	26
396	Configuration-Interaction Full-Multiplet Calculation to Analyze the Electronic Structure of a Cyano-Bridged Coordination Polymer Electrode. Journal of Physical Chemistry C, 2012, 116, 24896-24901.	1.5	26

#	Article	lF	CITATIONS
397	Exploring a high capacity O3-type cathode for sodium-ion batteries and its structural evolution during an electrochemical process. Chemical Communications, 2018, 54, 12167-12170.	2.2	26
398	A rechargeable all-solid-state Li–CO ₂ battery using a Li _{1.5} Al _{0.5} Ge _{1.5} (PO ₄) ₃ ceramic electrolyte and nanoscale RuO ₂ catalyst. Journal of Materials Chemistry A, 2021, 9, 9581-9585.	5.2	26
399	A long-life lithium-oxygen battery via a molecular quenching/mediating mechanism. Science Advances, 2022, 8, eabm1899.	4.7	26
400	A novel direct borohydride fuel cell using an acid–alkaline hybrid electrolyte. Energy and Environmental Science, 2010, 3, 1515.	15.6	25
401	Synthesis of hierarchical and bridging carbon-coated LiMn 0.9 Fe 0.1 PO 4 nanostructure as cathode material with improved performance for lithium ion battery. Journal of Power Sources, 2017, 359, 408-414.	4.0	25
402	Research on Effective Oxygen Window Influencing the Capacity of Li–O ₂ Batteries. ACS Applied Materials & Interfaces, 2016, 8, 10375-10382.	4.0	24
403	Stable Voltage Cutoff Cycle Cathode with Tunable and Ordered Porous Structure for Liâ€O ₂ Batteries. Small, 2018, 14, e1803607.	5.2	24
404	Na ₂ Ru _{1â^'x} Mn _x O ₃ as the cathode for sodium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 4395-4399.	5.2	24
405	Developing A "Polysulfideâ€Phobic―Strategy to Restrain Shuttle Effect in Lithium–Sulfur Batteries. Angewandte Chemie, 2019, 131, 11900-11904.	1.6	24
406	Two-dimensional metal–organic framework with perpendicular one-dimensional nano-channel as precise polysulfide sieves for highly efficient lithium–sulfur batteries. Journal of Materials Chemistry A, 2021, 9, 4870-4879.	5.2	24
407	NO Gas Sensor Based on Surface Photovoltage System Fabricated by Self-Ordered Hexagonal Mesoporous Silicate Film. Japanese Journal of Applied Physics, 2001, 40, 7098-7102.	0.8	23
408	Effects of the nanoimprint pattern on the performance of a MEMS-based micro direct methanol fuel cell. Journal of Micromechanics and Microengineering, 2009, 19, 015003.	1.5	23
409	The Sizeâ€Dependent Phase Transition of LiFePO ₄ Particles during Charging and Discharging in Lithiumâ€Ion Batteries. Energy Technology, 2014, 2, 542-547.	1.8	23
410	Doping-induced memory effect in Li-ion batteries: the case of Al-doped Li ₄ Ti ₅ O ₁₂ . Chemical Science, 2015, 6, 4066-4070.	3.7	23
411	Clean Electrocatalysis in a Li ₂ O ₂ Redox-Based Li–O ₂ Battery Built with a Hydrate-Melt Electrolyte. ACS Catalysis, 2018, 8, 1082-1089.	5.5	23
412	Unraveling the anionic oxygen loss and related structural evolution within O3-type Na layered oxide cathodes. Journal of Materials Chemistry A, 2019, 7, 20405-20413.	5.2	23
413	H2O self-trapping air cathode of Li–O2 battery enabling low charge potential operating in dry system. Nano Energy, 2019, 64, 103945.	8.2	23
414	A high efficiency electrolyte enables robust inorganic–organic solid electrolyte interfaces for fast Li metal anode. Science Bulletin, 2021, 66, 897-903.	4.3	23

#	Article	IF	CITATIONS
415	Lithium insertion into nanometer-sized rutile-type TixSn1â^xO2 solid solutions. Solid State Ionics, 2009, 180, 956-960.	1.3	22
416	Controllable Hydrogen Generation from Water. ChemSusChem, 2010, 3, 571-574.	3.6	22
