List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/148930/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antifouling membranes for sustainable water purification: strategies and mechanisms. Chemical Society Reviews, 2016, 45, 5888-5924.	38.1	977
2	Advances in high permeability polymer-based membrane materials for CO ₂ separations. Energy and Environmental Science, 2016, 9, 1863-1890.	30.8	612
3	Effects of Boron Doping on Photocatalytic Activity and Microstructure of Titanium Dioxide Nanoparticles. Industrial & Engineering Chemistry Research, 2006, 45, 4110-4116.	3.7	432
4	Zwitterionic materials for antifouling membrane surface construction. Acta Biomaterialia, 2016, 40, 142-152.	8.3	392
5	Biomimetic fabrication of g-C3N4/TiO2 nanosheets with enhanced photocatalytic activity toward organic pollutant degradation. Chemical Engineering Journal, 2015, 260, 117-125.	12.7	391
6	Three-Dimensional Porous Aerogel Constructed by g-C ₃ N ₄ and Graphene Oxide Nanosheets with Excellent Visible-Light Photocatalytic Performance. ACS Applied Materials & Interfaces, 2015, 7, 25693-25701.	8.0	383
7	Thylakoid-Inspired Multishell g-C ₃ N ₄ Nanocapsules with Enhanced Visible-Light Harvesting and Electron Transfer Properties for High-Efficiency Photocatalysis. ACS Nano, 2017, 11, 1103-1112.	14.6	368
8	Nanostructured Ionâ€Exchange Membranes for Fuel Cells: Recent Advances and Perspectives. Advanced Materials, 2015, 27, 5280-5295.	21.0	335
9	A MOF Class Membrane for Gas Separation. Angewandte Chemie - International Edition, 2020, 59, 4365-4369.	13.8	325
10	Antifouling membrane surface construction: Chemistry plays a critical role. Journal of Membrane Science, 2018, 551, 145-171.	8.2	309
11	Efficient CO ₂ Capture by Functionalized Graphene Oxide Nanosheets as Fillers To Fabricate Multi-Permselective Mixed Matrix Membranes. ACS Applied Materials & Interfaces, 2015, 7, 5528-5537.	8.0	305
12	Methods for the regeneration of nicotinamide coenzymes. Green Chemistry, 2013, 15, 1773.	9.0	278
13	Covalent organic framework membranes through a mixed-dimensional assembly for molecular separations. Nature Communications, 2019, 10, 2101.	12.8	271
14	An Interfaceâ€Bridged Organic–Inorganic Layer that Suppresses Dendrite Formation and Side Reactions for Ultraâ€Longâ€Life Aqueous Zinc Metal Anodes. Angewandte Chemie - International Edition, 2020, 59, 16594-16601.	13.8	270
15	Recent advances in the fabrication of advanced composite membranes. Journal of Materials Chemistry A, 2013, 1, 10058.	10.3	252
16	Two-dimensional nanochannel membranes for molecular and ionic separations. Chemical Society Reviews, 2020, 49, 1071-1089.	38.1	242
17	Composite nanofiltration membranes prepared by interfacial polymerization with natural material tannic acid and trimesoyl chloride. Journal of Membrane Science, 2013, 429, 235-242.	8.2	238
18	Ultrathin nanofiltration membrane with polydopamine-covalent organic framework interlayer for enhanced permeability and structural stability. Journal of Membrane Science, 2019, 576, 131-141.	8.2	238

ZHONGYI JIANG

#	Article	IF	CITATIONS
19	A novel positively charged composite nanofiltration membrane prepared by bio-inspired adhesion of polydopamine and surface grafting of poly(ethylene imine). Journal of Membrane Science, 2014, 470, 9-17.	8.2	214
20	Free-Standing Graphene Oxide-Palygorskite Nanohybrid Membrane for Oil/Water Separation. ACS Applied Materials & Interfaces, 2016, 8, 8247-8256.	8.0	214
21	Facilitated transport of small molecules and ions for energy-efficient membranes. Chemical Society Reviews, 2015, 44, 103-118.	38.1	211
22	Enhanced water permeation through sodium alginate membranes by incorporating graphene oxides. Journal of Membrane Science, 2014, 469, 272-283.	8.2	210
23	Hybrid Organicâ^'Inorganic Membrane:  Solving the Tradeoff between Permeability and Selectivity. Chemistry of Materials, 2005, 17, 6790-6796.	6.7	205
24	Weakly Humidityâ€Dependent Protonâ€Conducting COF Membranes. Advanced Materials, 2020, 32, e2005565.	21.0	201
25	Preparation of thin film composite nanofiltration membrane with improved structural stability through the mediation of polydopamine. Journal of Membrane Science, 2015, 476, 10-19.	8.2	196
26	Combined Intrinsic and Extrinsic Proton Conduction in Robust Covalent Organic Frameworks for Hydrogen Fuel Cell Applications. Angewandte Chemie - International Edition, 2020, 59, 3678-3684.	13.8	196
27	A highly permeable graphene oxide membrane with fast and selective transport nanochannels for efficient carbon capture. Energy and Environmental Science, 2016, 9, 3107-3112.	30.8	192
28	Tubular g ₃ N ₄ Isotype Heterojunction: Enhanced Visibleâ€Light Photocatalytic Activity through Cooperative Manipulation of Oriented Electron and Hole Transfer. Small, 2016, 12, 4093-4101.	10.0	191
29	Microporous framework membranes for precise molecule/ion separations. Chemical Society Reviews, 2021, 50, 986-1029.	38.1	191
30	Antifouling, High-Flux Nanofiltration Membranes Enabled by Dual Functional Polydopamine. ACS Applied Materials & Interfaces, 2014, 6, 5548-5557.	8.0	189
31	Improved Antifouling Property of PES Ultrafiltration Membranes Using Additive of Silicaâ`'PVP Nanocomposite. Industrial & Engineering Chemistry Research, 2010, 49, 790-796.	3.7	187
32	2D Heterostructure Membranes with Sunlightâ€Driven Selfâ€Cleaning Ability for Highly Efficient Oil–Water Separation. Advanced Functional Materials, 2018, 28, 1706545.	14.9	182
33	Mixed matrix membranes comprising polymers of intrinsic microporosity and covalent organic framework for gas separation. Journal of Membrane Science, 2017, 528, 273-283.	8.2	177
34	Pervaporation performance comparison of hybrid membranes filled with two-dimensional ZIF-L nanosheets and zero-dimensional ZIF-8 nanoparticles. Journal of Membrane Science, 2017, 523, 185-196.	8.2	176
35	Biomimetic and bioinspired membranes: Preparation and application. Progress in Polymer Science, 2014, 39, 1668-1720.	24.7	174
36	Hybrid membranes for pervaporation separations. Journal of Membrane Science, 2017, 541, 329-346.	8.2	174

