Nils Metzler-Nolte

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1490944/nils-metzler-nolte-publications-by-year.pdf

Version: 2024-04-26

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 252
 12,929
 57
 105

 papers
 citations
 h-index
 g-index

 269
 13,992
 6
 6.77

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
252	Photophysical and structural characterization of the bis-cyclometalated compound [Ir(ptpy)2(2N-tppz)]PF6 and evaluation of its cytotoxic activity. <i>Inorganica Chimica Acta</i> , 2022 , 534, 120	8 <i>66</i> 7	O
251	Zwitterionic Peptides Reduce Accumulation of Marine and Freshwater Biofilm Formers. <i>ACS Applied Materials & ACS Applied & ACS App</i>	9.5	2
250	Unveiling Luminescent Ir and Rh N-Heterocyclic Carbene Complexes: Structure, Photophysical Specifics, and Cellular Localization in the Endoplasmic Reticulum. <i>Chemistry - A European Journal</i> , 2021 , 27, 6783-6794	4.8	5
249	Investigation of Cyclam Based Re-Complexes as Potential Electrocatalysts for the CO2 Reduction Reaction. <i>Zeitschrift Fur Anorganische Und Allgemeine Chemie</i> , 2021 , 647, 968-977	1.3	4
248	Bis-cyclometalated Iridium Complexes Containing Modified Phenanthroline Ligands and Evaluation of their Cytotoxic Activities. <i>Zeitschrift Fur Anorganische Und Allgemeine Chemie</i> , 2021 , 647, 306-311	1.3	4
247	Biophysical Characterization of Pro-apoptotic BimBH3 Peptides Reveals an Unexpected Capacity for Self-Association. <i>Structure</i> , 2021 , 29, 114-124.e3	5.2	3
246	Synthesis and DNA interaction studies of Ru(II) cell penetrating peptide (CPP) bioconjugates. <i>Dalton Transactions</i> , 2021 , 50, 13768-13777	4.3	O
245	Cytotoxic Activities of Bis-cyclometalated Rhodium(III) and Iridium(III) Complexes Containing 2,2EBiphenyldiamine. <i>Zeitschrift Fur Anorganische Und Allgemeine Chemie</i> , 2021 , 647, 519-524	1.3	1
244	Solid-phase synthesis and evaluation of linear and cyclic ferrocenoyl/ruthenocenoyl water-soluble hexapeptides as potential antibacterial compounds. <i>Journal of Biological Inorganic Chemistry</i> , 2021 , 26, 599-615	3.7	O
243	Photothermally Active Cryogel Devices for Effective Release of Antimicrobial Peptides: On-Demand Treatment of Infections. <i>ACS Applied Materials & Devices</i> , 2020, 12, 56805-56814	9.5	9
242	Luminescent Bimetallic Ir /Au Peptide Bioconjugates as Potential Theranostic Agents. <i>Chemistry - A European Journal</i> , 2020 , 26, 12158-12167	4.8	8
241	Letter from the editor. Journal of Biological Inorganic Chemistry, 2020, 25, 1	3.7	
240	Metal and Substituent Influence on the Cytostatic Activity of Cationic Bis-cyclometallated Iridium and Rhodium Complexes with Substituted 1,10-Phenanthrolines as Ancillary Ligands. <i>Zeitschrift Fur Anorganische Und Allgemeine Chemie</i> , 2020 , 646, 665-669	1.3	2
239	Potent Inhibition of Thioredoxin Reductase by the Rh Derivatives of Anticancer M(arene/Cp*)(NHC)Cl Complexes. <i>Inorganic Chemistry</i> , 2020 , 59, 3281-3289	5.1	28
238	Bioconjugates of Co(III) complexes with Schiff base ligands and cell penetrating peptides: Solid phase synthesis, characterization and antiproliferative activity. <i>Journal of Inorganic Biochemistry</i> , 2020 , 206, 111041	4.2	13
237	Aminoisobutyric Acid-Stabilized Peptide SAMs with Low Nonspecific Protein Adsorption and Resistance against Marine Biofouling. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 2665-2671	8.3	6
236	Rhodium(I) and Iridium(I) N-Heterocyclic carbene complexes of imidazolium functionalized amino acids and peptides. <i>Journal of Organometallic Chemistry</i> , 2020 , 909, 121096	2.3	3

(2019-2020)

235	Probing CO Generation through Metal-Assisted Alcohol Dehydrogenation in Metal-2-(arylazo)phenol Complexes Using Isotopic Labeling (Metal = Ru, Ir): Synthesis, Characterization, and Cytotoxicity Studies. <i>Inorganic Chemistry</i> , 2020 , 59, 15526-15540	5.1	10
234	Comparison of Proteomic Responses as Global Approach to Antibiotic Mechanism of Action Elucidation. <i>Antimicrobial Agents and Chemotherapy</i> , 2020 , 65,	5.9	10
233	A Combined Spectroscopic and Protein Crystallography Study Reveals Protein Interactions of Rh(NHC) Complexes at the Molecular Level. <i>Inorganic Chemistry</i> , 2020 , 59, 17191-17199	5.1	12
232	Luminescent Bimetallic Ir /Au Peptide Bioconjugates as Potential Theranostic Agents. <i>Chemistry - A European Journal</i> , 2020 , 26, 12085	4.8	
231	Biometal Corrole Active Esters and Their Amino Acid and Peptide Conjugates. <i>European Journal of Inorganic Chemistry</i> , 2020 , 2020, 3059-3069	2.3	3
230	Low Fouling Peptides with an All (d) Amino Acid Sequence Provide Enhanced Stability against Proteolytic Degradation While Maintaining Low Antifouling Properties. <i>Langmuir</i> , 2020 , 36, 10996-1100	4	5
229	Catalytic oxidation of small organic molecules by cold plasma in solution in the presence of molecular iron complexes. <i>Scientific Reports</i> , 2020 , 10, 21652	4.9	1
228	On the interaction of N-heterocyclic carbene Ir complexes with His and Cys containing peptides. <i>Dalton Transactions</i> , 2019 , 48, 13662-13673	4.3	5
227	A CuAAC Click Approach for the Introduction of Bidentate Metal Complexes to a Sulfanilamide-Derived Antibiotic Fragment. <i>Inorganic Chemistry</i> , 2019 , 58, 9404-9413	5.1	9
226	Interactions between BIM Protein and Beta-Amyloid May Reveal a Crucial Missing Link between Alzheimer's Disease and Neuronal Cell Death. <i>ACS Chemical Neuroscience</i> , 2019 , 10, 3555-3564	5.7	10
225	Functional Carbon Quantum Dots as Medical Countermeasures to Human Coronavirus. <i>ACS Applied Materials & ACS Applied & ACS Applied Materials & ACS Applied & ACS ACS Applied & ACS ACS ACS ACS ACS ACS ACS ACS ACS ACS</i>	9.5	151
224	Bioconjugation of Cyclometalated Gold(III) Lipoic Acid Fragments to Linear and Cyclic Breast Cancer Targeting Peptides. <i>Molecular Pharmaceutics</i> , 2019 , 16, 4572-4581	5.6	5
223	Bis-cyclometalated Rhodium and Iridium Chloride Complexes Yield Different Products Upon Reaction With 9,10-Diaminophenanthrene. <i>Zeitschrift Fur Anorganische Und Allgemeine Chemie</i> , 2019 , 645, 1068-1071	1.3	3
222	Expanding medicinal chemistry into 3D space: metallofragments as 3D scaffolds for fragment-based drug discovery. <i>Chemical Science</i> , 2019 , 11, 1216-1225	9.4	51
221	Study on Chemical Modifications of Glutathione by Cold Atmospheric Pressure Plasma (Cap) Operated in Air in the Presence of Fe(II) and Fe(III) Complexes. <i>Scientific Reports</i> , 2019 , 9, 18024	4.9	5
220	Intracellular Catalysis with Selected Metal Complexes and Metallic Nanoparticles: Advances toward the Development of Catalytic Metallodrugs. <i>Chemical Reviews</i> , 2019 , 119, 829-869	68.1	96
219	Synthesis, characterization and studies on the biological activity of bis-cyclometalated M(III)-complexes (M = Rh, Ir and Ru). <i>Inorganica Chimica Acta</i> , 2019 , 487, 9-14	2.7	3
218	Ru(ii)-Peptide bioconjugates with the cppH linker (cppH = 2-(2'-pyridyl)pyrimidine-4-carboxylic acid): synthesis, structural characterization, and different stereochemical features between organic and aqueous solvents. <i>Dalton Transactions</i> , 2019 , 48, 400-414	4.3	6