417	A novel rechargeable Li–AgO battery with hybrid electrolytes. Chemical Communications, 2010, 46, 2055.	2.2	22
418	Crystal-Growth Process of Single-Crystal-like Mesoporous ZnO through a Competitive Reaction in Solution. Crystal Growth and Design, 2012, 12, 2923-2931.	1.4	22
419	Distinguishing between High- and Low-Spin States for Divalent Mn in Mn-Based Prussian Blue Analogue by High-Resolution Soft X-ray Emission Spectroscopy. Journal of Physical Chemistry Letters, 2014, 5, 4008-4013.	2.1	22
420	Gelâ€Derived Cation–π Stacking Films of Carbon Nanotube–Graphene Complexes as Oxygen Cathodes. ChemSusChem, 2014, 7, 2845-2852.	3.6	22
421	Reaction and degradation mechanism in all-solid-state lithium–air batteries. Chemical Communications, 2015, 51, 17560-17563.	2.2	22
422	Title is missing!. Journal of Materials Science Letters, 2000, 19, 2167-2169.	0.5	21
423	Synthesis and Nonlinear Optical Susceptibility of Cyanine Dye J-Aggregates Doped Silica Film (II). Journal of Sol-Gel Science and Technology, 2000, 19, 803-806.	1.1	21
424	High benzene selectivity of mesoporous silicate for BTX gas sensing microfluidic devices. Analytical and Bioanalytical Chemistry, 2005, 382, 804-809.	1.9	21
425	Synthesis of Tubular Titanate via a Self-Assembly and Self-Removal Process. Inorganic Chemistry, 2006, 45, 5684-5690.	1.9	21
426	Anisotropic charge-transfer effects in the asymmetric Fe(CN) ₅ NO octahedron of sodium nitroprusside: a soft X-ray absorption spectroscopy study. Physical Chemistry Chemical Physics, 2014, 16, 7031-7036.	1.3	21
427	A multi-layered Fe ₂ O ₃ /graphene composite with mesopores as a catalyst for rechargeable aprotic lithium–oxygen batteries. Nanotechnology, 2016, 27, 365402.	1.3	21
428	Fabrication and Performance of High Energy Li-Ion Battery Based on the Spherical Li[Li _{0.2} Ni _{0.16} Co _{0.1} Mn _{0.54}]O ₂ Cathode and Si Anode. ACS Applied Materials & Interfaces, 2016, 8, 208-214.	4.0	21
429	Rational Design of a Gel–Polymer–Inorganic Separator with Uniform Lithium-Ion Deposition for Highly Stable Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2019, 11, 35788-35795.	4.0	21
430	Integrating P2 into O′3 toward a robust Mn-Based layered cathode for sodium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 23820-23826.	5.2	21
431	Incorporation of LiF into functionalized polymer fiber networks enabling high capacity and high rate cycling of lithium metal composite anodes. Chemical Engineering Journal, 2021, 404, 126508.	6.6	21
432	High nonlinear optical coefficient (χ3=10â^'7 esu) of cyanine dye J aggregates doped silica film synthesized by a simple sol–gel method. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2002, 95, 180-186.	1.7	20

#	Article	IF	CITATIONS
433	Platinum Surface Modification of SBA-15 by Î ³ -Radiation Treatment. Advanced Materials, 2003, 15, 511-513.	11.1	20
434	Synthesis of a Surface Photovoltage Sensor Using Self-Ordered Tin-Modified MCM-41 Films: Enhanced NO2 Gas Sensing. ChemPhysChem, 2004, 5, 261-265.	1.0	20
435	Electrochemical investigation of the permselectivity of a novel positively-charged sol–gel silicate prepared from tetraethyloxysilane and N-octadecyldimethyl[3-(trimethoxysilyl)propyl]ammonium chloride. Electrochemistry Communications, 2005, 7, 1-4.	2.3	20
436	Tin-Diffused Glass Slab Waveguides Locally Covered with Tapered Thin TiO2 Films for Application as a Polarimetric Interference Sensor with an Improved Performance. Analytical Chemistry, 2005, 77, 1163-1166.	3.2	20
