Xueping Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/149076/publications.pdf

Version: 2024-02-01

219 papers 10,985 citations

28274 55 h-index 92 g-index

223 all docs 223
docs citations

times ranked

223

6776 citing authors

#	Article	IF	CITATIONS
1	Advances in Understanding Begomovirus Satellites. Annual Review of Phytopathology, 2013, 51, 357-381.	7.8	366
2	Taxonomy of the order Bunyavirales: update 2019. Archives of Virology, 2019, 164, 1949-1965.	2.1	285
3	A DNAÎ 2 Associated with Tomato Yellow Leaf Curl China Virus Is Required for Symptom Induction. Journal of Virology, 2004, 78, 13966-13974.	3.4	277
4	Formation of Complexes at Plasmodesmata for Potyvirus Intercellular Movement Is Mediated by the Viral Protein P3N-PIPO. PLoS Pathogens, 2010, 6, e1000962.	4.7	264
5	A Begomovirus DNAÎ ² -Encoded Protein Binds DNA, Functions as a Suppressor of RNA Silencing, and Targets the Cell Nucleus. Journal of Virology, 2005, 79, 10764-10775.	3.4	261
6	\hat{l}^2 C1, the pathogenicity factor of TYLCCNV, interacts with AS1 to alter leaf development and suppress selective jasmonic acid responses. Genes and Development, 2008, 22, 2564-2577.	5.9	244
7	Characterization of DNA \hat{l}^2 associated with begomoviruses in China and evidence for co-evolution with their cognate viral DNA-A FN1. Journal of General Virology, 2003, 84, 237-247.	2.9	231
8	Suppression of Methylation-Mediated Transcriptional Gene Silencing by \hat{I}^2 C1-SAHH Protein Interaction during Geminivirus-Betasatellite Infection. PLoS Pathogens, 2011, 7, e1002329.	4.7	227
9	BSCTV C2 Attenuates the Degradation of SAMDC1 to Suppress DNA Methylation-Mediated Gene Silencing in <i>Arabidopsis</i> Â Â. Plant Cell, 2011, 23, 273-288.	6.6	201
10	ROS accumulation and antiviral defence control by microRNA528 in rice. Nature Plants, 2017, 3, 16203.	9.3	189
11	Suppression of RNA Silencing by a Plant DNA Virus Satellite Requires a Host Calmodulin-Like Protein to Repress RDR6 Expression. PLoS Pathogens, 2014, 10, e1003921.	4.7	186
12	Characterization and subcellular localization of an RNA silencing suppressor encoded by Rice stripe tenuivirus. Virology, 2009, 387, 29-40.	2.4	184
13	2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology, 2020, 165, 3023-3072.	2.1	184
14	Highly Efficient A·T to G·C Base Editing by Cas9n-Guided tRNA Adenosine Deaminase in Rice. Molecular Plant, 2018, 11, 631-634.	8.3	177
15	Begomovirus–whitefly mutualism is achieved through repression of plant defences by a virus pathogenicity factor. Molecular Ecology, 2012, 21, 1294-1304.	3.9	172
16	Improved Base Editor for Efficiently Inducing Genetic Variations in Rice with CRISPR/Cas9-Guided Hyperactive hAID Mutant. Molecular Plant, 2018, 11, 623-626.	8.3	169
17	Base-Editing-Mediated Artificial Evolution of OsALS1 In Planta to Develop Novel Herbicide-Tolerant Rice Germplasms. Molecular Plant, 2020, 13, 565-572.	8.3	159
18	Identification of a Movement Protein of the <i>Tenuivirus</i> Rice Stripe Virus. Journal of Virology, 2008, 82, 12304-12311.	3.4	156