217	New organometallic imines of rhenium(i) as potential ligands of GSK-3\psisynthesis, characterization and biological studies. <i>Dalton Transactions</i> , 2018 , 47, 1233-1242	4.3	30
216	Resistance-breaking profiling and gene expression analysis on an organometallic Re-phenanthridine complex reveal parallel activation of two apoptotic pathways. <i>MedChemComm</i> , 2018 , 9, 173-180	5	16
215	Structural studies on radiopharmaceutical DOTA-minigastrin analogue (CP04) complexes and their interaction with CCK2 receptor. <i>EJNMMI Research</i> , 2018 , 8, 33	3.6	7
214	Mechanism-based inhibition of human persulfide dioxygenase by Eglutamyl-homocysteinyl-glycine. <i>Journal of Biological Chemistry</i> , 2018 , 293, 12429-12439	5.4	8
213	Synthesis and characterization of cyclometallated rhodium(III) and iridium(III) compounds with antiproliferative activities in the nanomolar range. <i>Inorganica Chimica Acta</i> , 2018 , 471, 265-271	2.7	10
212	Synthesis of monofunctional platinum(iv) carboxylate precursors for use in Pt(iv)-peptide bioconjugates. <i>Dalton Transactions</i> , 2018 , 47, 15465-15476	4.3	13
211	Identification of Chaoborus kairomone chemicals that induce defences in Daphnia. <i>Nature Chemical Biology</i> , 2018 , 14, 1133-1139	11.7	33
210	Influence of the substituent on the phosphine ligand in novel rhenium(i) aldehydes. Synthesis, computational studies and first insights into the antiproliferative activity. <i>Dalton Transactions</i> , 2018 , 47, 13861-13869	4.3	10
209	Synthesis and Mode of Action Studies on Iridium(I)NHC Anticancer Drug Candidates. <i>European Journal of Inorganic Chemistry</i> , 2018 , 2018, 2461-2470	2.3	16
208	Cyclometalated Iridium(III) and Rhodium(III) Complexes Containing Naphthyridine Ligands: Synthesis, Characterization and Biological Studies. <i>Zeitschrift Fur Anorganische Und Allgemeine Chemie</i> , 2017 , 643, 306-310	1.3	7
207	Bis-cyclometalated rhodium- and iridium-complexes with the 4,4?-dichloro-2,2?-bipyridine ligand. Evaluation of their photophysical properties and biological activity. <i>Inorganica Chimica Acta</i> , 2017 , 463, 36-43	2.7	11
206	Asymmetric rhenium tricarbonyl complexes show superior luminescence properties in live cell imaging. <i>Chemical Communications</i> , 2017 , 53, 905-908	5.8	30
205	Elucidation of Plasma-induced Chemical Modifications on Glutathione and Glutathione Disulphide. <i>Scientific Reports</i> , 2017 , 7, 13828	4.9	26
204	Benzannulated Re(i)-NHC complexes: synthesis, photophysical properties and antimicrobial activity. <i>Dalton Transactions</i> , 2017 , 46, 15269-15279	4.3	25
203	Highly Potent Antibacterial Organometallic Peptide Conjugates. <i>Accounts of Chemical Research</i> , 2017 , 50, 2510-2518	24.3	64
202	cis- versus trans-Square-Planar Palladium(II) and Platinum(II) Complexes with Triphenylphosphine Amino Acid Bioconjugates. <i>European Journal of Inorganic Chemistry</i> , 2017 , 2017, 3928-3937	2.3	9
201	Exploring Structure Activity Relationships in Synthetic Antimicrobial Peptides (synAMPs) by a Ferrocene Scan. <i>European Journal of Inorganic Chemistry</i> , 2017 , 2017, 360-367	2.3	11
200	Synergistic activity of a short lipidated antimicrobial peptide (lipoAMP) and colistin or tobramycin against Pseudomonas aeruginosa from cystic fibrosis patients. <i>MedChemComm</i> , 2016 , 7, 148-156	5	10

(2015-2016)