437	Amorphous P ₂ S ₅ /C Composite as High-Performance Anode Materials for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 16-20.	4.0	20
438	Synthesis of Mesoporous Carbon-Containing Ferrocene Derivative and Its Electrochemical Property. Chemistry Letters, 2003, 32, 132-133.	0.7	19
439	Synthesis of single crystalline Li0.44MnO2 nanowires with large specific capacity and good high current density property for a positive electrode of Li ion battery. Journal of Power Sources, 2010, 195, 7098-7101.	4.0	19
440	Large single-crystal anatase TiO2 Bipyramids. Journal of Crystal Growth, 2010, 312, 213-219.	0.7	19
441	Two-electron migration orthosilicate cathode materials for Na-ion batteries. Journal of Materials Chemistry A, 2014, 2, 11574.	5.2	19
442	Integrated solid electrolyte with porous cathode by facilely one-step sintering for an all-solid-state Li–O ₂ battery. Nanotechnology, 2019, 30, 364003.	1.3	19
443	The SPV NO2Gas Sensor Fabricated by Mesoporous Tin Oxide Film. Chemistry Letters, 2003, 32, 510-511.	0.7	18
444	Electrochemical lithium doping of a pentacene molecule semiconductor. Applied Physics Letters, 2005, 86, 261909.	1.5	18
445	An unsymmetrical lithium-ion pathway between charge and discharge processes in a two-phase stage of Li4Ti5O12. Physical Chemistry Chemical Physics, 2012, 14, 9086.	1.3	18
446	Exploration of LiO2 by the method of electrochemical quartz crystal microbalance in TEGDME based Li-O2 battery. Journal of Power Sources, 2016, 329, 525-529.	4.0	18
447	An <i>in situ</i> solidifying strategy enabling high-voltage all-solid-state Li-metal batteries operating at room temperature. Journal of Materials Chemistry A, 2020, 8, 25217-25225.	5.2	18
448	P2-Type Layered Na _{0.75} Ni _{1/3} Ru _{1/6} Mn _{1/2} O ₂ Cathode Material with Excellent Rate Performance for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 39056-39062.	4.0	18
449	An ultrafast process for the fabrication of a Li metal–inorganic solid electrolyte interface. Energy and Environmental Science, 2021, 14, 4474-4480.	15.6	18
450	Triggering and Stabilizing Oxygen Redox Chemistry in Layered Li[Na _{1/3} Ru _{2/3}]O ₂ Enabled by Stable Li–O–Na Configuration. ACS Energy Letters, 2022, 7, 2349-2356.	8.8	18

#	Article	IF	CITATIONS
451	Encapsulation of H aggregates in silica film with high nonlinear optical coefficient (χ3=3.0×10â^'8 esu) by a simple sol–gel method. Materials Letters, 2002, 57, 589-593.	1.3	17
452	Characterization of the dependence on temperature of the formation of carbon film on the internal surfaces of SBA-15 silica. Materials Chemistry and Physics, 2004, 88, 202-206.	2.0	17
453	Hybrid electrolyte Li-air rechargeable batteries based on nitrogen- and phosphorus-doped graphene nanosheets. RSC Advances, 2014, 4, 13119-13122.	1.7	17
454	Pinning Effect Enhanced Structural Stability toward a Zeroâ€Strain Layered Cathode for Sodiumâ€lon Batteries. Angewandte Chemie, 2021, 133, 13478-13483.	1.6	17
455	Synthesis and Nonlinear Optical Susceptibility of Cyanine Dye J-Aggregate Doped Silica Film (I). Journal of Sol-Gel Science and Technology, 2000, 19, 257-261.	1.1	16
456	Broadband surface plasmon resonance spectroscopy for determination of refractive-index dispersion of dielectric thin films. Applied Physics Letters, 2007, 90, 181112.	1.5	16
457	Fabrication of MnOOH nanorods on a substrate in an oxygen bubbled solution with superhydrophobic properties. Nanotechnology, 2008, 19, 395605.	1.3	16
