
Elizaveta P Simonenko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1491039/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oxidation of graphene-modified HfB2-SiC ceramics by supersonic dissociated air flow. Journal of the European Ceramic Society, 2022, 42, 30-42.	2.8	14
2	Microextrusion printing of gas-sensitive planar anisotropic NiO nanostructures and their surface modification in an H2S atmosphere. Applied Surface Science, 2022, 578, 151984.	3.1	23
3	Quantum of selectivity testing: detection of isomers and close homologs using an AZO based e-nose without <i>a prior</i> training. Journal of Materials Chemistry A, 2022, 10, 8413-8423.	5.2	9
4	Gas-sensitive nanostructured ZnO films praseodymium and europium doped: Electrical conductivity, selectivity, influence of UV irradiation and humidity. Applied Surface Science, 2022, 589, 152974.	3.1	15
5	Hydrothermal Synthesis of Ag Thin Films and Their SERS Application. Nanomaterials, 2022, 12, 136.	1.9	4
6	Hydrothermally synthesized hierarchical Ce1-xSmxO2-Î ^r oxides for additive manufacturing of planar solid electrolytes. Ceramics International, 2022, 48, 22401-22410.	2.3	9
7	Printing Technologies as an Emerging Approach in Gas Sensors: Survey of Literature. Sensors, 2022, 22, 3473.	2.1	20
8	Pen plotter printing of ITO thin film as a highly CO sensitive component of a resistive gas sensor. Talanta, 2021, 221, 121455.	2.9	37
9	Oxidation of HfB2-SiC-Ta4HfC5 ceramic material by a supersonic flow of dissociated air. Journal of the European Ceramic Society, 2021, 41, 1088-1098.	2.8	18
10	Microplotter printing of planar solid electrolytes in the CeO2–Y2O3 system. Journal of Colloid and Interface Science, 2021, 588, 209-220.	5.0	28
11	Highâ€ŧemperature mass spectrometric study of vaporization and thermodynamics of the Cs ₂ Oâ€B ₂ O ₃ system: Review and experimental investigation. Rapid Communications in Mass Spectrometry, 2021, 35, e9079.	0.7	3
12	Vaporization and thermodynamics of the Cs 2 O–MoO 3 system studied using highâ€ŧemperature mass spectrometry. Rapid Communications in Mass Spectrometry, 2021, 35, e9097.	0.7	3
13	Dependence of the Reactivity of the Finely Divided System Ta2O5–HfO2–C on the Xerogel Carbonization Temperature. Russian Journal of Inorganic Chemistry, 2021, 66, 747-754.	0.3	4
14	PZT 50/50 nanocrystalline powders with tetragonal structure prepared via gel combustion route: Effect of heat treatment on phase and chemical compositions. Ceramics International, 2021, 47, 16232-16239.	2.3	1
15	Samarium zirconate: Thermodynamics and vaporization at high temperatures. Materials Today Communications, 2021, 27, 102200.	0.9	2
16	Microstructure and local electrophysical properties of sol-gel derived (In2O3-10%SnO2)/V2O5 films. Colloids and Interface Science Communications, 2021, 43, 100452.	2.0	10
17	Chemoresistive gas-sensing properties of highly dispersed Nb2O5 obtained by programmable precipitation. Journal of Alloys and Compounds, 2021, 868, 159090.	2.8	26
18	Chemoresistive gas-sensitive ZnO/Pt nanocomposites films applied by microplotter printing with increased sensitivity to benzene and hydrogen. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 271, 115233.	1.7	22

Elizaveta P Simonenko

#	Article	IF	CITATIONS
19	Modification of HfB2–30% SiC UHTC with Graphene (1 vol %) and Its Influence on the Behavior in a Supersonic Air Jet. Russian Journal of Inorganic Chemistry, 2021, 66, 1405-1415.	0.3	10
20	Platinum Based Nanoparticles Produced by a Pulsed Spark Discharge as a Promising Material for Gas Sensors. Applied Sciences (Switzerland), 2021, 11, 526.	1.3	18