199	Influence of chlorine substituents on the aggregation behavior of chlorobenzoyl-substituted ferrocene derivates. <i>Structural Chemistry</i> , 2016 , 27, 377-387	1.8	5
198	One-pot synthesis of ferrocenyl-pyrimidones using a recyclable molibdosilicic H4SiMo12O40 heteropolyacid. <i>Research on Chemical Intermediates</i> , 2016 , 42, 977-986	2.8	2
197	A Blocking Group Scan Using a Spherical Organometallic Complex Identifies an Unprecedented Binding Mode with Potent Activity In Vitro and In Vivo for the Opioid Peptide Dermorphin. <i>Chemistry - A European Journal</i> , 2016 , 22, 14605-10	4.8	9
196	Organometallic-Peptide Bioconjugates: Synthetic Strategies and Medicinal Applications. <i>Chemical Reviews</i> , 2016 , 116, 11797-11839	68.1	136
195	Efficient Reagent-Saving Method for the N-Terminal Labeling of Bioactive Peptides with Organometallic Carboxylic Acids by Solid-Phase Synthesis. <i>Organometallics</i> , 2016 , 35, 3192-3196	3.8	11
194	Iridium(I) Compounds as Prospective Anticancer Agents: Solution Chemistry, Antiproliferative Profiles and Protein Interactions for a Series of Iridium(I) N-Heterocyclic Carbene Complexes. <i>Chemistry - A European Journal</i> , 2016 , 22, 12487-94	4.8	66
193	Influence of lipidation on the mode of action of a small RW-rich antimicrobial peptide. <i>Biochimica Et Biophysica Acta - Biomembranes</i> , 2016 , 1858, 1004-11	3.8	27
192	FTIR spectroscopy of cysteine as a ready-to-use method for the investigation of plasma-induced chemical modifications of macromolecules. <i>Journal Physics D: Applied Physics</i> , 2016 , 49, 084004	3	40
191	Cytotoxicity studies of water soluble coordination compounds with a [Mo2O2S2](2+) core. <i>Journal of Inorganic Biochemistry</i> , 2016 , 160, 166-71	4.2	7
190	Influence of metallocene substitution on the antibacterial activity of multivalent peptide conjugates. <i>Journal of Inorganic Biochemistry</i> , 2016 , 160, 246-9	4.2	12
189	A structural view of synthetic cofactor integration into [FeFe]-hydrogenases. <i>Chemical Science</i> , 2016 , 7, 959-968	9.4	94
188	Towards Profiles of Resistance Development and Toxicity for the Small Cationic Hexapeptide RWRWRW-NH2. <i>Frontiers in Cell and Developmental Biology</i> , 2016 , 4, 86	5.7	11
187	Selective Dynamic Assembly of Disulfide Macrocyclic Helical Foldamers with Remote Communication of Handedness. <i>Angewandte Chemie</i> , 2016 , 128, 6962-6966	3.6	24
186	Selective Dynamic Assembly of Disulfide Macrocyclic Helical Foldamers with Remote Communication of Handedness. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 6848-52	16.4	45
185	Titelbild: Selective Dynamic Assembly of Disulfide Macrocyclic Helical Foldamers with Remote Communication of Handedness (Angew. Chem. 24/2016). <i>Angewandte Chemie</i> , 2016 , 128, 6907-6907	3.6	
184	Attachment of antimicrobial peptides to reverse osmosis membranes by Cu(I)-catalyzed 1,3-dipolar alkyne\(zide zide cycloaddition. \(RSC Advances, \) 2016, 6, 91815-91823	3.7	8
183	Synthesis, chemical reactivity and electrochemical behaviour of mono- and difluoro metallocenes. Journal of Organometallic Chemistry, 2015 , 797, 125-130	2.3	8
182	demonstration of an active tumor pretargeting approach with peptide nucleic acid bioconjugates as complementary system. <i>Chemical Science</i> , 2015 , 6, 5601-5616	9.4	30

181	Platinum(II) Complexes with O,S Bidentate Ligands: Biophysical Characterization, Antiproliferative Activity, and Crystallographic Evidence of Protein Binding. <i>Inorganic Chemistry</i> , 2015 , 54, 8560-70	5.1	31
180	An organometallic structure-activity relationship study reveals the essential role of a Re(CO) moiety in the activity against gram-positive pathogens including MRSA. <i>Chemical Science</i> , 2015 , 6, 214-2	2244	47
179	Membrane-binding mechanism of a bacterial phospholipid N-methyltransferase. <i>Molecular Microbiology</i> , 2015 , 95, 313-31	4.1	19
178	Synthesis and antibacterial activity of trivalent ultrashort Arg-Trp-based antimicrobial peptides (AMPs). <i>MedChemComm</i> , 2015 , 6, 372-376	5	8
177	Cyclometalated Iridium(III) Complexes Containing Semicarbazone Ligands: Synthesis, Characterization, Photophysical and Biological Studies. <i>Zeitschrift Fur Anorganische Und Allgemeine Chemie</i> , 2015 , 641, 1798-1802	1.3	6
176	A Remarkably Simple Class of Imidazolium-Based Lipids and Their Biological Properties. <i>Chemistry - A European Journal</i> , 2015 , 21, 15123-6	4.8	37
175	Influence of the Multivalency of Ultrashort Arg-Trp-Based Antimicrobial Peptides (AMP) on Their Antibacterial Activity. <i>ChemMedChem</i> , 2015 , 10, 1564-9	3.7	7
174	Peptide Bioconjugates of Electron-Poor Metallocenes: Synthesis, Characterization, and Anti-Proliferative Activity. <i>ChemBioChem</i> , 2015 , 16, 1333-42	3.8	9
173	Synthesis of bisarylethynepeptide conjugates. Organic Chemistry Frontiers, 2015, 2, 531-535	5.2	3
172	Vesicular disruption of lysosomal targeting organometallic polyarginine bioconjugates. <i>Metallomics</i> , 2015 , 7, 371-84	4.5	16
171	Cytotoxic activity and protein binding through an unusual oxidative mechanism by an iridium(I)-NHC complex. <i>Chemical Communications</i> , 2015 , 51, 3151-3	5.8	39
170	A deadly organometallic luminescent probe: anticancer activity of a ReI bisquinoline complex. <i>Chemistry - A European Journal</i> , 2014 , 20, 2496-507	4.8	67
169	Small cationic antimicrobial peptides delocalize peripheral membrane proteins. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, E1409-18	11.5	219
168	Synthesis, Characterization, and Cytotoxic Activity of Aul N,S-Heterocyclic Carbenes Derived from Peptides Containing L-Thiazolylalanine. <i>European Journal of Inorganic Chemistry</i> , 2014 , 2014, 2512-2519	2.3	34
167	Structure-activity relationship of trifluoromethyl-containing metallocenes: electrochemistry, lipophilicity, cytotoxicity, and ROS production. <i>ChemMedChem</i> , 2014 , 9, 1188-94	3.7	19
166	Highly active antibacterial ferrocenoylated or ruthenocenoylated Arg-Trp peptides can be discovered by an L-to-D substitution scan. <i>Chemical Science</i> , 2014 , 5, 4453-4459	9.4	38
165	Photophysical and biological characterization of new cationic cyclometalated M(III) complexes of rhodium and iridium. <i>Journal of Organometallic Chemistry</i> , 2014 , 765, 46-52	2.3	18
164	Structural complexity in metal-organic frameworks: simultaneous modification of open metal sites and hierarchical porosity by systematic doping with defective linkers. <i>Journal of the American Chemical Society</i> 2014 136, 9627-36	16.4	195