458	Lithium Borocarbide LiBC as an Anode Material for Rechargeable Li-Ion Batteries. Journal of Physical Chemistry C, 2018, 122, 18231-18236.	1.5	16
459	Understanding the effect of the concentration of LiNO ₃ salt in Li–O ₂ batteries. Journal of Materials Chemistry A, 2019, 7, 18318-18323.	5.2	16
460	Using a Hemeâ€Based Nanozyme as Bifunctional Redox Mediator for Liâ^'O ₂ Batteries. Batteries and Supercaps, 2020, 3, 336-340.	2.4	16
461	Synthesis of single-crystal vanadium dioxide nanosheets by the hydrothermal process. Journal of Crystal Growth, 2006, 296, 1-5.	0.7	15
462	A hybrid phase-transition model of olivine LiFePO4 for the charge and discharge processes. Journal of Power Sources, 2013, 233, 299-303.	4.0	15
463	Influence of CO2 on the stability of discharge performance for Li–air batteries with a hybrid electrolyte based on graphene nanosheets. RSC Advances, 2014, 4, 11798.	1.7	15
464	Building a Beyond Concentrated Electrolyte for Highâ€Voltage Anodeâ€Free Rechargeable Sodium Batteries. Angewandte Chemie, 2022, 134, .	1.6	15
465	Synthesis of Chlorophyll Doped Silica-mesostructure Materials. Chemistry Letters, 1998, 27, 973-974.	0.7	14
466	Fabrication of Highâ€Energy Liâ€lon Cells with Li ₄ Ti ₅ O ₁₂ Microspheres as Anode and 0.5 Li ₂ MnO ₃ â<0.5 LiNi _{0.4} Co _{0.2} Mn _{0.4Microspheres as Cathode. Chemistry - an Asian Journal, 2016, 11, 1273-1280.}	ıb> ¹ 07 <sub< td=""><td>>2¹⁴ >2</td></sub<>	>2 ¹⁴ >2
467	NonAqueous, Metal-Free, and Hybrid Electrolyte Li-Ion O ₂ Battery with a Single-Ion-Conducting Separator. ACS Applied Materials & amp; Interfaces, 2019, 11, 4908-4914.	4.0	14
468	A Safe and Sustainable Lithiumâ€lon–Oxygen Battery based on a Lowâ€Cost Dualâ€Carbon Electrodes Architecture. Advanced Materials, 2021, 33, e2100827.	11.1	14

#	Article	IF	CITATIONS
469	Sifting weakly-coordinated solvents within solvation sheath through an electrolyte filter for high-voltage lithium-metal batteries. Energy Storage Materials, 2022, 44, 360-369.	9.5	14
470	An ultralow-charge-overpotential and long-cycle-life solid-state Li-CO2 battery enabled by plasmon-enhanced solar photothermal catalysis. Nano Energy, 2022, 100, 107521.	8.2	14
471	Synthesis of Hexagonal Mesostructured FePO4Using Cationic Surfactant as the Template. Chemistry Letters, 2004, 33, 774-775.	0.7	13
472	Lithium doping of pentacene for electrochemical hydrogen storage. Applied Physics Letters, 2006, 89, 023102.	1.5	13
473	Thin Films Composed of Multiwalled Carbon Nanotubes, Gold Nanoparticles and Myoglobin for Humidity Detection at Room Temperature. ChemPhysChem, 2007, 8, 264-269.	1.0	13
474	A Postspinel Anode Enabling Sodiumâ€lon Ultralong Cycling and Superfast Transport via 1D Channels. Advanced Energy Materials, 2017, 7, 1700361.	10.2	13
475	Superior efficient rechargeable lithium–air batteries using a bifunctional biological enzyme catalyst. Energy and Environmental Science, 2020, 13, 144-151.	15.6	13
476	Structure design enables stable anionic and cationic redox chemistry in a T2-type Li-excess layered oxide cathode. Science Bulletin, 2022, 67, 381-388.	4.3	13
477	Synthesis of oriented meso-structure silica functional thin film. Journal of the European Ceramic Society, 1999, 19, 1361-1364.	2.8	12
478	Synthesis of self-standing mesoporous nanocrystalline titania–phosphorus oxide composite films. Chemical Communications, 2004, , 2836-2837.	2.2	12