ZHONGYI JIANG

#	Article	IF	CITATIONS
37	Covalent organic framework-modulated interfacial polymerization for ultrathin desalination membranes. Journal of Materials Chemistry A, 2019, 7, 25641-25649.	10.3	173
38	Enhanced Proton Conductivity of Nafion Hybrid Membrane under Different Humidities by Incorporating Metal–Organic Frameworks With High Phytic Acid Loading. ACS Applied Materials & Interfaces, 2014, 6, 9799-9807.	8.0	172
39	Organic molecular sieve membranes for chemical separations. Chemical Society Reviews, 2021, 50, 5468-5516.	38.1	170
40	Engineering a Robust, Versatile Amphiphilic Membrane Surface Through Forced Surface Segregation for Ultralow Fluxâ€Đecline. Advanced Functional Materials, 2011, 21, 191-198.	14.9	169
41	Bioinspired preparation of polydopamine microcapsule for multienzyme system construction. Green Chemistry, 2011, 13, 300-306.	9.0	168
42	Thin film nanocomposite membranes incorporated with graphene quantum dots for high flux and antifouling property. Journal of Membrane Science, 2018, 553, 17-24.	8.2	166
43	g-C ₃ N ₄ @α-Fe ₂ O ₃ /C Photocatalysts: Synergistically Intensified Charge Generation and Charge Transfer for NADH Regeneration. ACS Catalysis, 2018, 8, 5664-5674.	11.2	165
44	Ultrathin and Stable Active Layer of Dense Composite Membrane Enabled by Poly(dopamine). Langmuir, 2009, 25, 7368-7374.	3.5	163
45	Efficient Wastewater Treatment by Membranes through Constructing Tunable Antifouling Membrane Surfaces. Environmental Science & Technology, 2011, 45, 6545-6552.	10.0	162
46	Enhanced Interfacial Interaction and CO ₂ Separation Performance of Mixed Matrix Membrane by Incorporating Polyethylenimine-Decorated Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2015, 7, 1065-1077.	8.0	162
47	Solid–Vapor Interface Engineered Covalent Organic Framework Membranes for Molecular Separation. Journal of the American Chemical Society, 2020, 142, 13450-13458.	13.7	161
48	Enhancing the CO ₂ separation performance of composite membranes by the incorporation of amino acid-functionalized graphene oxide. Journal of Materials Chemistry A, 2015, 3, 6629-6641.	10.3	152
49	Engineering amphiphilic membrane surfaces based on PEO and PDMS segments for improved antifouling performances. Journal of Membrane Science, 2014, 450, 111-123.	8.2	148
50	Self-assembled MOF membranes with underwater superoleophobicity for oil/water separation. Journal of Membrane Science, 2018, 566, 268-277.	8.2	143
51	Graphitic carbon nitride-based nanocomposites as visible-light driven photocatalysts for environmental purification. Environmental Science: Nano, 2017, 4, 1455-1469.	4.3	142
52	Green coating by coordination of tannic acid and iron ions for antioxidant nanofiltration membranes. RSC Advances, 2015, 5, 107777-107784.	3.6	141
53	Bioinspired construction of multi-enzyme catalytic systems. Chemical Society Reviews, 2018, 47, 4295-4313.	38.1	139
54	Enhancement of Proton Conduction at Low Humidity by Incorporating Imidazole Microcapsules into Polymer Electrolyte Membranes. Advanced Functional Materials, 2012, 22, 4539-4546.	14.9	135

#	Article	IF	CITATIONS
55	Nanoporous ZIF-67 embedded polymers of intrinsic microporosity membranes with enhanced gas separation performance. Journal of Membrane Science, 2018, 548, 309-318.	8.2	130
56	De Novo Design of Covalent Organic Framework Membranes toward Ultrafast Anion Transport. Advanced Materials, 2020, 32, e2001284.	21.0	130
57	Grafting perfluoroalkyl groups onto polyacrylonitrile membrane surface for improved fouling release property. Journal of Membrane Science, 2012, 415-416, 824-834.	8.2	129
58	Fabricating graphene oxide-based ultrathin hybrid membrane for pervaporation dehydration via layer-by-layer self-assembly driven by multiple interactions. Journal of Membrane Science, 2015, 487, 162-172.	8.2	128
59	Fabrication of electro-neutral nanofiltration membranes at neutral pH with antifouling surface via interfacial polymerization from a novel zwitterionic amine monomer. Journal of Membrane Science, 2016, 503, 101-109.	8.2	126
60	Ultrafast seawater desalination with covalent organic framework membranes. Nature Sustainability, 2022, 5, 518-526.	23.7	126
61	Diffusion behavior of benzene/cyclohexane molecules in poly(vinyl alcohol)-graphite hybrid membranes by molecular dynamics simulation. Chemical Engineering Science, 2007, 62, 703-710.	3.8	121
62	Fabrication of composite nanofiltration membrane by incorporating attapulgite nanorods during interfacial polymerization for high water flux and antifouling property. Journal of Membrane Science, 2017, 544, 79-87.	8.2	121
63	Graphene Oxide Membranes with Heterogeneous Nanodomains for Efficient CO ₂ Separations. Angewandte Chemie - International Edition, 2017, 56, 14246-14251.	13.8	121
64	Bioinspired Approach to Multienzyme Cascade System Construction for Efficient Carbon Dioxide Reduction. ACS Catalysis, 2014, 4, 962-972.	11.2	120
65	Efficient CO2 capture by humidified polymer electrolyte membranes with tunable water state. Energy and Environmental Science, 2014, 7, 1489.	30.8	119
66	Effect of zeolites on chitosan/zeolite hybrid membranes for direct methanol fuel cell. Journal of Power Sources, 2008, 178, 9-19.	7.8	117
67	Surface-modified Y zeolite-filled chitosan membrane for direct methanol fuel cell. Journal of Power Sources, 2007, 173, 842-852.	7.8	114
68	Sulfonated poly(ether ether ketone)-based hybrid membranes containing graphene oxide with acid-base pairs for direct methanol fuel cells. Electrochimica Acta, 2016, 203, 178-188.	5.2	113
69	Constructing efficient ion nanochannels in alkaline anion exchange membranes by the in situ assembly of a poly(ionic liquid) in metal–organic frameworks. Journal of Materials Chemistry A, 2016, 4, 2340-2348.	10.3	113
70	Incorporating Zwitterionic Graphene Oxides into Sodium Alginate Membrane for Efficient Water/Alcohol Separation. ACS Applied Materials & Interfaces, 2016, 8, 2097-2103.	8.0	113
71	<i>In situ</i> construction of hydrazone-linked COF-based core–shell hetero-frameworks for enhanced photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2020, 8, 7724-7732. 	10.3	108
72	Highly water-permeable and stable hybrid membrane with asymmetric covalent organic framework distribution. Journal of Membrane Science, 2016, 520, 583-595.	8.2	107