163	Im Internet gesucht, in der Nfle gefunden. Nachrichten Aus Der Chemie, 2014, 62, 422-426	0.1	
162	The scaffold protein MUPP1 regulates odorant-mediated signaling in olfactory sensory neurons. Journal of Cell Science, 2014 , 127, 2518-27	5.3	14
161	Copper-Free Cleavage-Sonogashira Conjugation of Silylacetylene Immobilized Peptides. <i>Synthesis</i> , 2014 , 46, 2293-2296	2.9	4
160	Short antibacterial peptides with significantly reduced hemolytic activity can be identified by a systematic L-to-D exchange scan of their amino acid residues. <i>ACS Combinatorial Science</i> , 2013 , 15, 585-	. 92 9	34
159	Identification of the structural determinants for anticancer activity of a ruthenium arene peptide conjugate. <i>Chemistry - A European Journal</i> , 2013 , 19, 9297-307	4.8	48
158	Structural and biological implications of the binding of Leu-enkephalin and its metal derivatives to opioid receptors. <i>Dalton Transactions</i> , 2013 , 42, 9799-802	4.3	10
157	Iron-Based Metal D rganic Frameworks MIL-88B and NH2-MIL-88B: High Quality Microwave Synthesis and Solvent-Induced Lattice B reathing (<i>Crystal Growth and Design</i> , 2013 , 13, 2286-2291	3.5	145
156	Analysis of the mechanism of action of potent antibacterial hetero-tri-organometallic compounds: a structurally new class of antibiotics. <i>ACS Chemical Biology</i> , 2013 , 8, 1442-50	4.9	99
155	TrxR inhibition and antiproliferative activities of structurally diverse gold N-heterocyclic carbene complexes. <i>MedChemComm</i> , 2013 , 4, 942	5	88
154	C-Terminal acetylene derivatized peptides via silyl-based alkyne immobilization. <i>Organic Letters</i> , 2013 , 15, 3126-9	6.2	13
153	Iron metal-organic frameworks MIL-88B and NH2-MIL-88B for the loading and delivery of the gasotransmitter carbon monoxide. <i>Chemistry - A European Journal</i> , 2013 , 19, 6785-90	4.8	106
152	Synthesis and structure-activity relationship study of organometallic bioconjugates of the cyclic octapeptide octreotate. <i>ChemBioChem</i> , 2013 , 14, 2472-9	3.8	13
151	Impact of single basepair mismatches on electron-transfer processes at Fc-PNA?DNA modified gold surfaces. <i>ChemPhysChem</i> , 2012 , 13, 131-9	3.2	13
150	Silyl-based alkyne-modifying linker for the preparation of C-terminal acetylene-derivatized protected peptides. <i>Journal of Organic Chemistry</i> , 2012 , 77, 9954-8	4.2	18
149	Biologically Active Trifluoromethyl-Substituted Metallocene Triazoles: Characterization, Electrochemistry, Lipophilicity, and Cytotoxicity. <i>European Journal of Inorganic Chemistry</i> , 2012 , 2012, 5953-5959	2.3	24
148	Synthesis and in vitro cytotoxicity of cis,cis,trans-diamminedichloridodisuccinatoplatinum(IV)-peptide bioconjugates. <i>Metallomics</i> , 2012 , 4, 260-6	4.5	53
147	Challenges and Opportunities in the Development of Organometallic Anticancer Drugs. <i>Organometallics</i> , 2012 , 31, 5677-5685	3.8	454
146	A spontaneous gold(I)-azide alkyne cycloaddition reaction yields gold-peptide bioconjugates which overcome cisplatin resistance in a p53-mutant cancer cell line. <i>Chemical Science</i> , 2012 , 3, 2062	9.4	82

145	Solid-phase synthesis of oxaliplatin-TAT peptide bioconjugates. <i>Dalton Transactions</i> , 2012 , 41, 3001-5	4.3	57
144	Proteomic response of Bacillus subtilis to lantibiotics reflects differences in interaction with the cytoplasmic membrane. <i>Antimicrobial Agents and Chemotherapy</i> , 2012 , 56, 5749-57	5.9	58
143	Escherichia coli exhibits a membrane-related response to a small arginine- and tryptophan-rich antimicrobial peptide. <i>Proteomics</i> , 2012 , 12, 2319-30	4.8	5
142	A ruthenocene-PNA bioconjugatesynthesis, characterization, cytotoxicity, and AAS-detected cellular uptake. <i>Bioconjugate Chemistry</i> , 2012 , 23, 1764-74	6.3	35
141	Tuning the activity of a short arg-trp antimicrobial Peptide by lipidation of a C- or N-terminal lysine side-chain. <i>ACS Medicinal Chemistry Letters</i> , 2012 , 3, 980-4	4.3	58
140	Planar chiral (B-arene)Cr(CO)3 containing carboxylic acid derivatives: synthesis and use in the preparation of organometallic analogues of the antibiotic platensimycin. <i>Dalton Transactions</i> , 2012 , 41, 112-7	4.3	13
139	Modulating the activity of short arginine-tryptophan containing antibacterial peptides with N-terminal metallocenoyl groups. <i>Beilstein Journal of Organic Chemistry</i> , 2012 , 8, 1753-64	2.5	52
138	Effects of enzymatic activation on the distribution of fluorescently tagged MMP-2 cleavable peptides in cancer cells and spheroids. <i>Bioconjugate Chemistry</i> , 2012 , 23, 1110-8	6.3	12
137	Sandwich and Half-Sandwich Derivatives of Platensimycin: Synthesis and Biological Evaluation. <i>Organometallics</i> , 2012 , 31, 5760-5771	3.8	40
136	Synthesis, characterisation and bioimaging of a fluorescent rhenium-containing PNA bioconjugate. <i>Dalton Transactions</i> , 2012 , 41, 2304-13	4.3	75
135	The chemoselective reactions of tyrosine-containing G-protein-coupled receptor peptides with [Cp*Rh(H2O)3](OTf)2, including 2D NMR structures and the biological consequences. <i>Journal of the American Chemical Society</i> , 2012 , 134, 10321-4	16.4	37
134	Small organometallic compounds as antibacterial agents. <i>Dalton Transactions</i> , 2012 , 41, 6350-8	4.3	193
133	The potential of organometallic complexes in medicinal chemistry. <i>Current Opinion in Chemical Biology</i> , 2012 , 16, 84-91	9.7	346
132	Metal Compounds as Enzyme Inhibitors 2011 , 351-382		18
131	Towards the Preparation of Novel Re/99mTc Tricarbonyl-Containing Peptide Nucleic Acid Bioconjugates. <i>Australian Journal of Chemistry</i> , 2011 , 64, 265	1.2	20
130	Towards peptide-substituted titanocene anticancer drugs. <i>Polyhedron</i> , 2011 , 30, 2387-2390	2.7	6
129	Synthesis, crystal structures, antimicrobial properties and enzyme inhibition studies of zinc(II) complexes of thiones. <i>Inorganica Chimica Acta</i> , 2011 , 376, 207-211	2.7	49
128	Azidomethyl-ruthenocene: facile synthesis of a useful metallocene derivative and its application in the 'click' labelling of biomolecules. <i>Chemical Communications</i> , 2011 , 47, 11444-6	5.8	19