#	Article	IF	CITATIONS
19	Interaction between Rice stripe virus Disease-Specific Protein and Host PsbP Enhances Virus Symptoms. Molecular Plant, 2014, 7, 691-708.	8.3	153
20	An Importin Î ² Protein Negatively Regulates MicroRNA Activity in <i>Arabidopsis</i> Â. Plant Cell, 2011, 23, 3565-3576.	6.6	149
21	A modified viral satellite DNA that suppresses gene expression in plants. Plant Journal, 2004, 38, 850-860.	5.7	131
22	Tomato SlSnRK1 Protein Interacts with and Phosphorylates \hat{l}^2C1 , a Pathogenesis Protein Encoded by a Geminivirus \hat{l}^2 -Satellite \hat{A} \hat{A} \hat{A} . Plant Physiology, 2011, 157, 1394-1406.	4.8	129
23	A versatile system for functional analysis of genes and micro <scp>RNA</scp> s in cotton. Plant Biotechnology Journal, 2014, 12, 638-649.	8.3	119
24	A calmodulin-like protein suppresses RNA silencing and promotes geminivirus infection by degrading SGS3 via the autophagy pathway in Nicotiana benthamiana. PLoS Pathogens, 2017, 13, e1006213.	4.7	119
25	Beclin1 restricts RNA virus infection in plants through suppression and degradation of the viral polymerase. Nature Communications, 2018, 9, 1268.	12.8	113
26	Rice Stripe Virus Interferes with S-acylation of Remorin and Induces Its Autophagic Degradation to Facilitate Virus Infection. Molecular Plant, 2018, 11, 269-287.	8.3	109
27	Cas9-NG Greatly Expands the Targeting Scope of the Genome-Editing Toolkit by Recognizing NG and Other Atypical PAMs in Rice. Molecular Plant, 2019, 12, 1015-1026.	8.3	109
28	Rescue of a Plant Negative-Strand RNA Virus from Cloned cDNA: Insights into Enveloped Plant Virus Movement and Morphogenesis. PLoS Pathogens, 2015, 11, e1005223.	4.7	108
29	Tobacco curly shoot virus DNA $\hat{1}^2$ Is Not Necessary for Infection but Intensifies Symptoms in a Host-Dependent Manner. Phytopathology, 2005, 95, 902-908.	2.2	107
30	Oral immunization with transgenic rice seeds expressing VP2 protein of infectious bursal disease virus induces protective immune responses in chickens. Plant Biotechnology Journal, 2007, 5, 570-578.	8.3	104
31	Vector development and vitellogenin determine the transovarial transmission of begomoviruses. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6746-6751.	7.1	104
32	Regulation of Nicotine Biosynthesis by an Endogenous Target Mimicry of MicroRNA in Tobacco. Plant Physiology, 2015, 169, 1062-1071.	4.8	96
33	V2 of tomato yellow leaf curl virus can suppress methylation-mediated transcriptional gene silencing in plants. Journal of General Virology, 2014, 95, 225-230.	2.9	95
34	Population Diversity of Rice Stripe Virus-Derived siRNAs in Three Different Hosts and RNAi-Based Antiviral Immunity in Laodelphgax striatellus. PLoS ONE, 2012, 7, e46238.	2.5	94
35	Tomato leaf curl Yunnan virus-encoded C4 induces cell division through enhancing stability of Cyclin D 1.1 via impairing NbSK $\hat{\mathbb{N}}$ -mediated phosphorylation in Nicotiana benthamiana. PLoS Pathogens, 2018, 14, e1006789.	4.7	93
36	Molecular characterization and pathogenicity of tomato yellow leaf curl virus in China. Virus Genes, 2009, 39, 249-255.	1.6	92

#	Article	IF	Citations
37	Nucleocytoplasmic Shuttling of Geminivirus C4ÂProtein Mediated by Phosphorylation and Myristoylation Is Critical for Viral Pathogenicity. Molecular Plant, 2018, 11, 1466-1481.	8.3	92
38	Geminivirus-encoded TrAP suppressor inhibits the histone methyltransferase SUVH4/KYP to counter host defense. ELife, 2015, 4, e06671.	6.0	92
39	A tomato glutaredoxin gene SIGRX1 regulates plant responses to oxidative, drought and salt stresses. Planta, 2010, 232, 1499-1509.	3.2	90
40	The <scp>AC</scp> 5 protein encoded by <i>Mungbean yellow mosaic India virus</i> is a pathogenicity determinant that suppresses <scp>RNA</scp> silencingâ€based antiviral defenses. New Phytologist, 2015, 208, 555-569.	7. 3	88
41	Specific Cells in the Primary Salivary Glands of the Whitefly Bemisia tabaci Control Retention and Transmission of Begomoviruses. Journal of Virology, 2014, 88, 13460-13468.	3.4	85
42	Tomato Yellow Leaf Curl Virus V2 Interacts with Host Histone Deacetylase 6 To Suppress Methylation-Mediated Transcriptional Gene Silencing in Plants. Journal of Virology, 2018, 92, .	3.4	83
43	Characterization of Small Interfering RNAs Derived from the Geminivirus/Betasatellite Complex Using Deep Sequencing. PLoS ONE, 2011, 6, e16928.	2.5	81
44	Tobacco RING E3 Ligase NtRFP1 Mediates Ubiquitination and Proteasomal Degradation of a Geminivirus-Encoded \hat{l}^2 C1. Molecular Plant, 2016, 9, 911-925.	8.3	80
45	Transcriptome and Comparative Gene Expression Analysis of Sogatella furcifera (Horváth) in Response to Southern Rice Black-Streaked Dwarf Virus. PLoS ONE, 2012, 7, e36238.	2.5	79
46	Efficient virusâ€induced gene silencing in plants using a modified geminivirus DNA1 component. Plant Biotechnology Journal, 2009, 7, 254-265.	8.3	73
47	Sumoylation of <i>Turnip mosaic virus</i> RNA Polymerase Promotes Viral Infection by Counteracting the Host NPR1-Mediated Immune Response. Plant Cell, 2017, 29, 508-525.	6.6	72
48	Geminiviruses encode additional small proteins with specific subcellular localizations and virulence function. Nature Communications, 2021, 12, 4278.	12.8	72
49	High-efficiency and multiplex adenine base editing in plants using new TadA variants. Molecular Plant, 2021, 14, 722-731.	8.3	69
50	A host plant genome (<i>Zizania latifolia</i>) after a centuryâ€long endophyte infection. Plant Journal, 2015, 83, 600-609.	5.7	67
51	Identification and molecular characterization of a novel monopartite geminivirus associated with mulberry mosaic dwarf disease. Journal of General Virology, 2015, 96, 2421-2434.	2.9	67
52	SpRY greatly expands the genome editing scope in rice with highly flexible PAM recognition. Genome Biology, 2021, 22, 6.	8.8	67
53	Characterization of a Novel Polerovirus Infecting Maize in China. Viruses, 2016, 8, 120.	3.3	64
54	Plant begomoviruses subvert ubiquitination to suppress plant defenses against insect vectors. PLoS Pathogens, 2019, 15, e1007607.	4.7	63