#	Article	IF	CITATIONS
73	Enhancing the permeation flux and antifouling performance of polyamide nanofiltration membrane by incorporation of PEG-POSS nanoparticles. Journal of Membrane Science, 2017, 540, 454-463.	8.2	107
74	Membraneâ€Based Olefin/Paraffin Separations. Advanced Science, 2020, 7, 2001398.	11.2	105
75	Metal-coordinated sub-10 nm membranes for water purification. Nature Communications, 2019, 10, 4160.	12.8	104
76	Enhanced gas separation performance of mixed matrix membranes from graphitic carbon nitride nanosheets and polymers of intrinsic microporosity. Journal of Membrane Science, 2016, 514, 15-24.	8.2	103
77	Functionally graded membranes from nanoporous covalent organic frameworks for highly selective water permeation. Journal of Materials Chemistry A, 2018, 6, 583-591.	10.3	103
78	Preparation of Protamine–Titania Microcapsules Through Synergy Between Layerâ€byâ€Layer Assembly and Biomimetic Mineralization. Advanced Functional Materials, 2009, 19, 150-156.	14.9	102
79	Facile Construction of Multicompartment Multienzyme System through Layer-by-Layer Self-Assembly and Biomimetic Mineralization. ACS Applied Materials & Interfaces, 2011, 3, 881-889.	8.0	102
80	Hierarchically engineered membrane surfaces with superior antifouling and self-cleaning properties. Journal of Membrane Science, 2013, 441, 93-101.	8.2	102
81	Enhanced proton conductivity of Nafion composite membrane by incorporating phosphoric acid-loaded covalent organic framework. Journal of Power Sources, 2016, 332, 265-273.	7.8	102
82	Facilitated transport membranes by incorporating graphene nanosheets with high zinc ion loading for enhanced CO2 separation. Journal of Membrane Science, 2017, 522, 351-362.	8.2	102
83	Ion Selective Covalent Organic Framework Enabling Enhanced Electrochemical Performance of Lithium–Sulfur Batteries. Nano Letters, 2021, 21, 2997-3006.	9.1	102
84	Bioinspired fabrication of high performance composite membranes with ultrathin defect-free skin layer. Journal of Membrane Science, 2009, 341, 279-285.	8.2	97
85	Tunable Nanochannels along Graphene Oxide/Polymer Core–Shell Nanosheets to Enhance Proton Conductivity. Advanced Functional Materials, 2015, 25, 7502-7511.	14.9	97
86	Improving Permeation and Antifouling Performance of Polyamide Nanofiltration Membranes through the Incorporation of Arginine. ACS Applied Materials & Interfaces, 2017, 9, 13577-13586.	8.0	97
87	Enhanced Water Retention by Using Polymeric Microcapsules to Confer High Proton Conductivity on Membranes at Low Humidity. Advanced Functional Materials, 2011, 21, 971-978.	14.9	96
88	Antifouling, high-flux oil/water separation carbon nanotube membranes by polymer-mediated surface charging and hydrophilization. Journal of Membrane Science, 2017, 542, 254-263.	8.2	96
89	Direct growth of covalent organic framework nanofiltration membranes on modified porous substrates for dyes separation. Separation and Purification Technology, 2019, 215, 582-589.	7.9	95
90	Graphene quantum dot engineered ultrathin loose polyamide nanofilms for high-performance nanofiltration. Journal of Materials Chemistry A, 2020, 8, 23930-23938.	10.3	95

#	Article	IF	CITATIONS
91	Lithiation of covalent organic framework nanosheets facilitating lithium-ion transport in lithium-sulfur batteries. Energy Storage Materials, 2020, 29, 207-215.	18.0	93
92	Embedding dopamine nanoaggregates into a poly(dimethylsiloxane) membrane to confer controlled interactions and free volume for enhanced separation performance. Journal of Materials Chemistry A, 2013, 1, 3713.	10.3	90
93	Channel-facilitated molecule and ion transport across polymer composite membranes. Chemical Society Reviews, 2017, 46, 6725-6745.	38.1	90
94	Artificial Thylakoid for the Coordinated Photoenzymatic Reduction of Carbon Dioxide. ACS Catalysis, 2019, 9, 3913-3925.	11.2	89
95	Multifunctional covalent organic framework (COF)-Based mixed matrix membranes for enhanced CO2 separation. Journal of Membrane Science, 2021, 618, 118693.	8.2	88
96	Proton conducting CS/P(AA-AMPS) membrane with reduced methanol permeability for DMFCs. Journal of Power Sources, 2008, 180, 143-153.	7.8	87
97	Zeolite beta-filled chitosan membrane with low methanol permeability for direct methanol fuel cell. Journal of Power Sources, 2008, 183, 454-463.	7.8	87
98	Preparation of ultrathin, robust membranes through reactive layer-by-layer (LbL) assembly for pervaporation dehydration. Journal of Membrane Science, 2017, 537, 229-238.	8.2	87
99	Elucidating Ultrafast Molecular Permeation through Wellâ€Defined 2D Nanochannels of Lamellar Membranes. Angewandte Chemie - International Edition, 2019, 58, 18524-18529.	13.8	87
100	Polydopamine-modulated covalent organic framework membranes for molecular separation. Journal of Materials Chemistry A, 2019, 7, 18063-18071.	10.3	86
101	Improved antifouling properties of polyethersulfone membrane by blending the amphiphilic surface modifier with crosslinked hydrophobic segments. Journal of Membrane Science, 2015, 486, 195-206.	8.2	85
102	Fabrication of antifouling polymer–inorganic hybrid membranes through the synergy of biomimetic mineralization and nonsolvent induced phase separation. Journal of Materials Chemistry A, 2015, 3, 7287-7295.	10.3	84
103	Coordination-enabled synergistic surface segregation for fabrication of multi-defense mechanism membranes. Journal of Materials Chemistry A, 2015, 3, 3325-3331.	10.3	83
104	Bioinspired Ultrastrong Solid Electrolytes with Fast Proton Conduction along 2D Channels. Advanced Materials, 2017, 29, 1605898.	21.0	81
105	Scalable Fabrication of Crystalline COF Membranes from Amorphous Polymeric Membranes. Angewandte Chemie - International Edition, 2021, 60, 18051-18058.	13.8	81
106	Green and Efficient Conversion of CO ₂ to Methanol by Biomimetic Coimmobilization of Three Dehydrogenases in Protamine-Templated Titania. Industrial & Engineering Chemistry Research, 2009, 48, 4210-4215.	3.7	80
107	Proton exchange nanohybrid membranes with high phosphotungstic acid loading within metal-organic frameworks for PEMFC applications. Electrochimica Acta, 2017, 240, 186-194.	5.2	80
108	Assembling covalent organic framework membranes with superior ion exchange capacity. Nature Communications, 2022, 13, 1020.	12.8	79