(2011-2011)

127	Synthesis and cytotoxicity of a bimetallic ruthenocene dicobalt-hexacarbonyl alkyne peptide bioconjugate. <i>Dalton Transactions</i> , 2011 , 40, 1382-6	4.3	23
126	Use of confocal fluorescence microscopy to compare different methods of modifying metalBrganic framework (MOF) crystals with dyes. <i>CrystEngComm</i> , 2011 , 13, 2828	3.3	41
125	Microwave-assisted synthesis of the Tp sandwich compound TpRu(p-Br-C6H4Tp) and application of its benzoic acid derivative TpRu(p-(CO2H)-C6H4Tp) in the covalent labelling of biomolecules. <i>Dalton Transactions</i> , 2011 , 40, 1011-5	4.3	5
124	Organometallic anticancer compounds. <i>Journal of Medicinal Chemistry</i> , 2011 , 54, 3-25	8.3	1253
123	Chemistry of SURMOFs: layer-selective installation of functional groups and post-synthetic covalent modification probed by fluorescence microscopy. <i>Journal of the American Chemical Society</i> , 2011 , 133, 1734-7	16.4	115
122	A Method for the Preparation of Highly Porous, Nanosized Crystals of Isoreticular Metal©rganic Frameworks. <i>Crystal Growth and Design</i> , 2011 , 11, 185-189	3.5	84
121	Proteomic signature of fatty acid biosynthesis inhibition available for in vivo mechanism-of-action studies. <i>Antimicrobial Agents and Chemotherapy</i> , 2011 , 55, 2590-6	5.9	47
120	Metal-containing peptide nucleic acid conjugates. <i>Dalton Transactions</i> , 2011 , 40, 7061-76	4.3	57
119	The Structure of the Third-Generation (Tris(pyrazolyl) borate Caesium Salt p-BrC6H4TpCs. <i>Zeitschrift Fur Anorganische Und Allgemeine Chemie</i> , 2011 , 637, 1277-1279	1.3	3
118	Synthesis and Characterization of the Azido-Functionalized Ruthenocene Analogue [TpmRu(p-N3C6H4)Tp]Cl and Its Attachment to Biomolecules by Copper-Catalyzed AzideAlkyne Cycloaddition. <i>European Journal of Inorganic Chemistry</i> , 2011 , 2011, 4212-4219	2.3	13
117	Synthesis of Optically Active Ferrocene-Containing Platensimycin Derivatives with a C6¶7 Substitution Pattern. <i>European Journal of Inorganic Chemistry</i> , 2011 , 2011, 3295-3302	2.3	22
116	Preparation and Biological Evaluation of Di-Hetero-Organometallic-Containing PNA Bioconjugates. <i>European Journal of Inorganic Chemistry</i> , 2011 , 2011, 5471-5478	2.3	38
115	Mechanistic studies of Fc-PNA(?DNA) surface dynamics based on the kinetics of electron-transfer processes. <i>Chemistry - A European Journal</i> , 2011 , 17, 9678-90	4.8	20
114	A novel organometallic ReI complex with favourable properties for bioimaging and applicability in solid-phase peptide synthesis. <i>ChemBioChem</i> , 2011 , 12, 371-6	3.8	57
113	Preparation of magnetite aqueous dispersion for magnetic fluid hyperthermia. <i>Journal of Magnetism and Magnetic Materials</i> , 2011 , 323, 1216-1222	2.8	33
112	Organometallic peptide NHC complexes of Cp*Rh(III) and arene Ru(II) moieties from l-thiazolylalanine. <i>Journal of Organometallic Chemistry</i> , 2011 , 696, 1018-1022	2.3	25
111	Synthesis, characterization and antimicrobial studies of mixed ligand silver(I) complexes of triphenylphosphine and heterocyclic thiones: Crystal structure of bis[{(Ø-diazinane-2-thione)(diazinane-2-thione)(triphenylphosphine)silver(I) nitrate}]. <i>Polyhedron</i> ,	2.7	35
110	2011, 30, 1502-1506 One-pot synthesis of 2-trifluoromethylchromones. <i>Tetrahedron Letters</i> , 2011, 52, 1436-1440	2	19

109	Label-free screening of drug-protein interactions by time-resolved Fourier transform infrared spectroscopic assays exemplified by Ras interactions. <i>Applied Spectroscopy</i> , 2010 , 64, 967-72	3.1	11
108	Sequential insertion of three different organometallics into a versatile building block containing a PNA backbone. <i>Dalton Transactions</i> , 2010 , 39, 5617-9	4.3	31
107	Polymorphism of Pyridine-N-oxide and Its Deuterated Analogues. <i>Crystal Growth and Design</i> , 2010 , 10, 4224-4226	3.5	21
106	Synthesis and Biological Evaluation of Ferrocene-Containing Bioorganometallics Inspired by the Antibiotic Platensimycin Lead Structure. <i>Organometallics</i> , 2010 , 29, 4312-4319	3.8	7°
105	Corynebacterium glutamicum exhibits a membrane-related response to a small ferrocene-conjugated antimicrobial peptide. <i>Journal of Biological Inorganic Chemistry</i> , 2010 , 15, 1293-3	103 ^{.7}	18
104	A single-electrode, dual-potential ferrocene-PNA biosensor for the detection of DNA. <i>ChemBioChem</i> , 2010 , 11, 1754-61	3.8	36
103	Markierungsfreie Visualisierung von l\(\mathbb{B}\)lichen Metallcarbonylkomplexen in lebenden Zellen mithilfe von Raman-Mikrospektroskopie. \(Angewandte Chemie\), \(2010\), 122, 3382-3384	3.6	23
102	Titelbild: Markierungsfreie Visualisierung von l\(\mathbb{E}\)lichen Metallcarbonylkomplexen in lebenden Zellen mithilfe von Raman-Mikrospektroskopie (Angew. Chem. 19/2010). <i>Angewandte Chemie</i> , 2010 , 122, 3307-3307	3.6	
101	Label-free imaging of metal-carbonyl complexes in live cells by Raman microspectroscopy. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 3310-2	16.4	148
100	Cover Picture: Label-Free Imaging of Metaltarbonyl Complexes in Live Cells by Raman Microspectroscopy (Angew. Chem. Int. Ed. 19/2010). <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 3237-3237	16.4	
99	Preparation, 99mTc-labeling and biodistribution studies of a PNA oligomer containing a new ligand derivative of 2,2'-dipicolylamine. <i>Journal of Inorganic Biochemistry</i> , 2010 , 104, 1133-40	4.2	40
98	Synthesis of two new thioesters bearing ferrocene: Vibrational characterization and ab initio calculations. X-ray crystal structure of S-(2-methoxyphenyl)ferrocenecarbothioate. <i>Polyhedron</i> , 2010 , 29, 827-832	2.7	4
97	Biomedical Applications of Organometal Peptide Conjugates. <i>Topics in Organometallic Chemistry</i> , 2010 , 195-217	0.6	33
96	Synthesis of Perfluoroalkylthio-Substituted Ferrocenes. <i>Synthesis</i> , 2009 , 2009, 2015-2018	2.9	5
95	Enhanced cellular uptake and cytotoxicity studies of organometallic bioconjugates of the NLS peptide in Hep G2 cells. <i>ChemBioChem</i> , 2009 , 10, 493-502	3.8	64
94	Modification with organometallic compounds improves crossing of the blood-brain barrier of [Leu5]-enkephalin derivatives in an in vitro model system. <i>ChemBioChem</i> , 2009 , 10, 1852-60	3.8	29
93	New ways of killing the beast: prospects for inorganic-organic hybrid nanomaterials as antibacterial agents. <i>ChemBioChem</i> , 2009 , 10, 2847-50	3.8	28
92	Synthesis and biological evaluation of chromium bioorganometallics based on the antibiotic platensimycin lead structure. <i>ChemMedChem</i> , 2009 , 4, 1930-8	3.7	52