21	Influence of Carbon Deficiency and Hafnium Oxide Doping on Reactive Spark Plasma Sintering of the Ta2O5–C System. Russian Journal of Inorganic Chemistry, 2021, 66, 1887-1894.	0.3	3
22	Microstructural, electrophysical and gas-sensing properties of CeO2–Y2O3 thin films obtained by the sol-gel process. Ceramics International, 2020, 46, 121-131.	2.3	32
23	The effects of subsonic and supersonic dissociated air flow on the surface of ultra-high-temperature HfB2-30 vol% SiC ceramics obtained using the sol-gel method. Journal of the European Ceramic Society, 2020, 40, 1093-1102.	2.8	16
24	Production and Oxidation Resistance of HfB2–30 vol % SiC Composite Powders Modified with Y3Al5O12. Russian Journal of Inorganic Chemistry, 2020, 65, 1416-1423.	0.3	4
25	Behavior of Ultra-High Temperature Ceramic Material HfB2–SiC–Y3Al5O12 under the Influence of Supersonic Dissociated Air Flow. Russian Journal of Inorganic Chemistry, 2020, 65, 1596-1605.	0.3	9
26	Microplotter-Printed On-Chip Combinatorial Library of Ink-Derived Multiple Metal Oxides as an "Electronic Olfaction―Unit. ACS Applied Materials & Interfaces, 2020, 12, 56135-56150.	4.0	32
27	Oxidation of Porous HfB2–SiC Ultra-High-Temperature Ceramic Materials Rich in Silicon Carbide (65) Tj ETQq1	1 8:38431	4 rgBT /Ovel
28	Pen plotter printing of Co3O4 thin films: features of the microstructure, optical, electrophysical and gas-sensing properties. Journal of Alloys and Compounds, 2020, 832, 154957.	2.8	38
29	Reactive Hot Pressing of HfB2–SiC–Ta4HfC5 Ultra-High Temperature Ceramics. Russian Journal of Inorganic Chemistry, 2020, 65, 446-457.	0.3	14
30	A study of "The Portrait of F.P. Makerovsky in a Masquerade Costume―by Dmitry Levitsky from the collection of the State Tretyakov Gallery. Heritage Science, 2020, 8, .	1.0	3
31	Oxygen detection using nanostructured TiO2 thin films obtained by the molecular layering method. Applied Surface Science, 2019, 463, 197-202.	3.1	30
32	Thermodynamic properties of lanthanum, neodymium, gadolinium hafnates (Ln2Hf2O7): Calorimetric and KEMS studies. Journal of Materials Research, 2019, 34, 3326-3336.	1.2	6
33	Synthesis of BaCe0.9xZrxY0.1O3 nanopowders and the study of proton conductors fabricated on their basis by low-temperature spark plasma sintering. International Journal of Hydrogen Energy, 2019, 44, 20345-20354.	3.8	37
34	Behavior of HfB2–30 vol% SiC UHTC obtained by sol–gel approach in the supersonic airflow. Journal of Sol-Gel Science and Technology, 2019, 92, 386-397.	1.1	25
35	Sol-gel synthesis of SiC@Y3Al5O12 composite nanopowder and preparation of porous SiC-ceramics derived from it. Materials Chemistry and Physics, 2019, 235, 121734.	2.0	12
36	Gas-sensing properties of nanostructured TiO2–xZrO2 thin films obtained by the sol–gel method. Journal of Sol-Gel Science and Technology, 2019, 92, 415-426.	1.1	17

Elizaveta P Simonenko

#	Article	IF	CITATIONS
37	ZrB2/HfB2–SiC Ceramics Modified by Refractory Carbides: An Overview. Russian Journal of Inorganic Chemistry, 2019, 64, 1697-1725.	0.3	22
38	Effect of the Surface Relief of HfB2-SiC Ceramic Materials on Their High-Temperature Oxidation. Russian Journal of Inorganic Chemistry, 2019, 64, 1681-1686.	0.3	6
39	Oxidation of Ultra-High Temperature HfB2–SiC Ceramic Materials in Humid Air Flow. Russian Journal of Inorganic Chemistry, 2019, 64, 1849-1853.	0.3	8
40	Sol–Gel Synthesis of Functionally Graded SiC–TiC Ceramic Material. Russian Journal of Inorganic Chemistry, 2019, 64, 1456-1463.	0.3	9
41	Sol–Gel Synthesis of Highly Dispersed Tantalum Hafnium Carbide Ta4HfC5. Russian Journal of Inorganic Chemistry, 2019, 64, 1317-1324.	0.3	9