#	Article	IF	CITATIONS
109	Synthesis and characterization of bamboo-like CdS/TiO2 nanotubes composites with enhanced visible-light photocatalytic activity. Journal of Nanoparticle Research, 2008, 10, 729-736.	1.9	77
110	Manipulating the interfacial interactions of composite membranes via a mussel-inspired approach for enhanced separation selectivity. Journal of Materials Chemistry A, 2015, 3, 19980-19988.	10.3	76
111	Bioinspired Graphene Oxide Membranes with Dual Transport Mechanisms for Precise Molecular Separation. Advanced Functional Materials, 2019, 29, 1905229.	14.9	75
112	Independent control of water retention and acid–base pairing through double-shelled microcapsules to confer membranes with enhanced proton conduction under low humidity. Journal of Materials Chemistry A, 2013, 1, 2267-2277.	10.3	74
113	Enhanced CO ₂ Permeability of Membranes by Incorporating Polyzwitterion@CNT Composite Particles into Polyimide Matrix. ACS Applied Materials & Interfaces, 2014, 6, 13051-13060.	8.0	73
114	Heterobimetallic metal–organic framework nanocages as highly efficient catalysts for CO ₂ conversion under mild conditions. Journal of Materials Chemistry A, 2018, 6, 2964-2973.	10.3	73
115	Highly water-selective membranes based on hollow covalent organic frameworks with fast transport pathways. Journal of Membrane Science, 2018, 565, 331-341.	8.2	73
116	Precise nanopore tuning for a high-throughput desalination membrane <i>via</i> co-deposition of dopamine and multifunctional POSS. Journal of Materials Chemistry A, 2018, 6, 13191-13202.	10.3	73
117	Photoregeneration of NADH Using Carbon-Containing TiO2. Industrial & Engineering Chemistry Research, 2005, 44, 4165-4170.	3.7	72
118	Synthesis of anatase titania-carbon nanotubes nanocomposites with enhanced photocatalytic activity through a nanocoating-hydrothermal process. Journal of Nanoparticle Research, 2007, 9, 1087-1096.	1.9	72
119	Effects of Coagulation Bath Temperature on the Separation Performance and Antifouling Property of Poly(ether sulfone) Ultrafiltration Membranes. Industrial & Engineering Chemistry Research, 2010, 49, 4858-4864.	3.7	72
120	Mixed Nanosheet Membranes Assembled from Chemically Grafted Graphene Oxide and Covalent Organic Frameworks for Ultra-high Water Flux. ACS Applied Materials & Interfaces, 2019, 11, 28978-28986.	8.0	72
121	Facile Preparation of Robust Microcapsules by Manipulating Metal-Coordination Interaction between Biomineral Layer and Bioadhesive Layer. ACS Applied Materials & Interfaces, 2011, 3, 597-605.	8.0	71
122	Enhanced pervaporation performance of MIL-101 (Cr) filled polysiloxane hybrid membranes in desulfurization of model gasoline. Chemical Engineering Science, 2015, 135, 479-488.	3.8	70
123	Fabrication of Nafion/zwitterion-functionalized covalent organic framework composite membranes with improved proton conductivity. Journal of Membrane Science, 2018, 568, 1-9.	8.2	70
124	Nitrogenase-inspired mixed-valence MIL-53(FeII/FeIII) for photocatalytic nitrogen fixation. Chemical Engineering Journal, 2020, 400, 125929.	12.7	70
125	Surface-modified zeolite-filled chitosan membranes for pervaporation dehydration of ethanol. Applied Surface Science, 2008, 254, 5367-5374.	6.1	69
126	Graphene quantum dots engineered nanofiltration membrane for ultrafast molecular separation. Journal of Membrane Science, 2019, 572, 504-511.	8.2	69

#	Article	IF	CITATIONS
127	Facilitating Proton Transport in Nafion-Based Membranes at Low Humidity by Incorporating Multifunctional Graphene Oxide Nanosheets. ACS Applied Materials & Interfaces, 2017, 9, 27676-27687.	8.0	67
128	Creation of active-passive integrated mechanisms on membrane surfaces for superior antifouling and antibacterial properties. Journal of Membrane Science, 2018, 548, 621-631.	8.2	67
129	Electrostatic-modulated interfacial polymerization toward ultra-permselective nanofiltration membranes. IScience, 2021, 24, 102369.	4.1	67
130	Capsules-in-bead scaffold: a rational architecture for spatially separated multienzyme cascade system. Journal of Materials Chemistry, 2009, 19, 9068.	6.7	66
131	Engineering amphiphilic nanofiltration membrane surfaces with a multi-defense mechanism for improved antifouling performances. Journal of Materials Chemistry A, 2016, 4, 7892-7902.	10.3	66
132	Polydimethyl siloxane–graphene nanosheets hybrid membranes with enhanced pervaporative desulfurization performance. Journal of Membrane Science, 2015, 487, 152-161.	8.2	65
133	Covalent functionalization of multi-walled carbon nanotubes by lipase. Journal of Nanoparticle Research, 2007, 9, 1205-1210.	1.9	64
134	Facile Method To Prepare Microcapsules Inspired by Polyphenol Chemistry for Efficient Enzyme Immobilization. ACS Applied Materials & Interfaces, 2015, 7, 19570-19578.	8.0	64
135	Fabrication of bimodal-pore SrTiO3 microspheres with excellent photocatalytic performance for Cr(VI) reduction under simulated sunlight. Journal of Hazardous Materials, 2016, 312, 45-54.	12.4	64
136	Boron Nitride Membranes with a Distinct Nanoconfinement Effect for Efficient Ethylene/Ethane Separation. Angewandte Chemie - International Edition, 2019, 58, 13969-13975.	13.8	64
137	Engineering Covalent Organic Framework Membranes. Accounts of Materials Research, 2021, 2, 630-643.	11.7	64
138	Nitrogenase-inspired bimetallic metal organic frameworks for visible-light-driven nitrogen fixation. Applied Catalysis B: Environmental, 2021, 292, 120167.	20.2	64
139	Poly(vinyl alcohol)/chitosan blend membranes for pervaporation of benzene/cyclohexane mixtures. Journal of Applied Polymer Science, 2006, 101, 167-173.	2.6	63
140	Fabrication of hybrid membranes by incorporating acid–base pair functionalized hollow mesoporous silica for enhanced proton conductivity. Journal of Materials Chemistry A, 2015, 3, 16079-16088.	10.3	63
141	Synergy of the mechanical, antifouling and permeation properties of a carbon nanotube nanohybrid membrane for efficient oil/water separation. Nanoscale, 2017, 9, 7508-7518.	5.6	63
142	Tight Covalent Organic Framework Membranes for Efficient Anion Transport via Molecular Precursor Engineering. Angewandte Chemie - International Edition, 2021, 60, 17638-17646.	13.8	63
143	Preparation and properties of hybrid direct methanol fuel cell membranes by embedding organophosphorylated titania submicrospheres into a chitosan polymer matrix. Journal of Power Sources, 2010, 195, 4104-4113.	7.8	62
144	Covalent Organic Framework Nanosheets as Reactive Fillers To Fabricate Free-Standing Polyamide Membranes for Efficient Desalination. ACS Applied Materials & Interfaces, 2020, 12, 27777-27785.	8.0	62