#	Article	IF	Citations
55	Identification and characterization of a novel geminivirus with a monopartite genome infecting apple trees. Journal of General Virology, 2015, 96, 2411-2420.	2.9	62
56	2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology, 2021, 166, 3513-3566.	2.1	62
57	Geminivirus-Associated Betasatellites: Exploiting Chinks in the Antiviral Arsenal of Plants. Trends in Plant Science, 2019, 24, 519-529.	8.8	61
58	A recombinant begomovirus resulting from exchange of the C4 gene. Journal of General Virology, 2013, 94, 1896-1907.	2.9	58
59	The Tug-of-War between Plants and Viruses: Great Progress and Many Remaining Questions. Viruses, 2019, 11, 203.	3.3	58
60	Nuclear autophagy degrades a geminivirus nuclear protein to restrict viral infection in solanaceous plants. New Phytologist, 2020, 225, 1746-1761.	7.3	57
61	Monoclonal antibody-based serological methods for detection of Cucumber green mottle mosaic virus. Virology Journal, 2011, 8, 228.	3.4	55
62	Targeted base editing in rice with CRISPR/ScCas9 system. Plant Biotechnology Journal, 2020, 18, 1645-1647.	8.3	55
63	Rice ragged stunt virus-induced apoptosis affects virus transmission from its insect vector, the brown planthopper to the rice plant. Scientific Reports, 2015, 5, 11413.	3.3	54
64	Characterization of alphasatellites associated with monopartite begomovirus/betasatellite complexes in Yunnan, China. Virology Journal, 2010, 7, 178.	3.4	51
65	Mimic Phosphorylation of a \hat{l}^2 C1 Protein Encoded by TYLCCNB Impairs Its Functions as a Viral Suppressor of RNA Silencing and a Symptom Determinant. Journal of Virology, 2017, 91, .	3.4	51
66	The complete genome sequence of a novel maize-associated totivirus. Archives of Virology, 2016, 161, 487-490.	2.1	50
67	The Rice Dynamin-Related Protein OsDRP1E Negatively Regulates Programmed Cell Death by Controlling the Release of Cytochrome c from Mitochondria. PLoS Pathogens, 2017, 13, e1006157.	4.7	50
68	Efficient gene silencing induction in tomato by a viral satellite DNA vector. Virus Research, 2007, 125, 169-175.	2.2	49
69	Virus-induced gene silencing and its application in plant functional genomics. Science China Life Sciences, 2012, 55, 99-108.	4.9	49
70	\hat{I}^2 C1 protein encoded in geminivirus satellite concertedly targets MKK2 and MPK4 to counter host defense. PLoS Pathogens, 2019, 15, e1007728.	4.7	49
71	Functional Scanning of Apple Geminivirus Proteins as Symptom Determinants and Suppressors of Posttranscriptional Gene Silencing. Viruses, 2018, 10, 488.	3.3	48
72	The βC1 Protein of Geminivirus–Betasatellite Complexes: A Target and Repressor of Host Defenses. Molecular Plant, 2018, 11, 1424-1426.	8.3	47

#	Article	IF	CITATIONS
73	<i>Rice stripe virus</i> : Exploring Molecular Weapons in the Arsenal of a Negative-Sense RNA Virus. Annual Review of Phytopathology, 2021, 59, 351-371.	7.8	46
74	Interaction between a Nanovirus-like Component and the Tobacco Curly Shoot Virus/Satellite Complex. Acta Biochimica Et Biophysica Sinica, 2005, 37, 25-31.	2.0	44
75	\hat{l}^2 C1 encoded by tomato yellow leaf curl China betasatellite forms multimeric complexes in vitro and in vivo. Virology, 2011, 409, 156-162.	2.4	44
76	P3N-PIPO Interacts with P3 via the Shared N-Terminal Domain To Recruit Viral Replication Vesicles for Cell-to-Cell Movement. Journal of Virology, 2020, 94, .	3.4	44
77	Fusarium fruiting body microbiome member Pantoea agglomerans inhibits fungal pathogenesis by targeting lipid rafts. Nature Microbiology, 2022, 7, 831-843.	13.3	44
78	<i><scp>NbPHAN</scp></i> , a <scp>MYB</scp> transcriptional factor, regulates leaf development and affects drought tolerance in <i>Nicotiana benthamiana</i> . Physiologia Plantarum, 2013, 149, 297-309.	5.2	43
79	Two Lysin-Motif Receptor Kinases, Gh-LYK1 and Gh-LYK2, Contribute to Resistance against Verticillium wilt in Upland Cotton. Frontiers in Plant Science, 2017, 8, 2133.	3.6	43
80	Detection and subgrouping of Cucumber mosaic virus isolates by TAS-ELISA and immunocapture RT-PCR. Journal of Virological Methods, 2005, 123, 155-161.	2.1	42
81	Rice Stripe Tenuivirus NSvc2 Glycoproteins Targeted to the Golgi Body by the N-Terminal Transmembrane Domain and Adjacent Cytosolic 24 Amino Acids via the COP I- and COP II-Dependent Secretion Pathway. Journal of Virology, 2014, 88, 3223-3234.	3.4	42
82	Identification of the Potential Virulence Factors and RNA Silencing Suppressors of Mulberry Mosaic Dwarf-Associated Geminivirus. Viruses, 2018, 10, 472.	3.3	41
83	Analysis of synonymous codon usage and evolution of begomoviruses. Journal of Zhejiang University: Science B, 2008, 9, 667-674.	2.8	40
84	Multi-omics analysis of niche specificity provides new insights into ecological adaptation in bacteria. ISME Journal, 2016, 10, 2072-2075.	9.8	40
85	Tenuivirus utilizes its glycoprotein as a helper component to overcome insect midgut barriers for its circulative and propagative transmission. PLoS Pathogens, 2019, 15, e1007655.	4.7	40
86	Geminivirus C4 antagonizes the HIR1â€mediated hypersensitive response by inhibiting the HIR1 selfâ€interaction and promoting degradation of the protein. New Phytologist, 2020, 225, 1311-1326.	7.3	40
87	Monoclonal antibody-based ELISA and colloidal gold-based immunochromatographic assay for streptomycin residue detection in milk and swine urine. Journal of Zhejiang University: Science B, 2010, 11, 52-60.	2.8	38
88	Development and use of three monoclonal antibodies for the detection of rice black-streaked dwarf virus in field plants and planthopper vectors. Virology Journal, 2013, 10, 114.	3.4	37
89	Analysis of genetic variation and diversity of Rice stripe virus populations through high-throughput sequencing. Frontiers in Plant Science, 2015, 6, 176.	3.6	37
90	iTRAQ analysis of the tobacco leaf proteome reveals that RNA-directed DNA methylation (RdDM) has important roles in defense against geminivirus-betasatellite infection. Journal of Proteomics, 2017, 152, 88-101.	2.4	37