479	Phonon confinement effect on nanocrystalline LiCoO2 studied with Raman spectroscopy. Journal of Physics and Chemistry of Solids, 2008, 69, 2911-2915.	1.9	12
480	Biomimetic Synthesis of Metal Ionâ€Doped Hierarchical Crystals Using a Gel Matrix: Formation of Cobaltâ€Doped LiMn ₂ O ₄ with Improved Electrochemical Properties through a Cobaltâ€Doped MnCO ₃ Precursor. Chemistry - an Asian Journal, 2010, 5, 792-798.	1.7	12
481	Formation of Nanostructured MnO/Co/Solid–Electrolyte Interphase Ternary Composites as a Durable Anode Material for Lithium″on Batteries. Chemistry - an Asian Journal, 2013, 8, 760-764.	1.7	12
482	Fabrication of Transparent ZnO Thick Film with Unusual Orientation by the Chemical Bath Deposition. Crystal Growth and Design, 2015, 15, 3150-3156.	1.4	12
483	Tunable Electrochemistry via Controlling Lattice Water in Layered Oxides of Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 34909-34914.	4.0	12
484	Fabrication and impedance analysis for designed composite layers with polymer and inorganic electrolytes leading to high conductivity. Solid State Ionics, 2018, 316, 29-33.	1.3	12
485	A Versatile Halide Ester Enabling Liâ€Anode Stability and a High Rate Capability in Lithium–Oxygen Batteries. Angewandte Chemie, 2019, 131, 2377-2381.	1.6	12
486	A high-capacity cathode for rechargeable K-metal battery based on reversible superoxide-peroxide conversion. National Science Review, 2021, 8, nwaa287.	4.6	12

#	Article	IF	CITATIONS
487	A low-cost anodic catalyst of transition metal oxides for lithium extraction from seawater. Chemical Communications, 2020, 56, 6396-6399.	2.2	12
488	Synthesis, characterization and optical gas-sensing application of block copolymer templated mesostructured peroxopolytungstic acid films. Journal of Materials Chemistry, 2004, 14, 3540.	6.7	11
489	Fabrication of highly porous and micropatterned SnO2 films by oxygen bubbles generated on the anode electrode. Chemical Communications, 2005, , 2609.	2.2	11
490	Atomic and Electronic Structures of Li _{0.44} MnO ₂ Nanowires and Li ₂ MnO ₃ Byproducts in the Formation Process of LiMn ₂ O ₄ Nanowires. Journal of Physical Chemistry C, 2010, 114, 18358-18365.	1.5	11
491	Study on the capacity fading of pristine and FePO 4 coated LiNi 1/3 Co 1/3 Mn 1/3 O 2 by Electrochemical and Magnetical techniques. Electrochimica Acta, 2014, 148, 26-32.	2.6	11
492	Promotional recyclable Li-ion batteries by a magnetic binder with anti-vibration and non-fatigue performance. Journal of Materials Chemistry A, 2015, 3, 15403-15407.	5.2	11
493	Renewable Polysulfide Regulation by Versatile Films toward High-Loading Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2020, 12, 47590-47598.	4.0	11
494	Designing Cation–Solvent Fully Coordinated Electrolyte for Highâ€Energyâ€Density Lithium–Sulfur Full Cell Based On Solid–Solid Conversion. Angewandte Chemie, 2021, 133, 17867-17875.	1.6	11
495	Long-enduring oxygen redox enabling robust layered cathodes for sodium-ion batteries. Chemical Engineering Journal, 2022, 435, 134944.	6.6	11
496	Multilayered mesoporous titanate nanocomposite film: Fabrication by layer-by-layer self-assembly and its electrochemical properties with H+ intercalation. Electrochemistry Communications, 2006, 8, 206-210.	2.3	10
497	Formation of Regular Magnetic Domains on Spontaneously Nanostructured Cobalt Filaments. Advanced Materials, 2010, 22, 2711-2716.	11.1	10
498	VGCF-core@LiMn0.4Fe0.6PO4-sheath heterostructure nanowire for high rate Li-ion batteries. CrystEngComm, 2013, 15, 6638.	1.3	10