#	Article	IF	CITATIONS
145	Embedding Ag + @COFs within Pebax membrane to confer mass transport channels and facilitated transport sites for elevated desulfurization performance. Journal of Membrane Science, 2018, 552, 1-12.	8.2	61
146	Boosting Nitrogen Activation via Bimetallic Organic Frameworks for Photocatalytic Ammonia Synthesis. ACS Catalysis, 2021, 11, 9986-9995.	11.2	61
147	Enzyme-photo-coupled catalytic systems. Chemical Society Reviews, 2021, 50, 13449-13466.	38.1	61
148	Sorbitol-plasticized chitosan/zeolite hybrid membrane for direct methanol fuel cell. Journal of Power Sources, 2007, 172, 604-612.	7.8	60
149	Enhanced CO2 selectivities by incorporating CO2-philic PEG-POSS into polymers of intrinsic microporosity membrane. Journal of Membrane Science, 2017, 543, 69-78.	8.2	60
150	Heterostructured filler in mixed matrix membranes to coordinate physical and chemical selectivities for enhanced CO2 separation. Journal of Membrane Science, 2018, 567, 272-280.	8.2	60
151	Synergy of Electron Transfer and Electron Utilization via Metal–Organic Frameworks as an Electron Buffer Tank for Nicotinamide Regeneration. ACS Catalysis, 2020, 10, 2894-2905.	11.2	60
152	Fabrication of antimicrobial bacterial cellulose–Ag/AgCl nanocomposite using bacteria as versatile biofactory. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	59
153	Asymmetric Aerogel Membranes with Ultrafast Water Permeation for the Separation of Oil-in-Water Emulsion. ACS Applied Materials & Interfaces, 2018, 10, 26546-26554.	8.0	59
154	BrÃ,nsted acid mediated covalent organic framework membranes for efficient molecular separation. Journal of Materials Chemistry A, 2019, 7, 20317-20324.	10.3	58
155	Preparation of anion exchange membrane with enhanced conductivity and alkaline stability by incorporating ionic liquid modified carbon nanotubes. Journal of Membrane Science, 2019, 573, 1-10.	8.2	58
156	Ultrathin Membranes for Separations: A New Era Driven by Advanced Nanotechnology. Advanced Materials, 2022, 34, e2108457.	21.0	58
157	Bioadhesion-inspired polymer–inorganic nanohybrid membranes with enhanced CO2 capture properties. Journal of Materials Chemistry, 2012, 22, 19617.	6.7	57
158	A MOF Glass Membrane for Gas Separation. Angewandte Chemie, 2020, 132, 4395-4399.	2.0	57
159	Constructing inorganic shell onto LBL microcapsule through biomimetic mineralization: A novel and facile method for fabrication of microbioreactors. Soft Matter, 2010, 6, 542-550.	2.7	56
160	Elevated pervaporation performance of polysiloxane membrane using channels and active sites of metal organic framework CuBTC. Journal of Membrane Science, 2015, 481, 73-81.	8.2	56
161	Lamellar porous vermiculite membranes for boosting nanofluidic osmotic energy conversion. Journal of Materials Chemistry A, 2021, 9, 14576-14581.	10.3	56
162	COF membranes with uniform and exchangeable facilitated transport carriers for efficient carbon capture. Journal of Materials Chemistry A, 2021, 9, 12636-12643.	10.3	55

#	Article	IF	CITATIONS
163	Enhanced membrane antifouling and separation performance by manipulating phase separation and surface segregation behaviors through incorporating versatile modifier. Journal of Membrane Science, 2016, 499, 406-417.	8.2	54
164	Reduced graphene oxide aerogel membranes fabricated through hydrogen bond mediation for highly efficient oil/water separation. Journal of Materials Chemistry A, 2019, 7, 11468-11477.	10.3	54
165	Improved antifouling property of PVDF membranes by incorporating an amphiphilic block-like copolymer for oil/water emulsion separation. RSC Advances, 2015, 5, 21349-21359.	3.6	53
166	Amino-functionalized ZIF-7 embedded polymers of intrinsic microporosity membrane with enhanced selectivity for biogas upgrading. Journal of Membrane Science, 2020, 602, 117970.	8.2	53
167	Modification of covalent organic frameworks with dual functions ionic liquids for membrane-based biogas upgrading. Journal of Membrane Science, 2020, 600, 117841.	8.2	53
168	Synergy of Pickering Emulsion and Solâ€Gel Process for the Construction of an Efficient, Recyclable Enzyme Cascade System. Advanced Functional Materials, 2013, 23, 1450-1458.	14.9	52
169	Fabrication of chitosan/zwitterion functionalized titania–silica hybrid membranes with improved proton conductivity. Journal of Membrane Science, 2014, 469, 355-363.	8.2	52
170	An Interfaceâ€Bridged Organic–Inorganic Layer that Suppresses Dendrite Formation and Side Reactions for Ultra‣ong‣ife Aqueous Zinc Metal Anodes. Angewandte Chemie, 2020, 132, 16737-16744.	2.0	52
171	Removing Cr (VI) in water via visible-light photocatalytic reduction over Cr-doped SrTiO3 nanoplates. Chemosphere, 2019, 215, 586-595.	8.2	51
172	Mixed-dimensional membranes: chemistry and structure–property relationships. Chemical Society Reviews, 2021, 50, 11747-11765.	38.1	51
173	Oil–Water–Oil Triphase Synthesis of Ionic Covalent Organic Framework Nanosheets. Angewandte Chemie - International Edition, 2021, 60, 27078-27085.	13.8	51
174	A facile method to synthesize nitrogen and fluorine co-doped TiO2 nanoparticles by pyrolysis of (NH4)2TiF6. Journal of Nanoparticle Research, 2009, 11, 303-313.	1.9	50
175	Enhanced pervaporative performance of hybrid membranes containing Fe3O4@CNT nanofillers. Journal of Membrane Science, 2015, 492, 230-241.	8.2	50
176	Control of Edge/in-Plane Interactions toward Robust, Highly Proton Conductive Graphene Oxide Membranes. ACS Nano, 2019, 13, 10366-10375.	14.6	50
177	In situ construction of chemically heterogeneous hydrogel surfaces toward near-zero-flux-decline membranes for oil-water separation. Journal of Membrane Science, 2020, 594, 117455.	8.2	50
178	Improved Antifouling Properties of Poly(vinyl chloride) Ultrafiltration Membranes via Surface Zwitterionicalization. Industrial & Engineering Chemistry Research, 2014, 53, 14046-14055.	3.7	49
179	A highly proton-conducting, methanol-blocking Nafion composite membrane enabled by surface-coating crosslinked sulfonated graphene oxide. Chemical Communications, 2016, 52, 2173-2176.	4.1	49
180	Coordination between Electron Transfer and Molecule Diffusion through a Bioinspired Amorphous Titania Nanoshell for Photocatalytic Nicotinamide Cofactor Regeneration. ACS Catalysis, 2019, 9, 11492-11501.	11.2	49