#	Article	IF	Citations
91	Role of rice stripe virus NSvc4 in cell-to-cell movement and symptom development in Nicotiana benthamiana. Frontiers in Plant Science, 2012, 3, 269.	3.6	36
92	Repetitive prime-and-realign mechanism converts short capped RNA leaders into longer ones that may be more suitable for elongation during rice stripe virus transcription initiation. Journal of General Virology, 2012, 93, 194-202.	2.9	36
93	Rice Stripe Tenuivirus Nonstructural Protein 3 Hijacks the 26S Proteasome of the Small Brown Planthopper via Direct Interaction with Regulatory Particle Non-ATPase Subunit 3. Journal of Virology, 2015, 89, 4296-4310.	3.4	36
94	Functional analysis of a novel \hat{I}^2V1 gene identified in a geminivirus betasatellite. Science China Life Sciences, 2020, 63, 688-696.	4.9	36
95	Pathogenicity of a naturally occurring recombinant DNA satellite associated with tomato yellow leaf curl China virus. Journal of General Virology, 2008, 89, 306-311.	2.9	34
96	Identification of ABCC2 as a binding protein of Cry1Ac onÂbrush border membrane vesicles from <i>Helicoverpa armigera</i> by an improved pullâ€down assay. MicrobiologyOpen, 2016, 5, 659-669.	3.0	34
97	Pathogenicity and stability of a truncated DNA \hat{l}^2 associated with Tomato yellow leaf curl China virus. Virus Research, 2005, 109, 159-163.	2.2	32
98	Molecular Characterization of Tomato Leaf Curl China Virus, Infecting Tomato Plants in China, and Functional Analyses of Its Associated Betasatellite. Applied and Environmental Microbiology, 2011, 77, 3092-3101.	3.1	32
99	Identification of an RNA silencing suppressor encoded by a mastrevirus. Journal of General Virology, 2014, 95, 2082-2088.	2.9	31
100	A Novel DNA Motif Contributes to Selective Replication of a Geminivirus-Associated Betasatellite by a Helper Virus-Encoded Replication-Related Protein. Journal of Virology, 2016, 90, 2077-2089.	3.4	31
101	A plant kinase plays roles in defense response against geminivirus by phosphorylation of a viral pathogenesis protein. Plant Signaling and Behavior, 2012, 7, 888-892.	2.4	30
102	Turnip Yellow Mosaic Virus P69 Interacts with and Suppresses GLK Transcription Factors to Cause Pale-Green Symptoms in Arabidopsis. Molecular Plant, 2017, 10, 764-766.	8.3	30
103	Specificity of Plant Rhabdovirus Cell-to-Cell Movement. Journal of Virology, 2019, 93, .	3.4	30
104	Further characterization of Maize chlorotic mottle virus and its synergistic interaction with Sugarcane mosaic virus in maize. Scientific Reports, 2017, 7, 39960.	3.3	29
105	The C4 protein encoded by tomato leaf curl Yunnan virus reverses transcriptional gene silencing by interacting with NbDRM2 and impairing its DNA-binding ability. PLoS Pathogens, 2020, 16, e1008829.	4.7	29
106	The novel C5 protein from tomato yellow leaf curl virus is a virulence factor and suppressor of gene silencing. Stress Biology, 2022, 2, 1.	3.1	29
107	Monoclonal Antibodies against the Recombinant Nucleocapsid Protein of <i>Tomato spotted wilt virus</i> and its Application in Virus Detection. Journal of Phytopathology, 2009, 157, 344-349.	1.0	27
108	Monoclonal antibody-based serological methods for maize chlorotic mottle virus detection in China. Journal of Zhejiang University: Science B, 2013, 14, 555-562.	2.8	27