499	Minimizing the Abnormal High-Potential Discharge Process Related to Redox Mediators in Lithium–Oxygen Batteries. Journal of Physical Chemistry Letters, 2018, 9, 6761-6766.	2.1	10
500	Applications of Metal-organic Frameworks (MOFs) Materials in Lithium-ion Battery/Lithium-metal Battery Electrolytes. Acta Chimica Sinica, 2021, 79, 139.	0.5	10
501	Progress and Prospects in Redox Mediators for Highly Reversible Lithium–Oxygen Batteries: A Minireview. Energy & Fuels, 2021, 35, 19302-19319.	2.5	10
502	Kinetics of redox-mediated catalysis in batteries. Nature Catalysis, 2022, 5, 173-174.	16.1	10
503	Conductive Self-Assembled Meso-Structured Silica Films Synthesized by Ferrocenyl Surfactant. Japanese Journal of Applied Physics, 1999, 38, L958-L960.	0.8	9
504	Optimization of Sonochemical Synthesis Condition of Manganese Oxide/Acetylene Black Nanocomposite for High Power Lithium-Ion Batteries. Journal of the Electrochemical Society, 2005, 152, A1217.	1.3	9

#	Article	IF	CITATIONS
505	Single-crystal ZnO nanorods fabricated with different end morphologies. Nanotechnology, 2007, 18, 095608.	1.3	9
506	Switchable titanate-nanotube electrode sensitive to nitrate. Applied Physics Letters, 2007, 90, 253112.	1.5	9
507	Single Crystallization of Olivine Lithium Phosphate Nanowires using Oriented Attachments. Journal of Physical Chemistry C, 2014, 118, 7678-7682.	1.5	9
508	A battery with sulphur cathode and lithiated graphite anode based on Lithium shuttle reaction. Materials Technology, 2016, 31, 517-520.	1.5	9
509	Facilitating the Oxygen Evolution Reaction of Lithium Peroxide via Molecular Adsorption. Journal of Physical Chemistry C, 2016, 120, 10237-10243.	1.5	9
510	Carbon Cathodes in Rechargeable Lithium–Oxygen Batteries Based on Doubleâ€Lithiumâ€ S alt Electrolytes. ChemSusChem, 2016, 9, 1249-1254.	3.6	9
511	Effects of nanostructuring on the bond strength and disorder in V ₂ O ₅ cathode material for rechargeable ion-batteries. Physical Chemistry Chemical Physics, 2018, 20, 15288-15292.	1.3	9
512	Mesostructural Transformation of Vanadium Oxideâ~'Hexadecyltrimethylammonium Composite by Low-Temperature Calcination. Langmuir, 2001, 17, 1328-1330.	1.6	8
513	Electrode properties of manganese oxide synthesized by sonochemical method in non-aqueous system. Journal of Power Sources, 2005, 146, 304-309.	4.0	8
514	Cathode Properties of Nanocrystalline Manganese Oxide Synthesized Through Soft Solution Processing. Journal of the Electrochemical Society, 2005, 152, A1568.	1.3	8
515	Nanoimprint of Proton Exchange Membrane for MEMS-based Fuel Cell Application. , 2007, , .		8
516	Halogen conversion-intercalation chemistry promises high energy density Li-ion battery. Science Bulletin, 2019, 64, 1393-1395.	4.3	8
517	Insights into interfacial chemistry of Ni-rich cathodes and sulphide-based electrolytes in all-solid-state lithium batteries. Chemical Communications, 2022, , .	2.2	8
518	Enhancement of Specific Capacity of Manganese Oxide/Carbon Composite Synthesized by Sonochemical Method. Electrochemical and Solid-State Letters, 2005, 8, A253-A255.	2.2	7
519	Electrochemical hydrogen storage in Li-doped pentacene. Journal of Chemical Physics, 2006, 124, 204718.	1.2	7
520	Superhydrophobic property of the perpendicular nanosheet film by hot water treatment of the metal aluminum. Journal of the Ceramic Society of Japan, 2009, 117, 299-301.	0.5	7
521	Synthesis of quasi-spherical micro-size lithium titanium oxide by an easy sol-gel method. Journal of Solid State Electrochemistry, 2015, 19, 299-305.	1.2	7
