
Sara Miralles Cuevas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1490934/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Treatment of emerging contaminants in wastewater treatment plants (WWTP) effluents by solar photocatalysis using low TiO2 concentrations. Journal of Hazardous Materials, 2012, 211-212, 131-137.	12.4	199
2	Removal of pharmaceuticals from MWTP effluent by nanofiltration and solar photo-Fenton using two different iron complexes at neutral pH. Water Research, 2014, 64, 23-31.	11.3	131
3	Experimental evaluation of two pilot-scale membrane distillation modules used for solar desalination. Journal of Membrane Science, 2012, 409-410, 264-275.	8.2	130
4	Pharmaceuticals removal from natural water by nanofiltration combined with advanced tertiary treatments (solar photo-Fenton, photo-Fenton-like Fe(III)–EDDS complex and ozonation). Separation and Purification Technology, 2014, 122, 515-522.	7.9	84
5	Combination of nanofiltration and ozonation for the remediation of real municipal wastewater effluents: Acute and chronic toxicity assessment. Journal of Hazardous Materials, 2017, 323, 442-451.	12.4	79
6	Strategies for reducing cost by using solar photo-Fenton treatment combined with nanofiltration to remove microcontaminants in real municipal effluents: Toxicity and economic assessment. Chemical Engineering Journal, 2017, 318, 161-170.	12.7	75
7	Development of TiO2-C photocatalysts for solar treatment of polluted water. Carbon, 2017, 122, 361-373.	10.3	68
8	Comparison of UV/H 2 O 2 , UV/S 2 O 8 2â^' , solar/Fe(II)/H 2 O 2 and solar/Fe(II)/S 2 O 8 2â^' at pilot plant scale for the elimination of micro-contaminants in natural water: An economic assessment. Chemical Engineering Journal, 2017, 310, 514-524.	12.7	67
9	Combined nanofiltration and photo-Fenton treatment of water containing micropollutants. Chemical Engineering Journal, 2013, 224, 89-95.	12.7	61
10	Study of application of titania catalysts on solar photocatalysis: Influence of type of pollutants and water matrices. Chemical Engineering Journal, 2016, 291, 64-73.	12.7	59
11	Pilot-plant evaluation of TiO2 and TiO2-based hybrid photocatalysts for solar treatment of polluted water. Journal of Hazardous Materials, 2016, 320, 469-478.	12.4	58
12	EDDS as complexing agent for enhancing solar advanced oxidation processes in natural water: Effect of iron species and different oxidants. Journal of Hazardous Materials, 2019, 372, 129-136.	12.4	58
13	Microcontaminant removal in secondary effluents by solar photo-Fenton at circumneutral pH in raceway pond reactors. Catalysis Today, 2017, 287, 10-14.	4.4	49
14	Environmental assessment of solar photo-Fenton processes in combination with nanofiltration for the removal of micro-contaminants from real wastewaters. Science of the Total Environment, 2019, 650, 2210-2220.	8.0	49
15	Inactivation of E. coli and E. faecalis by solar photo-Fenton with EDDS complex at neutral pH in municipal wastewater effluents. Journal of Hazardous Materials, 2019, 372, 85-93.	12.4	48
16	Removal of pharmaceuticals at microg Lâ^'1 by combined nanofiltration and mild solar photo-Fenton. Chemical Engineering Journal, 2014, 239, 68-74.	12.7	47
17	Fe3+-NTA as iron source for solar photo-Fenton at neutral pH in raceway pond reactors. Science of the Total Environment, 2020, 736, 139617.	8.0	44
18	Microcontaminant degradation in municipal wastewater treatment plant secondary effluent by EDDS assisted photo-Fenton at near-neutral pH: An experimental design approach. Catalysis Today, 2015, 252, 61-69.	4.4	41

#	Article	IF	CITATIONS
19	ls the combination of nanofiltration membranes and AOPs for removing microcontaminants cost effective in real municipal wastewater effluents?. Environmental Science: Water Research and Technology, 2016, 2, 511-520.	2.4	40
20	Removal of contaminants of emerging concern by continuous flow solar photo-Fenton process at neutral pH in open reactors. Journal of Environmental Management, 2020, 261, 110265.	7.8	33
21	Coupling between high-frequency ultrasound and solar photo-Fenton at pilot scale for the treatment of organic contaminants: An initial approach. Ultrasonics Sonochemistry, 2015, 22, 527-534.	8.2	32
22	The influence of location on solar photo-Fenton: Process performance, photoreactor scaling-up and treatment cost. Renewable Energy, 2020, 145, 1890-1900.	8.9	32
23	Removal of microcontaminants from MWTP effluents by combination of membrane technologies and solar photo-Fenton at neutral pH. Catalysis Today, 2015, 252, 78-83.	4.4	30
24	Pyrimethanil degradation by photo-Fenton process: Influence of iron and irradiance level on treatment cost. Science of the Total Environment, 2017, 605-606, 230-237.	8.0	30