(2008-2009)

91	Synthesis and Characterization of Transfer Agents for Third-Generation Tp Ligands. <i>European Journal of Inorganic Chemistry</i> , 2009 , 2009, 5407-5412	2.3	17
90	[N,N'-Bis(salicylidene)-1,2-phenylenediamine]metal complexes with cell death promoting properties. <i>Journal of Biological Inorganic Chemistry</i> , 2009 , 14, 711-25	3.7	64
89	A systematic evaluation of different hydrogen bonding patterns in unsymmetrical 1,n?-disubstituted ferrocenoyl peptides. <i>Inorganica Chimica Acta</i> , 2009 , 362, 894-906	2.7	23
88	Ruthenium-based bioconjugates: Synthesis and X-ray structure of the mixed ligand sandwich compound RuCpiPr(p-(CO2H)C6H4Tp) and labelling of amino acids and the neuropeptide enkephalin. <i>Journal of Organometallic Chemistry</i> , 2009 , 694, 862-867	2.3	23
87	Synthesis and characterisation of a ruthenocenoyl bioconjugate with the cyclic octapeptide octreotate. <i>Journal of Organometallic Chemistry</i> , 2009 , 694, 1185-1188	2.3	28
86	Labeling of Peptides with Halocarbonyltungsten Complexes Containing Functional 2 -Alkynyl Ligands. <i>Organometallics</i> , 2009 , 28, 5090-5095	3.8	15
85	Synthesis and characterization of dicobalthexacarbonyl-alkyne derivatives of amino acids, peptides, and peptide nucleic acid (PNA) monomers. <i>Inorganic Chemistry</i> , 2009 , 48, 3157-66	5.1	23
84	"Four-potential" ferrocene labeling of PNA oligomers via click chemistry. <i>Bioconjugate Chemistry</i> , 2009 , 20, 1578-86	6.3	73
83	Postformation Modification of SAMs: using click chemistry to functionalize organic surfaces. <i>Langmuir</i> , 2009 , 25, 11480-5	4	40
82	Synthesis, structural characterisation and anti-proliferative activity of NHC gold amino acid and peptide conjugates. <i>Dalton Transactions</i> , 2009 , 7063-70	4.3	107
81	Synthesis and characterisation of hetero-bimetallic organometallic phenylalanine and PNA monomer derivatives. <i>Dalton Transactions</i> , 2009 , 4310-7	4.3	10
80	Thermal melting studies of alkyne- and ferrocene-containing PNA bioconjugates. <i>Organic and Biomolecular Chemistry</i> , 2009 , 7, 4992-5000	3.9	41
79	Bioinorganic Chemistry 2009 ,		4
78	Spectroscopic and Electrochemical Studies of Ferrocenyl Triazole Amino Acid and Peptide Bioconjugates Synthesized by Click Chemistry. <i>Organometallics</i> , 2008 , 27, 6326-6332	3.8	55
77	Synthesis of organometallic PNA oligomers by click chemistry. Chemical Communications, 2008, 3675-7	5.8	69
76	Synthesis and cytotoxicity of a cobaltcarbonyl-alkyne enkephalin bioconjugate. <i>Chemical Communications</i> , 2008 , 232-4	5.8	47
75	Peptide-based SAMs that resist the adsorption of proteins. <i>Journal of the American Chemical Society</i> , 2008 , 130, 14952-3	16.4	108
74	The Synthesis of Ruthenium and Rhodium Complexes with Functionalized N-Heterocyclic Carbenes and Their Use in Solid Phase Peptide Synthesis. <i>European Journal of Inorganic Chemistry</i> , 2008 , 2008, 33	5 9 -336	56 ⁵¹

73	A Ferrocene P eptide Conjugate as a Hydrogenase Model System. <i>European Journal of Inorganic Chemistry</i> , 2008 , 2008, 4530-4537	2.3	43
72	Cellular uptake quantification of metalated peptide and peptide nucleic acid bioconjugates by atomic absorption spectroscopy. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 955-9	16.4	61
71	Quantifizierung der Zellaufnahme metallierter Peptide und Peptidnucleins Iren durch Atomabsorptionsspektroskopie. <i>Angewandte Chemie</i> , 2008 , 120, 969-973	3.6	14
70	Manual SolidPhase Peptide Synthesis of MetallocenePeptide Bioconjugates. <i>Journal of Chemical Education</i> , 2007 , 84, 108	2.4	57
69	Introduction of Phosphine-Gold(I) Precursors into a Cys-modified Enkephalin Neuropeptide as Part of Solid Phase Peptide Synthesis. <i>Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences</i> , 2007 , 62, 460-466	1	16
68	Force-field development and molecular dynamics simulations of ferrocene-peptide conjugates as a scaffold for hydrogenase mimics. <i>Chemistry - A European Journal</i> , 2007 , 13, 8139-52	4.8	27
67	An amino acid bioconjugate of an organoplatinum tris(pyrazolyl)borate complex: Synthesis and structure of [p-(tBuOPhellO)C6H4Tp]PtMe3. <i>Journal of Organometallic Chemistry</i> , 2007 , 692, 1310-1314	4 ^{2.3}	14
66	Synthesis and structural characterization of metallated bioconjugates: C-terminal labeling of amino acids with aminoferrocene. <i>Journal of Organometallic Chemistry</i> , 2007 , 692, 4209-4214	2.3	21
65	The X-ray Single Crystal Structures of an Acid-functionalized Bis(2-picolyl)amine (bpa) Ligand with Palladium(II) and Zinc(II) Display Different Intermoleclar Interactions around the Common (H2O)2(anion)2 Motif. <i>Zeitschrift Fur Anorganische Und Allgemeine Chemie</i> , 2007 , 633, 2706-2710	1.3	10
64	Medicinal Applications of Metal B eptide Bioconjugates. <i>Chimia</i> , 2007 , 61, 736-741	1.3	65
63	Bioorganometallic Chemistry 2007 , 883-920		4
62	Labeling of the neuropeptide enkephalin with functionalized tris(pyrazolyl)borate complexes: solid-phase synthesis and characterization of p-[Enk-OH]COC6H4TpPtMe3 and p-[Enk-OH]COC6H4TpMeRe(CO)3. <i>Inorganic Chemistry</i> , 2007 , 46, 9400-4	5.1	30
61	Reversible site-specific tagging of enzymatically synthesized RNAs using aldehyde-hydrazine	20.1	25
	chemistry and protease-cleavable linkers. <i>Nucleic Acids Research</i> , 2007 , 35, e25		
60	Insertion of an internal dipeptide into PNA oligomers: thermal melting studies and further functionalization. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2006 , 16, 2964-8	2.9	17
6059	Insertion of an internal dipeptide into PNA oligomers: thermal melting studies and further		17
	Insertion of an internal dipeptide into PNA oligomers: thermal melting studies and further functionalization. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2006 , 16, 2964-8 Helically chiral ferrocene peptides containing 1'-aminoferrocene-1-carboxylic acid subunits as turn	2.9	
59	Insertion of an internal dipeptide into PNA oligomers: thermal melting studies and further functionalization. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2006 , 16, 2964-8 Helically chiral ferrocene peptides containing 1'-aminoferrocene-1-carboxylic acid subunits as turn inducers. <i>Chemistry - A European Journal</i> , 2006 , 12, 4965-80 New principles in medicinal organometallic chemistry. <i>Angewandte Chemie - International Edition</i> ,	2.9	120