522	Correlation between the O 2p Orbital and Redox Reaction in LiMn _{0.6} Fe _{0.4} PO ₄ Nanowires Studied by Soft Xâ€ray Absorption. ChemPhysChem, 2016, 17, 4110-4115.	1.0	7

#	Article	IF	CITATIONS
523	A high-stability biphasic layered cathode for sodium-ion batteries. Chemical Communications, 2021, 57, 2891-2894.	2.2	7
524	Determination of Third-Order Optical Nonlinearity Dispersion of 1-Methyl-1′-Octadecyl-2,2′-Cyanine Perchlorate Langmuir-Blodgett Films Using Electroabsorption Spectroscopy. Japanese Journal of Applied Physics, 2000, 39, 5838-5841.	0.8	6
525	A Simple Method for Fabrication of Mesoporous Films Using a Rapid Heating Process. Chemistry Letters, 2005, 34, 328-329.	0.7	6
526	Preparation of Self-Standing, Submillimeter-Thick Porous Titania Films with Anatase Nanocrystallites Using Evaporation-Induced Self-Assembly. Journal of Inorganic and Organometallic Polymers and Materials, 2006, 16, 169-173.	1.9	6
527	Systematic characterization of spectral surface plasmon resonance sensors with absorbance measurement. Applied Optics, 2007, 46, 7963.	2.1	6
528	Synthesis of One-Dimensional Sodium Titanate Nanostructures. Journal of Nanoscience and Nanotechnology, 2007, 7, 1065-1068.	0.9	6
529	ZnO nano-rectangular framework-like structure from zinc hydroxide acetate plates. Journal of the Ceramic Society of Japan, 2012, 120, 171-174.	0.5	6
530	Enhanced cycle stability of hybrid Li–air batteries with carbon nanofiber grown on carbon black. RSC Advances, 2016, 6, 74195-74200.	1.7	6
531	A Liquid Anode of Lithium Biphenyl for Highly Safe Lithiumâ€Air Battery with Hybrid Electrolyte. Batteries and Supercaps, 2020, 3, 708-712.	2.4	6
532	Electrolyte Sieving Chemistry in Suppressing Gas Evolution of Sodiumâ€Metal Batteries. Angewandte Chemie, 2022, 134, .	1.6	6
533	Pathways towards Highâ€Performance Aqueous Zincâ€Organic Batteries. Batteries and Supercaps, 2022, 5, .	2.4	6
534	Low-temperature chemical synthesis of nanocrystalline KTiOPO4. Journal of Materials Research, 2002, 17, 723-726.	1.2	4
535	One-step synthesis of PWA containing large pore mesoporous SiO2 using triblock copolymer templates. Journal of Materials Science Letters, 2002, 21, 1501-1503.	0.5	4
536	Hexagonally ordered mesoporous ternary Li2O–TiO2–P2O5 oxides with high lithium content. Chemical Communications, 2005, , 5187.	2.2	4
537	Synthesis of heteropoly oxometalate/amphiphilic block copolymer composite thin films with self-ordered mesostructures. Thin Solid Films, 2007, 515, 2842-2846.	0.8	4
538	High-energy Mn-based layered cathodes for sodium-ion batteries. Science Bulletin, 2019, 64, 149-150.	4.3	4
539	Study on the Aqueous Hybrid Supercapacitor Based on Carbon-coated NaTi2(PO4)3 and Activated Carbon Electrode Materials. Acta Chimica Sinica, 2017, 75, 241.	0.5	4
540	Sol-gel Synthesis of Porous Crystalline TiO2–P2O5 Oxide with Thermal Stability. Journal of Materials Research, 2003, 18, 2743-2746.	1.2	3

#	Article	IF	CITATIONS
541	A Possibility of Block-Copolymer Templated Mesoporous Silica Films Applied to Surface Photo Voltage (SPV) type NOx Gas Sensor. Studies in Surface Science and Catalysis, 2003, 146, 783-786.	1.5	3
542	Synthesis and characterization of hybrid nano-crystallites inside self-ordered mesoporous carbon. Microporous and Mesoporous Materials, 2007, 100, 227-232.	2.2	3
543	In-situ STEM Observation of Strain Field Movement in a LiMn2O4 Nanowire Battery. Microscopy and Microanalysis, 2015, 21, 953-954.	0.2	3
