
Niklas von Wolff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1489306/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Homogeneous Reforming of Aqueous Ethylene Glycol to Glycolic Acid and Pure Hydrogen Catalyzed by Pincerâ€Ruthenium Complexes Capable of Metal–Ligand Cooperation. Chemistry - A European Journal, 2021, 27, 4715-4722.	3.3	22
2	Taming Electron Transfers: From Breaking Bonds to Creating Molecules. Chemical Record, 2021, 21, 2095-2106.	5.8	4
3	Molecular Electrocatalytic Hydrogenation of Carbonyls and Dehydrogenation of Alcohols. ChemElectroChem, 2021, 8, 4019-4027.	3.4	15
4	Emergence of CO2 electrolyzers including supported molecular catalysts. Current Opinion in Electrochemistry, 2020, 24, 49-55.	4.8	15
5	Hydrogenative Depolymerization of Nylons. Journal of the American Chemical Society, 2020, 142, 14267-14275.	13.7	101
6	Iron Porphyrin Allows Fast and Selective Electrocatalytic Conversion of CO ₂ to CO in a Flow Cell. Chemistry - A European Journal, 2020, 26, 3034-3038.	3.3	52
7	Formamides as Isocyanate Surrogates: A Mechanistically Driven Approach to the Development of Atom-Efficient, Selective Catalytic Syntheses of Ureas, Carbamates, and Heterocycles. Journal of the American Chemical Society, 2019, 141, 16486-16493.	13.7	47
8	Pyridine-Based PCP-Ruthenium Complexes: Unusual Structures and Metal–Ligand Cooperation. Journal of the American Chemical Society, 2019, 141, 7554-7561.	13.7	32
9	Ethylene glycol as an efficient and reversible liquid-organic hydrogen carrier. Nature Catalysis, 2019, 2, 415-422.	34.4	102
10	Activation of SO ₂ by N/Si ⁺ and N/B Frustrated Lewis Pairs: Experimental and Theoretical Comparison with CO ₂ Activation. Chemistry - A European Journal, 2019, 25, 8118-8126.	3.3	22
11	SO ₂ conversion to sulfones: development and mechanistic insights of a sulfonylative Hiyama cross-coupling. Chemical Communications, 2019, 55, 12924-12927.	4.1	18
12	Câ^'C Bond Formation of Benzyl Alcohols and Alkynes Using a Catalytic Amount of KO ^t Bu: Unusual Regioselectivity through a Radical Mechanism. Angewandte Chemie - International Edition, 2019, 58, 3373-3377.	13.8	23
13	Synthesis of Aromatic Sulfones from SO ₂ and Organosilanes Under Metalâ€free Conditions. Angewandte Chemie - International Edition, 2017, 56, 5616-5619.	13.8	77
14	Reactivity and Structural Diversity in the Reaction of Guanidine 1,5,7â€Triazabicyclo[4.4.0]decâ€5â€ene with CO ₂ , CS ₂ , and Other Heterocumulenes. European Journal of Organic Chemistry, 2017, 2017, 676-686.	2.4	10
15	CO ₂ Conversion into Esters by Fluorideâ€Mediated Carboxylation of Organosilanes and Halide Derivatives. Chemistry - A European Journal, 2016, 22, 2930-2934.	3.3	29
16	Implications of CO ₂ Activation by Frustrated Lewis Pairs in the Catalytic Hydroboration of CO ₂ : A View Using N/Si ⁺ Frustrated Lewis Pairs. ACS Catalysis, 2016, 6, 4526-4535.	11.2	115
17	Oxidative Addition of Haloheteroarenes to Palladium(0): Concerted versus S _N Arâ€Type Mechanism. Chemistry - A European Journal, 2015, 21, 7858-7865.	3.3	56
18	Autocatalytic Intermolecular versus Intramolecular Deprotonation in CH Bond Activation of Functionalized Arenes by Ruthenium(II) or Palladium(II) Complexes. Chemistry - A European Journal, 2013, 19, 7595-7604.	3.3	85