(2004-2006)

55	Neue Wirkmechanismen in der medizinischen Organometallchemie. <i>Angewandte Chemie</i> , 2006 , 118, 1534-1537	3.6	30
54	Systematizing structural motifs and nomenclature in 1,n'-disubstituted ferrocene peptides. <i>Chemical Society Reviews</i> , 2006 , 35, 348-54	58.5	186
53	Conjugates of Peptides and PNA with Organometallic Complexes: Syntheses and Applications 2006 , 125-179		23
52	Synthesis of a C-linked glycosylated thymine-based PNA monomer and its incorporation into a PNA oligomer. <i>Organic and Biomolecular Chemistry</i> , 2006 , 4, 3648-51	3.9	7
51	Use of the Sonogashira coupling reaction for the "two-step" labeling of phenylalanine peptide side chains with organometallic compounds. <i>Bioconjugate Chemistry</i> , 2006 , 17, 204-13	6.3	42
50	Medizinische Organometallchemie. <i>Nachrichten Aus Der Chemie</i> , 2006 , 54, 966-970	0.1	14
49	1,n?-Disubstituted ferrocenoyl amino acids and dipeptides: Conformational analysis by CD spectroscopy, X-ray crystallography, and DFT calculations. <i>Journal of Organometallic Chemistry</i> , 2006 , 691, 3451-3457	2.3	34
48	Synthesis, structural and spectroscopic study of aromatic thioester compounds. <i>Journal of Molecular Structure</i> , 2006 , 825, 53-59	3.4	4
47	Amino acid and peptide bioconjugates of copper(II) and zinc(II) complexes with a modified N,N-bis(2-picolyl)amine ligand. <i>Inorganic Chemistry</i> , 2005 , 44, 5405-15	5.1	64
46	Unsymmetrical 1,n?-disubstituted ferrocenoyl peptides: convenient one pot synthesis and solution structures by CD and NMR spectroscopy. <i>New Journal of Chemistry</i> , 2005 , 29, 1168	3.6	58
45	Synthesis and Electrochemical Characterization of Metallocene PNA Oligomers. <i>European Journal of Inorganic Chemistry</i> , 2005 , 2005, 3207-3210	2.3	49
44	A cobaltocenium-peptide bioconjugate shows enhanced cellular uptake and directed nuclear delivery. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 2429-32	16.4	134
43	Ein Peptid-Cobaltocenium-Biokonjugat mit verbesserter Aufnahme in Zellen und Anreicherung im Zellkern. <i>Angewandte Chemie</i> , 2005 , 117, 2481-2485	3.6	23
42	Antibacterial activities of ferrocenoyl- and cobaltocenium-peptide bioconjugates. <i>Journal of Organometallic Chemistry</i> , 2005 , 690, 4564-4572	2.3	80
41	Conjugation of a novel histidine derivative to biomolecules and labelling with [99mTc(OH2)3(CO)3]+. <i>Organic and Biomolecular Chemistry</i> , 2004 , 2, 2593-603	3.9	58
40	The use of 3,3-bis(2-imidazolyl) propionic acid (bip-OH) as a new chelating ligand for Re(CO)3 and Ru complexes: Formation of organometallic PNA oligomers with (bip)Re(CO)3 and their interaction with complementary DNA. <i>Journal of Organometallic Chemistry</i> , 2004 , 689, 4745-4750	2.3	33
39	Ferrocenoyl peptides with sulfur-containing side chains: synthesis, solid state and solution structures. <i>Journal of Organometallic Chemistry</i> , 2004 , 689, 4856-4867	2.3	40
38	The first oligopeptide derivative of 1'-aminoferrocene-1-carboxylic acid shows helical chirality with antiparallel strands. <i>Chemical Communications</i> , 2004 , 2004-5	5.8	91