544	Electrochemical characteristic of based on carbon mixed with organic metal complex (Co(mqph)) in alkaline media Li–air battery. Journal of Power Sources, 2016, 307, 474-480.	4.0	3
545	Advances and Challenges for Aprotic Lithiumâ€Oxygen Batteries using Redox Mediators. Batteries and Supercaps, 2019, 2, 802-802.	2.4	3
546	High-energy silicon-sulfurized poly(acrylonitrile) battery based on a nitrogen evolution reaction. Science Bulletin, 2022, 67, 256-262.	4.3	3
547	Dual Honeycombâ€5uperlattice Enables Doubleâ€High Activity and Reversibility of Anion Redox for Sodiumâ€Ion Battery Layered Cathodes. Angewandte Chemie, 2022, 134, .	1.6	3
548	Benzene sensors based on surface photo voltage of mesoporous organo-silica hybrid thin films. Studies in Surface Science and Catalysis, 2007, 165, 893-896.	1.5	2
549	Fabrication of transparent conductive zinc oxide films by chemical bath deposition using solutions containing Zn ²⁺ and Al ³⁺ ions. Journal of the Ceramic Society of Japan, 2015, 123, 329-334.	0.5	2
550	Liquid Crystals: Liquid-Crystalline Electrolytes for Lithium-Ion Batteries: Ordered Assemblies of a Mesogen-Containing Carbonate and a Lithium Salt (Adv. Funct. Mater. 8/2015). Advanced Functional Materials, 2015, 25, 1205-1205.	7.8	2
551	A promising Mo-based lithium-rich phase for Li-ion batteries. RSC Advances, 2019, 9, 17852-17855.	1.7	2
552	Sustainable Lithiumâ€Metal Battery Achieved by a Safe Electrolyte Based on Recyclable and Low ost Molecular Sieve. Angewandte Chemie, 2021, 133, 15700-15709.	1.6	2
553	Advanced single-crystal layered Ni-rich cathode materials for next-generation high-energy-density and long-life Li-ion batteries. Physical Review Materials, 2022, 6, .	0.9	2
554	Third-Order Nonlinear Optical Susceptibility Measurement in 1-Methyl-1′-Octadecyl-2,2′-Cyanine Perchlorate Langmuir-Blodgett Films by Means of Electroabsorption Spectroscopy. Molecular Crystals and Liquid Crystals, 1999, 327, 31-35.	0.3	1
555	Sensitive slab optical waveguides composed of mesoporous metal-oxide thin films on the tin-diffused layers of float glass substrates. Journal of Applied Physics, 2006, 100, 083102.	1.1	1
556	Mesostructured powder of tungsten oxidesurfactant compound: influence of calcination on the material's structure. Studies in Surface Science and Catalysis, 2007, , 291-299.	1.5	1
557	Synthesis and Electrical Properties of Garnet-type Solid Oxide Electrolyte Thin Films from Solution Route. Materials Research Society Symposia Proceedings, 2013, 1496, 1.	0.1	1
558	Improvement of preparation process for Li-ion conducting membranes composed of monolayered inorganic electrolyte particles and insulating polymer matrix. Solid State Ionics, 2019, 341, 115037.	1.3	1

#	Article	IF	CITATIONS
559	Synthesis and electrochemical properties of mesostructured 12-phosphotungstic acid thin films with hierarchical structures by triblock copolymer templating. Materials Research Society Symposia Proceedings, 2003, 788, 761.	0.1	0
560	Remote voltage generation through sono-electrochemical process on platinum surface. Electrochemistry Communications, 2006, 8, 801-806.	2.3	0
561	Cathode Properties of Nanocrystalline Manganese Oxide Synthesized Through Soft Solution Processing ChemInform, 2006, 37, no.	0.1	Ο
562	Correction to Fabrication of Transparent ZnO Thick Film with Unusual Orientation by the Chemical Bath Deposition. Crystal Growth and Design, 2016, 16, 2460-2460.	1.4	0