Shaoling Shang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1489962/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Detection and Biomass Estimation of <i>Phaeocystis globosa</i> Blooms off Southern China From UAV-Based Hyperspectral Measurements. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-13.	2.7	11
2	Three-Dimensional Variation in Light Quality in the Upper Water Column Revealed With a Single Parameter. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-10.	2.7	4
3	The Use of VGPM to Estimate Oceanic Primary Production: A "Tango―Difficult to Dance. Journal of Remote Sensing, 2022, 2022, .	3.2	5
4	Performance of COCTS in Global Ocean Color Remote Sensing. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59, 1634-1644.	2.7	8
5	Reconciling Between Optical and Biological Determinants of the Euphotic Zone Depth. Journal of Geophysical Research: Oceans, 2021, 126, e2020JC016874.	1.0	12
6	Experimental analysis of the measurement precision of spectral water-leaving radiance in different water types. Optics Express, 2021, 29, 2780.	1.7	10
7	A simple and robust shade correction scheme for remote sensing reflectance obtained by the skylight-blocked approach. Optics Express, 2021, 29, 470.	1.7	6
8	Improving low-quality satellite remote sensing reflectance at blue bands over coastal and inland waters. Remote Sensing of Environment, 2020, 250, 112029.	4.6	24
9	Impact of Temporal Variation of Chlorophyllâ€Specific Absorption on Phytoplankton Phenology Observed From Ocean Color Satellite: A Numerical Experiment. Journal of Geophysical Research: Oceans, 2020, 125, e2020JC016382.	1.0	6
10	Changes of water clarity in large lakes and reservoirs across China observed from long-term MODIS. Remote Sensing of Environment, 2020, 247, 111949.	4.6	100
11	Atmospheric correction in coastal region using same-day observations of different sun-sensor geometries with a revised POLYMER model. Optics Express, 2020, 28, 26953.	1.7	8
12	Remote Sensing of Secchi Depth in Highly Turbid Lake Waters and Its Application with MERIS Data. Remote Sensing, 2019, 11, 2226.	1.8	30
13	Semianalytical Derivation of Phytoplankton, CDOM, and Detritus Absorption Coefficients From the Landsat 8/OLI Reflectance in Coastal Waters. Journal of Geophysical Research: Oceans, 2019, 124, 3682-3699.	1.0	19
14	Improving Satellite Global Chlorophyll <i>a</i> Data Products Through Algorithm Refinement and Data Recovery. Journal of Geophysical Research: Oceans, 2019, 124, 1524-1543.	1.0	58
15	Estimating the Transmittance of Visible Solar Radiation in the Upper Ocean Using Secchi Disk Observations. Journal of Geophysical Research: Oceans, 2019, 124, 1434-1444.	1.0	7
16	Progressive scheme for blending empirical ocean color retrievals of absorption coefficient and chlorophyll concentration from open oceans to highly turbid waters. Applied Optics, 2019, 58, 3359.	0.9	9
17	An overview of approaches and challenges for retrieving marine inherent optical properties from ocean color remote sensing. Progress in Oceanography, 2018, 160, 186-212.	1.5	257
18	Concentrations of Multiple Phytoplankton Pigments in the Global Oceans Obtained from Satellite Ocean Color Measurements with MERIS. Applied Sciences (Switzerland), 2018, 8, 2678.	1.3	13

SHAOLING SHANG

#	Article	IF	CITATIONS
19	Regionalization and Dynamic Parameterization of Quantum Yield of Photosynthesis to Improve the Ocean Primary Production Estimates From Remote Sensing. Frontiers in Marine Science, 2018, 5, .	1.2	11
20	Hyperspectral absorption and backscattering coefficients of bulk water retrieved from a combination of remote-sensing reflectance and attenuation coefficient. Optics Express, 2018, 26, A157.	1.7	19
21	Resolving the longâ€standing puzzles about the observed Secchi depth relationships. Limnology and Oceanography, 2018, 63, 2321-2336.	1.6	62
22	An assessment of Landsat-8 atmospheric correction schemes and remote sensing reflectance products in coral reefs and coastal turbid waters. Remote Sensing of Environment, 2018, 215, 18-32.	4.6	65
23	Sensing an intense phytoplankton bloom in the western Taiwan Strait from radiometric measurements on a UAV. Remote Sensing of Environment, 2017, 198, 85-94.	4.6	52
24	Floating Algae Blooms in the East China Sea. Geophysical Research Letters, 2017, 44, 11,501.	1.5	116
25	Estimation of Transmittance of Solar Radiation in the Visible Domain Based on Remote Sensing: Evaluation of Models Using In Situ Data. Journal of Geophysical Research: Oceans, 2017, 122, 9176-9188.	1.0	6
26	Secchi disk observation with spectral-selective glasses in blue and green waters. Optics Express, 2017, 25, 19878.	1.7	7
27	Changes in water clarity of the Bohai Sea: Observations from MODIS. Remote Sensing of Environment, 2016, 186, 22-31.	4.6	70
28	Remote sensing of normalized diffuse attenuation coefficient of downwelling irradiance. Journal of Geophysical Research: Oceans, 2016, 121, 6717-6730.	1.0	11
29	Long-term trend of Ulva prolifera blooms in the western Yellow Sea. Harmful Algae, 2016, 58, 35-44.	2.2	114
30	A system to measure the data quality of spectral remote sensing reflectance of aquatic environments. Journal of Geophysical Research: Oceans, 2016, 121, 8189.	1.0	80
31	Spectral slopes of the absorption coefficient of colored dissolved and detrital material inverted from UVâ€visible remote sensing reflectance. Journal of Geophysical Research: Oceans, 2016, 121, 1953-1969.	1.0	24
32	Retrieving absorption coefficients of multiple phytoplankton pigments from hyperspectral remote sensing reflectance measured over cyanobacteria bloom waters. Limnology and Oceanography: Methods, 2016, 14, 432-447.	1.0	38
33	A semi-analytical scheme to estimate Secchi-disk depth from Landsat-8 measurements. Remote Sensing of Environment, 2016, 177, 101-106.	4.6	151
34	Photosynthetic parameters in the northern <scp>S</scp> outh <scp>C</scp> hina <scp>S</scp> ea in relation to phytoplankton community structure. Journal of Geophysical Research: Oceans, 2015, 120, 4187-4204.	1.0	29
35	Hyperspectral absorption coefficient of "pure―seawater in the range of 350–550  nm inverted fro remote sensing reflectance. Applied Optics, 2015, 54, 546.	m.9	98
36	Radiance transmittance measured at the ocean surface. Optics Express, 2015, 23, 11826.	1.7	26