#	Article	IF	Citations
109	Matrix $\hat{a} \in g$ lycoprotein interactions required for budding of a plant nucleorhabdovirus and induction of inner nuclear membrane invagination. Molecular Plant Pathology, 2018, 19, 2288-2301.	4.2	27
110	Phloem specific promoter from a satellite associated with a DNA virus. Virus Research, 2006, 115, 150-157.	2.2	26
111	Tomato yellow leaf curl Thailand virus-[Y72] from Yunnan is a monopartite begomovirus associated with DNAβ. Virus Genes, 2009, 38, 328-333.	1.6	26
112	Transcriptome Analysis of Rice Reveals the IncRNA–mRNA Regulatory Network in Response to Rice Black-Streaked Dwarf Virus Infection. Viruses, 2020, 12, 951.	3.3	26
113	Complete nucleotide sequence and infectious cDNA clone of the RNA1 of a Chinese isolate of broad bean wilt virus 2. Virus Genes, 2000, 20, 201-207.	1.6	24
114	Molecular characterization and infectivity of Papaya leaf curl China virus infecting tomato in China. Journal of Zhejiang University: Science B, 2010, 11, 109-114.	2.8	24
115	Monoclonal antibody-based serological detection of Citrus yellow vein clearing virus in citrus groves. Journal of Integrative Agriculture, 2017, 16, 884-891.	3.5	24
116	The Matrix Protein of a Plant Rhabdovirus Mediates Superinfection Exclusion by Inhibiting Viral Transcription. Journal of Virology, 2019, 93, .	3.4	24
117	Rice black-streaked dwarf virus P10 suppresses protein kinase C in insect vector through changing the subcellular localization of LsRACK1. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180315.	4.0	24
118	Geminiviruses employ host DNA glycosylases to subvert DNA methylation-mediated defense. Nature Communications, 2022, 13, 575.	12.8	24
119	Tomato yellow leaf curl virus V3 protein traffics along microfilaments to plasmodesmata to promote virus cell-to-cell movement. Science China Life Sciences, 2022, 65, 1046-1049.	4.9	24
120	Agroinoculation Shows Tobacco leaf curl Yunnan virus is a Monopartite Begomovirus. European Journal of Plant Pathology, 2006, 115, 369-375.	1.7	22
121	MicroRNA profiling of the whitefly Bemisia tabaci Middle East-Aisa Minor I following the acquisition of Tomato yellow leaf curl China virus. Virology Journal, 2016, 13, 20.	3.4	22
122	SGS3 Cooperates with RDR6 in Triggering Geminivirus-Induced Gene Silencing and in Suppressing Geminivirus Infection in Nicotiana Benthamiana. Viruses, 2017, 9, 247.	3.3	22
123	Identification and Analysis of Potential Genes Regulated by an Alphasatellite (TYLCCNA) that Contribute to Host Resistance against Tomato Yellow Leaf Curl China Virus and Its Betasatellite (TYLCCNV/TYLCCNB) Infection in Nicotiana benthamiana. Viruses, 2019, 11, 442.	3.3	22
124	Iterons Homologous to Helper Geminiviruses Are Essential for Efficient Replication of Betasatellites. Journal of Virology, 2019, 93, .	3.4	22
125	Divergent Symptoms Caused by Geminivirus-Encoded C4 Proteins Correlate with Their Ability To Bind NbSKI·. Journal of Virology, 2020, 94, .	3.4	22
126	Mutual association of Broad bean wilt virus 2 VP37-derived tubules and plasmodesmata obtained from cytological observation. Scientific Reports, 2016, 6, 21552.	3.3	22