37	Bioorganometallic chemistry of ferrocene. <i>Chemical Reviews</i> , 2004 , 104, 5931-85	68.1	1116
36	Synthesis, structure and comparison of the DNA cleavage ability of metal complexes $M(II)L$ with the N-(2-ethoxyethanol)-bis(2-picolyl)amine ligand L (M = Co , Ni , Cu and Zn). <i>Dalton Transactions</i> , 2004 , 120	1 ⁴ 7 ³	62
35	Circular Dichroism Spectroelectrochemical Investigations on the Fluxional Diamagnetic and Paramagnetic Organometallic Complexes [Mo(His-NEC2H4COOCH3)(2-R-allyl)(CO)2]n+ (R = H, Me; His = O,N,NE-Histidinate; n = 0, 1). Organometallics, 2003, 22, 3102-3106	3.8	6
34	Organometallic turn mimetics. A structural and spectroscopic study of inter-strand hydrogen bonding in ferrocene and cobaltocenium conjugates of amino acids and dipeptides. <i>Dalton Transactions</i> , 2003 , 210	4.3	96
33	Fluxional processes in diamagnetic and paramagnetic allyl dicarbonyl and 2-methylallyl dicarbonyl molybdenum histidinato complexes as revealed by spectroscopic data and density functional calculations. <i>Chemistry - A European Journal</i> , 2002 , 8, 1649-62	4.8	27
32	Spectroscopic Properties, Electrochemistry, and Reactivity of Mo0, MoI, and MoII Complexes with the [Mo(bpa)(CO)3] Unit [bpa = bis(2-picolyl)amine] and Their Application for the Labelling of Peptides. <i>European Journal of Inorganic Chemistry</i> , 2002 , 2002, 1518-1529	2.3	30
31	Labelling of [Leu5]-enkephalin with organometallic Mo complexes by solid-phase synthesis. <i>Chemical Communications</i> , 2002 , 1406-7	5.8	48
30	Solution phase peptide synthesis with ferrocenyl amino acid derivatives. <i>Journal of Organometallic Chemistry</i> , 2001 , 637-639, 349-355	2.3	21
29	Markierung von Biomoleklen filmedizinische Anwendungen läternstunden der Bio-Organometallchemie. <i>Angewandte Chemie</i> , 2001 , 113, 1072-1076	3.6	35
28	Labeling of Biomolecules for Medicinal Applications-Bioorganometallic Chemistry at Its Best The author thanks A. P. Schubiger and D. Grotjahn for reprints, and K. Severin for insightful discussions. The data in Figure 1 are used with the help and kind permission of M. Salmain and G. Jaouen. I am	16.4	137
27	Variable temperature electrochemistry as a powerfulmethod for conformational investigations on the fluxional organometalliccomplexMo(His-NEC2H4CO2Me)(Eallyl)(CO)2 (His = N[N,O-L-histidinate). <i>Chemical Communications</i> , 2001 , 131-132	5.8	12
26	A Two-Step Palladium-Catalyzed Coupling Scheme for the Synthesis of Ferrocene-Labeled Amino Acids. <i>European Journal of Inorganic Chemistry</i> , 2000 , 2000, 323-330	2.3	36
25	The Mo(Ellyl)(CO)2 Moiety as a Robust Marker Group in Bioorganometallic Chemistry. Unusual Crystal Structure of the Phenylalanine Derivative Mo(C5H4-CO-Phe-OMe)(Ellyl)(CO)2. Organometallics, 2000, 19, 3730-3735	3.8	44
24	Chiral ferrocene amines derived from amino acids and peptides: synthesis, solution and X-ray crystal structures and electrochemical investigations. <i>Inorganic Chemistry</i> , 2000 , 39, 5437-43	5.1	58
23	Transition metal derivatives of peptide nucleic acid (PNA) oligomers-synthesis, characterization, and DNA binding. <i>Bioconjugate Chemistry</i> , 2000 , 11, 741-3	6.3	79
22	Synthesis of organometallic amines and their coupling to the C-terminus of amino acids and peptides. <i>Journal of Organometallic Chemistry</i> , 1999 , 589, 75-84	2.3	46
21	Transition metal labels on peptide nucleic acid (PNA) monomers. Chemical Communications, 1999, 885-8	1 8,6 8	52
20	Synthesis of Alkynyl Amino Acids and Peptides and Their Palladium-Catalyzed Coupling to Ferrocene. <i>Inorganic Chemistry</i> , 1999 , 38, 5308-5313	5.1	36

19	NMR Verification of Helical Conformations of Phycocyanobilin in Organic Solvents. <i>Helvetica Chimica Acta</i> , 1998 , 81, 881-888	2	28
18	Nitridomanganese(V) and -(VI) Complexes Containing Macrocyclic Amine Ligands. <i>Journal of the American Chemical Society</i> , 1998 , 120, 7260-7270	16.4	81
17	Ruthenium Complexes Containing "Noninnocent" o-Benzoquinone Diimine/o-Phenylenediamide(2-) Ligands. Synthesis and Crystal Structure of the Nitrido-Bridged Complex [{LRu(o-C(6)H(4)(NH)(2))}(2)(&mgr-N)](PF(6))(2).3CH(3)CN.C(6)H(5)CH(3). <i>Inorganic Chemistry</i> , 1998 , 37, 35-43	5.1	69
16	Nitoida a con a contrata de Carlo Maria de da Angula de constituir de Charación de	5.1	90
15	Ab initio study of Arduengo-type group 13 carbene analogues. New Journal of Chemistry, 1998, 22, 793-7	7 96	35
14	Synthesis of new amido, alkoxo and Eyclopentadienylderivatives of molybdenum. <i>Journal of the Chemical Society Dalton Transactions</i> , 1997 , 2091-2100		6
13	Synthesis of fluorophenyl derivatives of iron, molybdenum and tungstenvia B(C6F5)3 and unusualcarbonfluorine bond reactions. <i>Journal of the Chemical Society Dalton Transactions</i> , 1997 , 2293-2	2304	50
12	Synthesis of a silyleneBorane adduct and its slow conversion to a silylborane. <i>Chemical Communications</i> , 1996 , 2657-2658	5.8	66
11	Beitrge zur Chemie des Bors, 226: Funktionalisierung von Alkinylboranen-Umsetzung mit Nucleophilen. <i>Journal of Organometallic Chemistry</i> , 1995 , 489, 51-62	2.3	19
10	A Deceiving X-ray Single-Crystal Structure Determination: Amino-Hydrogen Exchange in Amino-alkynylboranes and ab initio Investigations of Alkynylboranes, Borirenes, and Boraallenes. <i>Chemische Berichte</i> , 1995 , 128, 711-717		10
9	1,3,5-Triphenyl-2,4,6-trimesityl-1,3,5,2,4,6-triphosphatriborinane: A 6Electron Heteroaromatic Ligand. <i>Chemische Berichte</i> , 1994 , 127, 825-827		10
8	Hetero-ansa-Bridged Main Group Metallocenes 🗈 Structural and NMR Study. <i>Chemische Berichte</i> , 1994 , 127, 1901-1908		30
7	The Structures of Two Lithium Hydrazides: Is There Electron-Deficient Bonding?. <i>Angewandte Chemie International Edition in English</i> , 1994 , 33, 1746-1748		18
6	Electronic structure of a stable silylene: photoelectron spectra and theoretical calculations of Si(NRCHCHNR), Si(NRCH2CH2NR) and SiH2(NRCHCHNR). <i>Journal of the Chemical Society Dalton Transactions</i> , 1994 , 2405		93
5	Synthesis and Structure of a Stable Silylene. <i>Journal of the American Chemical Society</i> , 1994 , 116, 2691-20	6 9624	596
4	Zirconocene-mediated cyclization of alkynyl-diborylmethanes to 1,3-diborolanes. <i>Organometallics</i> , 1993 , 12, 2423-2425	3.8	33
3	Beitrige zur Chemie des Bors, 220. Untersuchungen ber Diborylmethane. <i>Chemische Berichte</i> , 1993 , 126, 2003-2010		19
2	Formation of [cp2Zr(C?C?SiMe3)]2 from the reaction of zirconocene with trimethylsilylacetylene. <i>Journal of Organometallic Chemistry</i> , 1993 , 454, C5-C7	2.3	31

The Bioorganometallic Chemistry of Ferrocene499-639

45