25	Optimization of mild solar TiO2 photocatalysis as a tertiary treatment for municipal wastewater treatment plant effluents. Applied Catalysis B: Environmental, 2012, 128, 119-125.	20.2	29
26	Two strategies of solar photo-Fenton at neutral pH for the simultaneous disinfection and removal of contaminants of emerging concern. Comparative assessment in raceway pond reactors. Catalysis Today, 2021, 361, 17-23.	4.4	27
27	Comparison of different detoxification pilot plants for the treatment of industrial wastewater by solar photo-Fenton: Are raceway pond reactors a feasible option?. Science of the Total Environment, 2019, 648, 601-608.	8.0	25
28	Application of solar photo-Fenton at circumneutral pH to nanofiltration concentrates for removal of pharmaceuticals in MWTP effluents. Environmental Science and Pollution Research, 2015, 22, 846-855.	5.3	24
29	Contribution of temperature and photon absorption on solar photo-Fenton mediated by Fe3+-NTA for CEC removal in municipal wastewater. Applied Catalysis B: Environmental, 2021, 294, 120251.	20.2	24
30	Application of solar photo-Fenton in raceway pond reactors: A review. Science of the Total Environment, 2021, 800, 149653.	8.0	24
31	Cork boiling wastewater treatment and reuse through combination of advanced oxidation technologies. Environmental Science and Pollution Research, 2017, 24, 6317-6328.	5.3	19
32	Environmental assessment of sustainable energy options for multi-effect distillation of brackish water in isolated communities. Journal of Cleaner Production, 2019, 213, 1371-1379.	9.3	19
33	Simultaneous bacterial inactivation and microcontaminant removal by solar photo-Fenton mediated by Fe3+-NTA in WWTP secondary effluents. Water Research, 2021, 205, 117686.	11.3	16
34	Assessment of different iron sources for continuous flow solar photo-Fenton at neutral pH for sulfamethoxazole removal in actual MWWTP effluents. Journal of Water Process Engineering, 2021, 42, 102109.	5.6	13
35	Techno-economic assessment of a multi-effect distillation plant installed for the production of irrigation water in Arica (Chile). Science of the Total Environment, 2018, 643, 423-434.	8.0	12
36	Monitoring and Removal of Organic Micro-contaminants by Combining Membrane Technologies with Advanced Oxidation Processes. Current Organic Chemistry, 2018, 22, 1103-1119.	1.6	12

#	Article	IF	CITATIONS
37	Modeling persulfate activation by iron and heat for the removal of contaminants of emerging concern using carbamazepine as model pollutant. Chemical Engineering Journal, 2020, 389, 124445.	12.7	11
38	Determination of dextromethorphan and dextrorphan solar photo-transformation products by LC/Q-TOF-MS: Laboratory scale experiments and real water samples analysis. Environmental Pollution, 2020, 265, 114722.	7.5	8
39	Strategies for hydrogen peroxide dosing based on dissolved oxygen concentration for solar photo-Fenton treatment of complex wastewater. Global Nest Journal, 2014, 16, 553-560.	0.1	8
40	Effect of liquid depth on microcontaminant removal by solar photo-Fenton with Fe(III):EDDS at neutral pH in high salinity wastewater. Environmental Science and Pollution Research, 2019, 26, 28071-28079.	5.3	7
41	New development of a solar electrochemical raceway pond reactor for industrial wastewater treatment. Environmental Research, 2022, 212, 113553.	7.5	7
42	Advanced Technologies for Emerging Contaminants Removal in Urban Wastewater. Handbook of Environmental Chemistry, 2014, , 145-169.	0.4	4
43	The combined effect of irradiance and iron concentration on photo-Fenton treatment cost. AIP Conference Proceedings, 2018, , .	0.4	4
44	Simultaneous Disinfection and Organic Microcontaminant Removal by UVC-LED-Driven Advanced Oxidation Processes. Water (Switzerland), 2021, 13, 1507.	2.7	4
45	An improved hybrid strategy for online dosage of hydrogen peroxide in photo-Fenton processes. Journal of Environmental Chemical Engineering, 2021, 9, 105235.	6.7	4
46	Evaluation of commercial zerovalent iron sources in combination with solar energy to remove microcontaminants from natural water at circumneutral pH. Chemosphere, 2022, 286, 131557.	8.2	4
47	CHAPTER 6. Process Integration. Concepts of Integration and Coupling of Photocatalysis with Other Processes. RSC Energy and Environment Series, 2016, , 157-173.	0.5	2
48	Solar Water Detoxification. Green Energy and Technology, 2019, , 341-351.	0.6	1
49	A critical evaluation of the use of accumulated energy as a parameter for the scaleâ€up of solar photoreactors during the treatment of simulated industrial wastewater by solar <scp>photoâ€Fenton</scp> . Journal of Chemical Technology and Biotechnology, 2021, 96, 1593-1602.	3.2	1
50	Towards an Efficient Generalization of the Online Dosage of Hydrogen Peroxide in Photo-Fenton Process to Treat Industrial Wastewater. International Journal of Environmental Research and Public Health, 2021, 18, 13313.	2.6	1