#	Article	IF	Citations
127	Monoclonal Antibodies Against the Whitefly-Transmitted Tomato Yellow Leaf Curl Virus and Their Application in Virus Detection. Journal of Integrative Agriculture, 2012, 11, 263-268.	3.5	21
128	The C4 protein encoded by Tomato leaf curl Yunnan virus interferes with mitogenâ€activated protein kinase cascadeâ€related defense responses through inhibiting the dissociation of the ERECTA/BKI1 complex. New Phytologist, 2021, 231, 747-762.	7.3	21
129	A TOM1 homologue is required for multiplication of Tobacco mosaic virus in Nicotiana benthamiana. Journal of Zhejiang University: Science B, 2007, 8, 256-259.	2.8	20
130	Monoclonal antibody-based serological assays and immunocapture-RT-PCR for detecting Rice dwarf virus in field rice plants and leafhopper vectors. Journal of Virological Methods, 2014, 195, 134-140.	2.1	20
131	Identification of Himetobi P virus in the small brown planthopper by deep sequencing and assembly of virus-derived small interfering RNAs. Virus Research, 2014, 179, 235-240.	2.2	20
132	Vector and nonvector insect feeding reduces subsequent plant susceptibility to virus transmission. New Phytologist, 2017, 215, 699-710.	7.3	20
133	Development of a colloidal gold-based immunochromatographic strip for rapid detection of Rice stripe virus. Journal of Zhejiang University: Science B, 2019, 20, 343-354.	2.8	19
134	Rice black-streaked dwarf virus P10 promotes phosphorylation of GAPDH (glyceraldehyde-3-phosphate) Tj ETQq	0 0 0 rgBT	「/Oyerlock 10
135	Occurrence and distribution of geminiviruses in China. Science China Life Sciences, 2022, 65, 1498-1503.	4.9	18
136	Nitric Oxide as a Downstream Signaling Molecule in Brassinosteroid-Mediated Virus Susceptibility to Maize Chlorotic Mottle Virus in Maize. Viruses, 2019, 11, 368.	3.3	17
137	Arginine methylation is required for remodelling preâ€ <scp>mRNA</scp> splicing and induction of autophagy in rice blast fungus. New Phytologist, 2020, 225, 413-429.	7.3	17
138	Cryo-EM Structure of a Begomovirus Geminate Particle. International Journal of Molecular Sciences, 2019, 20, 1738.	4.1	16
139	An evolutionarily conserved C4HC3-type E3 ligase regulates plant broad-spectrum resistance against pathogens. Plant Cell, 2022, 34, 1822-1843.	6.6	16
140	Use of the modified viral satellite DNA vector to silence mineral nutrition-related genes in plants: silencing of the tomato ferric chelate reductase gene, FRO1, as an example. Science in China Series C: Life Sciences, 2008, 51, 402-409.	1.3	15
141	The VP37 protein of Broad bean wilt virus 2 induces tubule-like structures in both plant and insect cells. Virus Research, 2011, 155, 42-47.	2.2	15
142	Proteomic Changes during MCMV Infection Revealed by iTRAQ Quantitative Proteomic Analysis in Maize. International Journal of Molecular Sciences, 2020, 21, 35.	4.1	15
143	The unfolded protein response plays dual roles in rice stripe virus infection through fine-tuning the movement protein accumulation. PLoS Pathogens, 2021, 17, e1009370.	4.7	15
144	Malvastrum yellow vein virus, a newBegomovirus species associated with satellite DNA molecule. Science Bulletin, 2003, 48, 2206-2210.	1.7	14

#	Article	IF	CITATIONS
145	Cell-to-cell trafficking, subcellular distribution, and binding to coat protein of Broad bean wilt virus 2 VP37 protein. Virus Research, 2009, 143, 86-93.	2.2	14
146	Broad bean wilt virus 2 encoded VP53, VP37 and large capsid protein orchestrate suppression of RNA silencing in plant. Virus Research, 2014, 192, 62-73.	2.2	14
147	Monoclonal antibody-based serological methods for detecting Citrus tristeza virus in citrus groves. Virologica Sinica, 2016, 31, 324-330.	3.0	14
148	Monoclonal antibody-based serological assays for detection of Potato virus S in potato plants. Journal of Zhejiang University: Science B, 2017, 18, 1075-1082.	2.8	14
149	Nuclear exportin 1 facilitates turnip mosaic virus infection by exporting the sumoylated viral replicase and by repressing plant immunity. New Phytologist, 2021, 232, 1382-1398.	7.3	14
150	A modified viral satellite DNA-based gene silencing vector is effective in association with heterologous begomoviruses. Virus Research, 2006, 118, 136-142.	2.2	13
151	Molecular characterization and experimental host-range of two begomoviruses infecting Clerodendrum cyrtophyllum in China. Virus Genes, 2010, 41, 250-259.	1.6	13
152	Development and application of an efficient virus-induced gene silencing system in Nicotiana tabacum using geminivirus alphasatellite. Journal of Zhejiang University: Science B, 2011, 12, 83-92.	2.8	13
153	RepA Protein Encoded by <i>Oat dwarf virus</i> Elicits a Temperature-Sensitive Hypersensitive Response–Type Cell Death That Involves Jasmonic Acid–Dependent Signaling. Molecular Plant-Microbe Interactions, 2016, 29, 5-21.	2.6	13
154	Genetic variation and population structure of Cucumber green mottle mosaic virus. Archives of Virology, 2017, 162, 1159-1168.	2.1	13
155	Molecular characterization and pathogenicity of an infectious cDNA clone of tomato brown rugose fruit virus. Phytopathology Research, 2021, 3, .	2.4	13
156	Selective autophagic receptor NbNBR1 prevents NbRFP1-mediated UPS-dependent degradation of \hat{l}^2 C1 to promote geminivirus infection. PLoS Pathogens, 2021, 17, e1009956.	4.7	13
157	Complete nucleotide sequence and genome organization of tobacco mosaic virus isolated fromVicia faba. Science in China Series C: Life Sciences, 2000, 43, 200-208.	1.3	12
158	Glucose signaling controls the transcription of retrotransposon Ty2–917 in Saccharomyces cerevisiae. Virus Genes, 2007, 33, 279-85.	1.6	12
159	Molecular Characterization of Tomato Leaf Curl Hainan Virus, a New <i>Begomovirus</i> , and Evidence for Recombination. Journal of Phytopathology, 2010, 158, 829-832.	1.0	12
160	Identification of Hop stunt viroid infecting Citrus limon in China using small RNAs deep sequencing approach. Virology Journal, 2015, 12, 103.	3.4	12
161	Discovery and small RNA profile of Pecan mosaic-associated virus, a novel potyvirus of pecan trees. Scientific Reports, 2016, 6, 26741.	3.3	12
162	Development and detection application of monoclonal antibodies against Zucchini yellow mosaic virus. Journal of Integrative Agriculture, 2017, 16, 115-124.	3.5	12