42	A sol-gel synthesis and gas-sensing properties of finely dispersed ZrTiO4. Materials Chemistry and Physics, 2019, 225, 347-357.	2.0	12
43	Ink-jet printing of a TiO2–10%ZrO2 thin film for oxygen detection using a solution of metal alkoxoacetylacetonates. Thin Solid Films, 2019, 670, 46-53.	0.8	28
44	Microstructure, phase composition, and gas-sensing properties of nanostructured ZrO2-xY2O3 thin films and powders obtained by the sol-gel method. Ionics, 2019, 25, 1259-1270.	1.2	8
45	Gas-sensing properties of nanostructured CeO2-xZrO2 thin films obtained by the sol-gel method. Journal of Alloys and Compounds, 2019, 773, 1023-1032.	2.8	40
46	Study of the Thermal Behavior of Wedge-Shaped Samples of HfB2–45 vol % SiC Ultra-High-Temperature Composite in a High-Enthalpy Air Flow. Russian Journal of Inorganic Chemistry, 2018, 63, 421-432.	0.3	29
47	Sol-gel made titanium dioxide nanostructured thin films as gas-sensing materials for the detection of oxygen. Mendeleev Communications, 2018, 28, 164-166.	0.6	15
48	Glycol-citrate synthesis of fine-grained oxides La2â^'xGdxZr2O7 and preparation of corresponding ceramics using FAST/SPS process. Ceramics International, 2018, 44, 7647-7655.	2.3	12
49	Production of HfB2–SiC (10–65 vol % SiC) Ultra-High-Temperature Ceramics by Hot Pressing of HfB2–(SiO2–C) Composite Powder Synthesized by the Sol–Gel Method. Russian Journal of Inorganic Chemistry, 2018, 63, 1-15.	0.3	31
50	Vaporization and thermodynamic properties of lanthanum hafnate. Journal of Alloys and Compounds, 2018, 735, 2348-2355.	2.8	28
51	Nanocrystalline ZnO Obtained by the Thermal Decomposition of [Zn(H2O)(O2C5H7)2] in 1-Butanol: Synthesis and Testing as a Sensing Material. Russian Journal of Inorganic Chemistry, 2018, 63, 1519-1528.	0.3	15
52	Impact of a Supersonic Dissociated Air Flow on the Surface of HfB2–30 vol % SiC UHTC Produced by the Sol–Gel Method. Russian Journal of Inorganic Chemistry, 2018, 63, 1484-1493.	0.3	28
53	ZrB2/HfB2–SiC Ultra-High-Temperature Ceramic Materials Modified by Carbon Components: The Review. Russian Journal of Inorganic Chemistry, 2018, 63, 1772-1795.	0.3	20
54	Impact of a Subsonic Dissociated Air Flow on the Surface of HfB2–30 vol % SiC UHTC Produced by the Sol–Gel Method. Russian Journal of Inorganic Chemistry, 2018, 63, 1345-1355.	0.3	18

#	Article	IF	CITATIONS
55	Spark plasma sintering of nanopowders in the CeO2-Y2O3 system as a promising approach to the creation of nanocrystalline intermediate-temperature solid electrolytes. Ceramics International, 2018, 44, 19879-19884.	2.3	28
56	Heat-Treatment-Induced Evolution of the Mesostructure of Finely Divided Y3Al5O12 Produced by the Sol–Gel Method. Russian Journal of Inorganic Chemistry, 2018, 63, 691-699.	0.3	12
57	Tin Acetylacetonate as a Precursor for Producing Gas-Sensing SnO2 Thin Films. Russian Journal of Inorganic Chemistry, 2018, 63, 851-860.	0.3	11
58	Synthesis, vaporization and thermodynamic properties of superfine yttrium aluminum garnet. Journal of Alloys and Compounds, 2018, 764, 397-405.	2.8	7
59	Polymer Technology of Porous SiC Ceramics Using Milled SiO2 Fibers. Russian Journal of Inorganic Chemistry, 2018, 63, 574-582.	0.3	3
60	Preparation of porous SiC-ceramics by sol–gel and spark plasma sintering. Journal of Sol-Gel Science and Technology, 2017, 82, 748-759.	1.1	29
61	Production of porous ceramic materials using nanodisperse SiC powder. Russian Journal of Inorganic Chemistry, 2017, 62, 863-869.	0.3	10