SHAOLING SHANG

#	Article	IF	CITATIONS
37	Retrieval of phytoplankton and colored detrital matter absorption coefficients with remote sensing reflectance in an ultraviolet band. Applied Optics, 2015, 54, 636.	0.9	15
38	Secchi disk depth: A new theory and mechanistic model for underwater visibility. Remote Sensing of Environment, 2015, 169, 139-149.	4.6	224
39	Usable solar radiation and its attenuation in the upper water column. Journal of Geophysical Research: Oceans, 2014, 119, 1488-1497.	1.0	15
40	A new approach to discriminate dinoflagellate from diatom blooms from space in the East China Sea. Journal of Geophysical Research: Oceans, 2014, 119, 4653-4668.	1.0	36
41	Quantifying cyanobacterial phycocyanin concentration in turbid productive waters: A quasi-analytical approach. Remote Sensing of Environment, 2013, 133, 141-151.	4.6	115
42	Uncertainties of SeaWiFS and MODIS remote sensing reflectance: Implications from clear water measurements. Remote Sensing of Environment, 2013, 133, 168-182.	4.6	109
43	Model of the attenuation coefficient of daily photosynthetically available radiation in the upper ocean. Methods in Oceanography, 2013, 8, 56-74.	1.5	10
44	An algorithm to retrieve absorption coefficient of chromophoric dissolved organic matter from ocean color. Remote Sensing of Environment, 2013, 128, 259-267.	4.6	55
45	Generalized ocean color inversion model for retrieving marine inherent optical properties. Applied Optics, 2013, 52, 2019.	0.9	366
46	Robust approach to directly measuring water-leaving radiance in the field. Applied Optics, 2013, 52, 1693.	0.9	78
47	Penetration of UVâ€visible solar radiation in the global oceans: Insights from ocean color remote sensing. Journal of Geophysical Research: Oceans, 2013, 118, 4241-4255.	1.0	184
48	Chlorophyll <i>a</i> algorithms for oligotrophic oceans: A novel approach based on threeâ€band reflectance difference. Journal of Geophysical Research, 2012, 117, .	3.3	649
49	Uncertainties of optical parameters and their propagations in an analytical ocean color inversion algorithm. Applied Optics, 2010, 49, 369.	2.1	153
50	Removal of surface-reflected light for the measurement of remote-sensing reflectance from an above-surface platform. Optics Express, 2010, 18, 26313.	1.7	159
51	K _{PAR} : An optical property associated with ambiguous values. Hupo Kexue/Journal of Lake Sciences, 2009, 21, 159-164.	0.3	31
52	Why does the Secchi disk disappear? An imaging perspective. Optics Express, 2007, 15, 2791.	1.7	61
53	Euphotic zone depth: Its derivation and implication to ocean-color remote sensing. Journal of Geophysical Research, 2007, 112, .	3.3	209
54	Ocean Color Reveals Phase Shift Between Marine Plants and Yellow Substance. IEEE Geoscience and Remote Sensing Letters, 2006, 3, 262-266.	1.4	47

SHAOLING SHANG

#	Article	IF	CITATIONS
55	Penetration of solar radiation in the upper ocean: A numerical model for oceanic and coastal waters. Journal of Geophysical Research, 2005, 110, .	3.3	89
56	Effects of molecular and particle scatterings on the model parameter for remote-sensing reflectance. Applied Optics, 2004, 43, 4957.	2.1	79
57	Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters. Applied Optics, 2002, 41, 5755.	2.1	1,301
58	Hyperspectral remote sensing for shallow waters: 2 Deriving bottom depths and water properties by optimization. Applied Optics, 1999, 38, 3831.	2.1	696
59	Hyperspectral remote sensing for shallow waters I A semianalytical model. Applied Optics, 1998, 37, 6329.	2.1	474