#	Article	IF	CITATIONS
163	A group I WRKY transcription factor regulates mulberry mosaic dwarfâ€associated virusâ€triggered cell death in <i>Nicotiana benthamiana</i>). Molecular Plant Pathology, 2022, 23, 237-253.	4.2	12
164	Genetic variability and evolution of rice stripe virus. Journal of Zhejiang University: Science B, 2013, 14, 875-885.	2.8	11
165	Molecular variation of tomato yellow leaf curl virus in the insect vector Bemisia tabaci. Scientific Reports, 2017, 7, 16427.	3.3	11
166	Geminiviruses and their application in biotechnology. Journal of Integrative Agriculture, 2017, 16, 2761-2771.	3.5	11
167	Monoclonal Antibody-Based Serological Detection Methods for Wheat Dwarf Virus. Virologica Sinica, 2018, 33, 173-180.	3.0	11
168	Detection and Characterization of Cucumis melo Cryptic Virus, Cucumis melo Amalgavirus 1, and Melon Necrotic Spot Virus in Cucumis melo. Viruses, 2019, 11, 81.	3.3	11
169	Development of monoclonal antibodies and serological assays specific for Barley yellow dwarf virus GAV strain. Virology Journal, 2015, 12, 136.	3.4	10
170	Model-based structural and functional characterization of the Rice stripe tenuivirus nucleocapsid protein interacting with viral genomic RNA. Virology, 2017, 506, 73-83.	2.4	10
171	Monoclonal Antibody-Based Serological Detection of Rice Stripe Mosaic Virus Infection in Rice Plants or Leafhoppers. Virologica Sinica, 2020, 35, 227-234.	3.0	10
172	Dynamic Subcellular Localization, Accumulation, and Interactions of Proteins From Tomato Yellow Leaf Curl China Virus and Its Associated Betasatellite. Frontiers in Plant Science, 2020, 11, 840.	3.6	10
173	Monoclonal antibody-based serological detection of potato virus M in potato plants and tubers. Journal of Integrative Agriculture, 2020, 19, 1283-1291.	3.5	10
174	Host GRXC6 restricts Tomato yellow leaf curl virus infection by inhibiting the nuclear export of the V2 protein. PLoS Pathogens, 2021, 17, e1009844.	4.7	10
175	Rice stripe virus activates the bZIP17/28 branch of the unfolded protein response signalling pathway to promote viral infection. Molecular Plant Pathology, 2022, 23, 447-458.	4.2	10
176	Modification of a viral satellite DNA-based gene silencing vector and its application to leaf or flower color change in Petunia hybrida. Science Bulletin, 2006, 51, 2208-2213.	1.7	9
177	Tomato leaf curl Guangxi virus is a distinct monopartite begomovirus species. European Journal of Plant Pathology, 2007, 118, 287-294.	1.7	9
178	Virus-Induced Gene Silencing Using Begomovirus Satellite Molecules. Methods in Molecular Biology, 2012, 894, 57-67.	0.9	9
179	Strawberry Vein Banding Virus P6 Protein Is a Translation Trans-Activator and Its Activity Can be Suppressed by FveIF3g. Viruses, 2018, 10, 717.	3.3	9
180	Pivoting plant immunity from theory to the field. Science China Life Sciences, 2019, 62, 1539-1542.	4.9	9

#	Article	IF	CITATIONS
181	Rock paper scissors: CRISPR/Cas9-mediated interference with geminiviruses in plants. Science China Life Sciences, 2019, 62, 1389-1391.	4.9	9
182	Highly sensitive serological approaches for Pepino mosaic virus detection. Journal of Zhejiang University: Science B, 2020, 21, 811-822.	2.8	9
183	Molecular characterization of a novel wheat-infecting virus of the family Betaflexiviridae. Archives of Virology, 2021, 166, 2875-2879.	2.1	9
184	Identification of a nanovirus-like DNA molecule associated with Tobacco curly shoot virus isolates containing satellite DNA *. Progress in Natural Science: Materials International, 2004, 14, 689-693.	4.4	8
185	Detection and characterization of an isolate of Tomato mottle mosaic virus infecting tomato in China. Journal of Integrative Agriculture, 2018, 17, 1207-1212.	3.5	8
186	Whole genome deep sequencing revealed host impact on population structure, variation and evolution of Rice stripe virus. Virology, 2018, 524, 32-44.	2.4	8
187	Hijack to escape: a geminivirus seizes a host imprinted E3 ligase to escape epigenetic repression. Science China Life Sciences, 2021, 64, 323-325.	4.9	8
188	Development of a Mini-Replicon-Based Reverse-Genetics System for Rice Stripe Tenuivirus. Journal of Virology, 2021, 95, e0058921.	3.4	8
189	Coinfection of Cotton Plants with Watermelon Mosaic Virus and a Novel Polerovirus in China. Viruses, 2021, 13, 2210.	3.3	8
190	Functional Characterization of Replication-Associated Proteins Encoded by Alphasatellites Identified in Yunnan Province, China. Viruses, 2022, 14, 222.	3. 3	8
191	Molecular Characterization and Genomic Function of Grapevine Geminivirus A. Frontiers in Microbiology, 2020, $11,555194$.	3.5	7
192	Three sensitive and reliable serological assays for detection of potato virus A in potato plants. Journal of Integrative Agriculture, 2021, 20, 2966-2975.	3 . 5	7
193	Gene Expression Profiling Shows That NbFDN1 Is Involved in Modulating the Hypersensitive Response-Like Cell Death Induced by the <i>Oat dwarf virus</i> I> RepA Protein. Molecular Plant-Microbe Interactions, 2018, 31, 1006-1020.	2.6	6
194	Identification of Yeast Factors Involved in the Replication of Mungbean Yellow Mosaic India Virus Using Yeast Temperature-Sensitive Mutants. Virologica Sinica, 2020, 35, 120-123.	3.0	6
195	CRISPR/Sc ++ â€mediated genome editing in rice. Journal of Integrative Plant Biology, 2021, 63, 1606-1610.	8.5	6
196	Molecular Characterization and Pathogenicity of a Novel Soybean-Infecting Monopartite Geminivirus in China. Viruses, 2022, 14, 341.	3.3	6
197	NSvc4 Encoded by Rice Stripe Virus Targets Host Chloroplasts to Suppress Chloroplast-Mediated Defense. Viruses, 2022, 14, 36.	3.3	6
198	Discovery and Genomic Function of a Novel Rice Dwarf-Associated Bunya-like Virus. Viruses, 2022, 14, 1183.	3.3	6