#	Article	IF	CITATIONS
181	Phosphorus Quantum Dots-Facilitated Enrichment of Electrons on g-C ₃ N ₄ Hollow Tubes for Visible-Light-Driven Nicotinamide Adenine Dinucleotide Regeneration. ACS Sustainable Chemistry and Engineering, 2019, 7, 285-295.	6.7	49
182	High Pervaporation Dehydration Performance of the Composite Membrane with an Ultrathin Alginate/Poly(acrylic acid)–Fe ₃ 0 ₄ Active Layer. Industrial & Engineering Chemistry Research, 2014, 53, 1606-1616.	3.7	48
183	Zwitterionic Microcapsules as Water Reservoirs and Proton Carriers within a Nafion Membrane To Confer High Proton Conductivity under Low Humidity. ACS Applied Materials & Interfaces, 2014, 6, 5362-5366.	8.0	48
184	Coordination-Enabled One-Step Assembly of Ultrathin, Hybrid Microcapsules with Weak pH-Response. ACS Applied Materials & Interfaces, 2015, 7, 9178-9184.	8.0	48
185	Graphene Oxideâ€Based Solid Electrolytes with 3D Prepercolating Pathways for Efficient Proton Transport. Advanced Functional Materials, 2018, 28, 1804944.	14.9	48
186	Ultrapermeable graphene oxide membranes with tunable interlayer distances <i>via</i> vein-like supramolecular dendrimers. Journal of Materials Chemistry A, 2019, 7, 18642-18652.	10.3	48
187	High-efficiency water-selective membranes from the solution-diffusion synergy of calcium alginate layer and covalent organic framework (COF) layer. Journal of Membrane Science, 2019, 572, 557-566.	8.2	48
188	Unraveling and Manipulating of NADH Oxidation by Photogenerated Holes. ACS Catalysis, 2020, 10, 4967-4972.	11.2	48
189	Homointerface covalent organic framework membranes for efficient desalination. Journal of Materials Chemistry A, 2021, 9, 23178-23187.	10.3	48
190	Graphene oxide membranes with fixed interlayer distance via dual crosslinkers for efficient liquid molecular separations. Journal of Membrane Science, 2020, 595, 117486.	8.2	47
191	Ultrathin polyamide nanofiltration membranes with tunable chargeability for multivalent cation removal. Journal of Membrane Science, 2022, 642, 119971.	8.2	47
192	Modulating interfacial polymerization with phytate as aqueous-phase additive for highly-permselective nanofiltration membranes. Journal of Membrane Science, 2022, 657, 120673.	8.2	47
193	Enhanced Proton Conductivity of Sulfonated Polysulfone Membranes under Low Humidity via the Incorporation of Multifunctional Graphene Oxide. ACS Applied Nano Materials, 2019, 2, 4734-4743.	5.0	46
194	Superwetting membranes: from controllable constructions to efficient separations. Journal of Materials Chemistry A, 2021, 9, 1395-1417.	10.3	46
195	Constructing Quantum Dots@Flake Graphitic Carbon Nitride Isotype Heterojunctions for Enhanced Visible-Light-Driven NADH Regeneration and Enzymatic Hydrogenation. Industrial & Engineering Chemistry Research, 2017, 56, 6247-6255.	3.7	45
196	Molecular simulation on penetrants diffusion at the interface region of organic–inorganic hybrid membranes. Chemical Engineering Science, 2008, 63, 1072-1080.	3.8	44
197	Enhanced pervaporation performance of poly (dimethyl siloxane) membrane by incorporating titania microspheres with high silver ion loading. Journal of Membrane Science, 2011, 378, 382-392.	8.2	44
198	Bimetallic metal-organic frameworks nanocages as multi-functional fillers for water-selective membranes. Journal of Membrane Science, 2018, 545, 19-28.	8.2	44

#	Article	IF	CITATIONS
199	High-flux nanofiltration membranes prepared with β-cyclodextrin and graphene quantum dots. Journal of Membrane Science, 2020, 612, 118465.	8.2	44
200	Amino-functionalized POSS nanocage intercalated graphene oxide membranes for efficient biogas upgrading. Journal of Membrane Science, 2020, 596, 117733.	8.2	43
201	Ultrathin heterostructured covalent organic framework membranes with interfacial molecular sieving capacity for fast water-selective permeation. Journal of Materials Chemistry A, 2020, 8, 19328-19336.	10.3	43
202	Nanocomposite membranes based on alginate matrix and high loading of pegylated POSS for pervaporation dehydration. Journal of Membrane Science, 2017, 538, 86-95.	8.2	42
203	Constructing facilitated transport pathway in hybrid membranes by incorporating MoS2 nanosheets. Journal of Membrane Science, 2018, 545, 29-37.	8.2	42
204	Assembling covalent organic framework membranes via phase switching for ultrafast molecular transport. Nature Communications, 2022, 13, .	12.8	42
205	Molecular Dynamics Simulation of Diffusion Behavior of Benzene/Water in PDMS-Calix[4]arene Hybrid Pervaporation Membranes. Industrial & Engineering Chemistry Research, 2008, 47, 4440-4447.	3.7	41
206	Porous organosilicon nanotubes in pebax-based mixed-matrix membranes for biogas purification. Journal of Membrane Science, 2019, 573, 301-308.	8.2	41
207	2D layered double hydroxide membranes with intrinsic breathing effect toward CO2 for efficient carbon capture. Journal of Membrane Science, 2020, 598, 117663.	8.2	41
208	Coordination polymer nanocapsules prepared using metal–organic framework templates for pH-responsive drug delivery. Nanotechnology, 2017, 28, 275601.	2.6	40
209	Thermal-facilitated interfacial polymerization toward high-performance polyester desalination membrane. Journal of Materials Chemistry A, 2021, 9, 8470-8479.	10.3	40
210	Photocatalytic properties of porous C-doped TiO2 and Ag/C-doped TiO2 nanomaterials by eggshell membrane templating. Journal of Nanoparticle Research, 2009, 11, 375-384.	1.9	39
211	CaCO3/Tetraethylenepentamine–Graphene Hollow Microspheres as Biocompatible Bone Drug Carriers for Controlled Release. ACS Applied Materials & Interfaces, 2016, 8, 30027-30036.	8.0	39
212	Combined Intrinsic and Extrinsic Proton Conduction in Robust Covalent Organic Frameworks for Hydrogen Fuel Cell Applications. Angewandte Chemie, 2020, 132, 3707-3713.	2.0	39
213	MOF–COF "Alloy―Membranes for Efficient Propylene/Propane Separation. Advanced Materials, 2022, 34, e2201423.	21.0	39
214	Enhancing the permeation selectivity of sodium alginate membrane by incorporating attapulgite nanorods for ethanol dehydration. RSC Advances, 2016, 6, 14381-14392.	3.6	38
215	Enhanced desulfurization performance and stability of Pebax membrane by incorporating Cu+ and Fe2+ ions co-impregnated carbon nitride. Journal of Membrane Science, 2017, 526, 94-105.	8.2	38
216	A highly conductive and robust anion conductor obtained <i>via</i> synergistic manipulation in intra- and inter-laminate of layered double hydroxide nanosheets. Journal of Materials Chemistry A, 2018, 6, 10277-10285.	10.3	38