62	Synthesis of nanocrystalline ZnO by the thermal decomposition of [Zn(H2O)(O2C5H7)2] in isoamyl alcohol. Russian Journal of Inorganic Chemistry, 2017, 62, 1415-1425.	0.3	15
63	Preparation of MB2/SiC and MB2/SiC-MC (M = Zr or Hf) powder composites which are promising materials for design of ultra-high-temperature ceramics. Russian Journal of Inorganic Chemistry, 2016, 61, 1649-1676.	0.3	13
64	Preparation of HfB2/SiC composite powders by sol–gel technology. Russian Journal of Inorganic Chemistry, 2016, 61, 1483-1498.	0.3	13
65	How xerogel carbonization conditions affect the reactivity of highly disperse SiO2–C composites in the sol–gel synthesis of nanocrystalline silicon carbide. Russian Journal of Inorganic Chemistry, 2016, 61, 1347-1360.	0.3	8
66	Behavior of HfB2-SiC (10, 15, and 20 vol %) ceramic materials in high-enthalpy air flows. Russian Journal of Inorganic Chemistry, 2016, 61, 1203-1218.	0.3	29
67	Study of the synthesis of nanocrystalline mixed tantalum–zirconium carbide. Physics of Atomic Nuclei, 2015, 78, 1357-1365.	0.1	13
68	Synthesis, vaporization and thermodynamics of ceramic powders based on the Y2O3–ZrO2–HfO2 system. Materials Chemistry and Physics, 2015, 153, 78-87.	2.0	30
69	Preparation of high-porous SiC ceramics from polymeric composites based on diatomite powder. Journal of Materials Science, 2015, 50, 733-744.	1.7	16
70	Theoretical Сonsideration of Gas Phase Hydrolytic Stability of Crown Ether Based CVD-Precursors of Metal Oxides Thin Films. Macroheterocycles, 2015, 8, 185-192.	0.9	0
71	HfB2-SiC (10–20 vol %) ceramic materials: Manufacture and behavior under long-term exposure to dissociated air streams. Russian Journal of Inorganic Chemistry, 2014, 59, 1361-1382.	0.3	29
72	HfB2-SiC (45 vol %) ceramic material: Manufacture and behavior under long-term exposure to dissociated air jet flow. Russian Journal of Inorganic Chemistry, 2014, 59, 1298-1311.	0.3	29

#	Article	IF	CITATIONS
73	Synthesis of Finely Dispersed La2Zr2O7, La2Hf2O7, Gd2Zr2O7 and Gd2Hf2O7 Oxides. Mendeleev Communications, 2013, 23, 17-18.	0.6	22
74	Synthesis, Vaporization and Thermodynamic Properties of Superfine Nd ₂ Hf ₂ O ₇ and Gd ₂ Hf ₂ O ₇ . European Journal of Inorganic Chemistry, 2013, 2013, 4636-4644.	1.0	44
75	Tin(ii) Hexafluoroacetylacetonate as a Precursor in Atmospheric Pressure Chemical Vapour Deposition: Synthesis, Structure and Properties. Mendeleev Communications, 2012, 22, 239-241.	0.6	7
76	Finely dispersed refractory compounds for high-temperature ceramic matrix composite applications. Russian Journal of General Chemistry, 2010, 80, 658-665.	0.3	6
77	Synthesis, structure and thermochemical behavior of bis-(1,1,1,5,5,5-hexafluoro-2,4-pentanedionato)-(1,4,7,10,13,16-hexaoxa-cyclooctadecane)-strontium in comparison with its structural and thermochemical analogous. Inorganica Chimica Acta, 2009, 362, 5133-5138.	1.2	11
78	The lead(II) complexes with 18-Crown-6, 1,1,1,5,5,5-hexafluoropentane-2,4-dionate and 1,1,1-trifluoropentate-2,4-dionate anions: Synthesis, structure, and thermochemical properties. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2008, 34, 157-166.	0.3	11
79	Coordination compounds with the general formula trans-[M(18-crown-6)(C5HO2F6)2] as structural-thermochemical analogs. The complexes trans-[Pb(18-crown-6)(C5HO2F6)2] and trans-[Ba(18-crown-6)(C5HO2F6)2]. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya. 2006. 32. 693-700.	0.3	14
80	Vaporization of Molecular Strontium and Barium β-Diketonates [Sr(15C5)(C5O2F6H)2] and [Ba(18C6)(C5O2F6H)2]. Structure-Thermochemical Approach. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2004, 30, 755-758.	0.3	9