#	Article	IF	Citations
199	Etiology of Ageratum Yellow Vein Diseases in South China. Plant Disease, 2013, 97, 1497-1503.	1.4	5
200	Highly Sensitive and Specific Monoclonal Antibody-Based Serological Methods for Rice Ragged Stunt Virus Detection in Rice Plants and Rice Brown Planthopper Vectors. Journal of Integrative Agriculture, 2014, 13, 1943-1951.	3.5	5
201	Development of a sensitive Luminex xMAP-based microsphere immunoassay for specific detection of Iris yellow spot virus. Virology Journal, 2018, 15, 62.	3.4	5
202	Discovery and Characterization of a Novel Ampelovirus on Firespike. Viruses, 2020, 12, 1452.	3.3	5
203	A Novel Rice Curl Dwarf-Associated Picornavirus Encodes a 3C Serine Protease Recognizing Uncommon EPT/S Cleavage Sites. Frontiers in Microbiology, 2021, 12, 757451.	3.5	5
204	Efficiency for Gene Silencing Induction in <i>Nicotiana</i> Species by a Viral Satellite DNA Vector. Journal of Integrative Plant Biology, 2007, 49, 1726-1733.	8.5	4
205	Size reversion of a truncated DNA \hat{I}^2 associated with Tobacco curly shoot virus. Virus Research, 2008, 131, 288-292.	2.2	4
206	Characterization and Complete Nucleotide Sequence of Two Isolates of <i>Tomato mosaic virus </i> Journal of Phytopathology, 2012, 160, 115-119.	1.0	4
207	Three highly sensitive monoclonal antibody-based serological assays for the detection of tomato mottle mosaic virus. Phytopathology Research, 2021, 3, .	2.4	4
208	Molecular characterization of Tomato yellow leaf curl China virus and its satellite DNA isolated from tobacco. Science Bulletin, 2003, 48, 766-770.	1.7	3
209	RNA silencing and its application in plants. Science China Life Sciences, 2012, 55, 97-98.	4.9	3
210	Nuclear Exportin 1 (XPO1) Binds to the Nuclear Localization/Export Signal of the Turnip Mosaic Virus NIb to Promote Viral Infection. Frontiers in Microbiology, 2021, 12, 780724.	3.5	3
211	T-LOC: A comprehensive tool to localize and characterize T-DNA integration sites. Plant Physiology, 2022, 190, 1628-1639.	4.8	3
212	Palmitoylation Is Indispensable for Remorin to Restrict Tobacco Mosaic Virus Cell-to-Cell Movement in Nicotiana benthamiana. Viruses, 2022, 14, 1324.	3.3	3
213	Emergence of a new satellite RNA from cucumber mosaic virus isolate P1. Journal of Zhejiang University: Science A, 2003, 4, 336-339.	2.4	2
214	Identification of a cis-Acting Element Derived from Tomato Leaf Curl Yunnan Virus that Mediates the Replication of a Deficient Yeast Plasmid in Saccharomyces cerevisiae. Viruses, 2018, 10, 536.	3.3	2
215	RepA Promotes the Nucleolar Exclusion of the V2 Protein of Mulberry Mosaic Dwarf-Associated Virus. Frontiers in Microbiology, 2020, 11, 1828.	3.5	2
216	Identification of two distinct begomoviruses infecting Malvastrum coromandelianum. Phytopathology Research, 2021, 3, .	2.4	2

XUEPING ZHOU

#	Article	IF	CITATIONS
217	Identification and Characterization of Two Novel Noda-like Viruses from Rice Plants Showing the Dwarfing Symptom. Viruses, 2022, 14, 1159.	3.3	2
218	Small RNA biology: From fundamental studies to applications. Science China Life Sciences, 2013, 56, 1059-1062.	4.9	1
219	Complete Nucleotide Sequence and Possible Genomic Expression Strategy of a Chinese Isolate of Broad Bean Wilt Virus. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao Acta Biochimica Et Biophysica Sinica, 2001, 33, 46-52.	0.1	0