#	Article	IF	CITATIONS
217	Metal–Organic Framework-Intercalated Graphene Oxide Membranes for Highly Efficient Oil/Water Separation. Industrial & Engineering Chemistry Research, 2020, 59, 16762-16771.	3.7	38
218	Exfoliation-free layered double hydroxides laminates intercalated with amino acids for enhanced CO2 separation of mixed matrix membrane. Journal of Membrane Science, 2021, 618, 118691.	8.2	38
219	Chitosan membranes filled by GPTMS-modified zeolite beta particles with low methanol permeability for DMFC. Chemical Engineering and Processing: Process Intensification, 2010, 49, 278-285.	3.6	37
220	Multi-stepwise charge transfer <i>via</i> MOF@MOF/TiO ₂ dual-heterojunction photocatalysts towards hydrogen evolution. Journal of Materials Chemistry A, 2022, 10, 9717-9725.	10.3	37
221	Biomimetic and bioinspired synthesis of titania and titania-based materials. RSC Advances, 2014, 4, 12388.	3.6	36
222	One-Pot Fabrication of g-C ₃ N ₄ /MWCNTs Nanocomposites with Superior Visible-Light Photocatalytic Performance. Industrial & Engineering Chemistry Research, 2019, 58, 3679-3687.	3.7	36
223	Enhanced desulfurization performance of PDMS membranes by incorporating silver decorated dopamine nanoparticles. Journal of Materials Chemistry A, 2014, 2, 12907.	10.3	35
224	Tuning the performance of CO2 separation membranes by incorporating multifunctional modified silica microspheres into polymer matrix. Journal of Membrane Science, 2016, 514, 73-85.	8.2	35
225	Synthesis of g-C ₃ N ₄ Nanosheet/TiO ₂ Heterojunctions Inspired by Bioadhesion and Biomineralization Mechanism. Industrial & Engineering Chemistry Research, 2019, 58, 5516-5525.	3.7	35
226	Photo-tailored heterocrystalline covalent organic framework membranes for organics separation. Nature Communications, 2022, 13, .	12.8	35
227	Multiple antifouling capacities of hybrid membranes derived from multifunctional titania nanoparticles. Journal of Membrane Science, 2015, 495, 226-234.	8.2	34
228	Comparison of facilitated transport behavior and separation properties of membranes with imidazole groups and zinc ions as CO2 carriers. Journal of Membrane Science, 2016, 505, 44-52.	8.2	34
229	Beetleâ€Inspired Assembly of Heterostructured Lamellar Membranes with Polymer Cluster–Patterned Surface for Enhanced Molecular Permeation. Advanced Functional Materials, 2019, 29, 1900819.	14.9	34
230	Metal Hydride-Embedded Titania Coating to Coordinate Electron Transfer and Enzyme Protection in Photo-enzymatic Catalysis. ACS Catalysis, 2021, 11, 476-483.	11.2	34
231	Hierarchical pore architectures from 2D covalent organic nanosheets for efficient water/alcohol separation. Journal of Membrane Science, 2018, 561, 79-88.	8.2	33
232	Incorporating arginine-FeIII complex into polyamide membranes for enhanced water permeance and antifouling performance. Journal of Membrane Science, 2020, 602, 117980.	8.2	33
233	Superhydrophobic Metal–Organic Framework Nanocoating Induced by Metal-Phenolic Networks for Oily Water Treatment. ACS Sustainable Chemistry and Engineering, 2020, 8, 1831-1839.	6.7	33
234	Hierarchically Porous and Water-Tolerant Metal–Organic Frameworks for Enzyme Encapsulation. Industrial & Engineering Chemistry Research, 2019, 58, 12835-12844.	3.7	32

#	Article	IF	CITATIONS
235	Three-dimensional covalent organic framework membrane for efficient proton conduction. Journal of Materials Chemistry A, 2021, 9, 17720-17723.	10.3	32
236	Hydrostable ZIF-8 layer on polyacrylonitrile membrane for efficient treatment of oilfield produced water. Chemical Engineering Journal, 2022, 434, 133513.	12.7	32
237	Charged Nanochannels in Covalent Organic Framework Membranes Enabling Efficient Ion Exclusion. ACS Nano, 2022, 16, 11781-11791.	14.6	32
238	Hybrid membranes with Cu(II) loaded metal organic frameworks for enhanced desulfurization performance. Separation and Purification Technology, 2019, 210, 258-267.	7.9	31
239	Ultrathin fluorinated self-cleaning membranes <i>via</i> coordination-driven metal-bridging assembly for water purification. Journal of Materials Chemistry A, 2020, 8, 4505-4514.	10.3	31
240	Incorporating covalent organic framework nanosheets into polyamide membranes for efficient desalination. Separation and Purification Technology, 2021, 274, 119046.	7.9	31
241	Optimizing the sulfonic groups of a polymer to coat the zinc anode for dendrite suppression. Chemical Communications, 2021, 57, 5326-5329.	4.1	30
242	Conferring efficient alcohol dehydration to covalent organic framework membranes via post-synthetic linker exchange. Journal of Membrane Science, 2021, 630, 119319.	8.2	30
243	Constructing dual-defense mechanisms on membrane surfaces by synergy of PFSA and SiO2 nanoparticles for persistent antifouling performance. Applied Surface Science, 2018, 440, 113-124.	6.1	29
244	Mussel-inspired construction of organic-inorganic interfacial nanochannels for ion/organic molecule selective permeation. Journal of Membrane Science, 2018, 555, 337-347.	8.2	29
245	Boron Nitride Membranes with a Distinct Nanoconfinement Effect for Efficient Ethylene/Ethane Separation. Angewandte Chemie, 2019, 131, 14107-14113.	2.0	29
246	Biomass@MOF-Derived Carbon Aerogels with a Hierarchically Structured Surface for Treating Organic Pollutants. Industrial & Engineering Chemistry Research, 2020, 59, 17529-17536.	3.7	29
247	Analogous Mixed Matrix Membranes with Selfâ€Assembled Interface Pathways. Angewandte Chemie - International Edition, 2021, 60, 5864-5870.	13.8	29
248	Mix-charged polyamide membranes via molecular hybridization for selective ionic nanofiltration. Journal of Membrane Science, 2022, 644, 120051.	8.2	29
249	Efficient ethylene/ethane separation through ionic liquid-confined covalent organic framework membranes. Journal of Materials Chemistry A, 2022, 10, 5420-5429.	10.3	29
250	Conferring Natural-Derived Porous Microspheres with Surface Multifunctionality through Facile Coordination-Enabled Self-Assembly Process. ACS Applied Materials & Interfaces, 2016, 8, 8076-8085.	8.0	28
251	One-pot fabrication of chitin-shellac composite microspheres for efficient enzyme immobilization. Journal of Biotechnology, 2018, 266, 1-8.	3.8	28
252	Membrane-based separation technologies: from polymeric materials to novel process: an outlook from China. Reviews in Chemical Engineering, 2019, 36, 67-105.	4.4	28

#	Article	IF	CITATIONS
253	Graphene oxide membranes with an ultra-large interlayer distance through vertically grown covalent organic framework nanosheets. Journal of Materials Chemistry A, 2019, 7, 25458-25466.	10.3	28
254	Mixed-Matrix Membranes with Covalent Triazine Framework Fillers in Polymers of Intrinsic Microporosity for CO ₂ Separations. Industrial & Engineering Chemistry Research, 2020, 59, 5296-5306.	3.7	28
255	Antifouling Membranes Prepared by a Solvent-Free Approach via Bulk Polymerization of 2-Hydroxyethyl Methacrylate. Industrial & Engineering Chemistry Research, 2013, 52, 13137-13145.	3.7	27
256	Highly swelling resistant membranes for model gasoline desulfurization. Journal of Membrane Science, 2016, 514, 440-449.	8.2	27
257	Construction of molecule-selective mixed matrix membranes with confined mass transfer structure. Chinese Journal of Chemical Engineering, 2017, 25, 1563-1580.	3.5	27
258	Mass transport mechanisms within pervaporation membranes. Frontiers of Chemical Science and Engineering, 2019, 13, 458-474.	4.4	27
259	Thylakoid Membrane-Inspired Capsules with Fortified Cofactor Shuttling for Enzyme-Photocoupled Catalysis. Journal of the American Chemical Society, 2022, 144, 4168-4177.	13.7	27
260	A facile metal ion pre-anchored strategy for fabrication of defect-free MOF membranes on polymeric substrates. Journal of Membrane Science, 2022, 650, 120419.	8.2	27
261	Desulfurization of model gasoline by bioinspired oleophilic nanocomposite membranes. Journal of Membrane Science, 2012, 415-416, 278-287.	8.2	26
262	Creation of hierarchical structures within membranes by incorporating mesoporous microcapsules for enhanced separation performance and stability. Journal of Materials Chemistry A, 2014, 2, 5267.	10.3	26
263	Enhanced dehydration performance of hybrid membranes by incorporating lanthanide-based MOFs. Journal of Membrane Science, 2018, 546, 31-40.	8.2	26
264	Enhanced carbon dioxide flux by catechol–Zn2+ synergistic manipulation of graphene oxide membranes. Chemical Engineering Science, 2019, 195, 230-238.	3.8	26
265	Weakly pressure-dependent molecular sieving of propylene/propane mixtures through mixed matrix membrane with ZIF-8 direct-through channels. Journal of Membrane Science, 2022, 648, 120366.	8.2	26
266	2D nanosheets seeding layer modulated covalent organic framework membranes for efficient desalination. Desalination, 2022, 532, 115753.	8.2	26
267	Preparation, morphology, and properties of conducting polyanilineâ€grafted multiwalled carbon nanotubes/epoxy composites. Journal of Applied Polymer Science, 2012, 125, E334.	2.6	25
268	Elucidating Ultrafast Molecular Permeation through Wellâ€Defined 2D Nanochannels of Lamellar Membranes. Angewandte Chemie, 2019, 131, 18695-18700.	2.0	25
269	Constructing channel-mediated facilitated transport membranes by incorporating covalent organic framework nanosheets with tunable microenvironments. Journal of Materials Chemistry A, 2019, 7, 9912-9923.	10.3	25
270	Reducing active layer thickness of polyamide composite membranes using a covalent organic framework interlayer in interfacial polymerization. Chinese Journal of Chemical Engineering, 2020, 28, 1039-1045.	3.5	25

#	Article	IF	CITATIONS
271	Concerted Chemoenzymatic Synthesis of α-Keto Acid through Compartmentalizing and Channeling of Metal–Organic Frameworks. ACS Catalysis, 2020, 10, 9664-9673.	11.2	25
272	Loosening ultrathin polyamide nanofilms through alkali hydrolysis for high-permselective nanofiltration. Journal of Membrane Science, 2021, 637, 119623.	8.2	25
273	Electrostatic enhanced surface segregation approach to self-cleaning and antifouling membranes for efficient molecular separation. Journal of Membrane Science, 2021, 638, 119689.	8.2	25
274	Ultrathin nanofiltration membrane assembled by polyethyleneimine-grafted graphene quantum dots. Journal of Membrane Science, 2022, 642, 119944.	8.2	25
275	Chitosan/Sulfonated Polyethersulfone–Polyethersulfone (CS/SPES-PES) Composite Membranes for Pervaporative Dehydration of Ethanol. Industrial & Engineering Chemistry Research, 2013, 52, 5772-5780.	3.7	24
276	One-pot synthesis of silica–titania binary nanoparticles with acid–base pairs via biomimetic mineralization to fabricate highly proton-conductive membranes. Journal of Materials Chemistry A, 2017, 5, 18585-18593.	10.3	24
277	Elevated performance of hybrid membranes by incorporating metal organic framework CuBTC for pervaporative desulfurization of gasoline. Chemical Engineering and Processing: Process Intensification, 2018, 123, 12-19.	3.6	24
278	Constructing interconnected ionic cluster network in polyelectrolyte membranes for enhanced CO2 permeation. Chemical Engineering Science, 2019, 199, 275-284.	3.8	24
279	Metal–Organic Nanogel with Sulfonated Three-Dimensional Continuous Channels as a Proton Conductor. ACS Applied Materials & Interfaces, 2020, 12, 19788-19796.	8.0	24
280	Intensifying Electron Utilization by Surface-Anchored Rh Complex for Enhanced Nicotinamide Cofactor Regeneration and Photoenzymatic CO ₂ Reduction. Research, 2021, 2021, 8175709.	5.7	24
281	Engineering multi-pathway graphene oxide membranes toward ultrafast water purification. Journal of Membrane Science, 2021, 638, 119706.	8.2	24
282	Synthesis and characterization of an organic soluble and conducting polyanilineâ€grafted multiwalled carbon nanotube core–shell nanocomposites by emulsion polymerization. Journal of Applied Polymer Science, 2010, 118, 2582-2591.	2.6	23
283	Immobilization of β-glucuronidase in lysozyme-induced biosilica particles to improve its stability. Frontiers of Chemical Science and Engineering, 2014, 8, 353-361.	4.4	23
284	Manipulating the multifunctionalities of polydopamine to prepare high-flux anti-biofouling composite nanofiltration membranes. RSC Advances, 2016, 6, 32863-32873.	3.6	23
285	Fabrication of three-dimensional porous La-doped SrTiO3 microspheres with enhanced visible light catalytic activity for Cr(VI) reduction. Frontiers of Chemical Science and Engineering, 2018, 12, 440-449.	4.4	23
286	Improved proton conduction of sulfonated poly (ether ether ketone) membrane by sulfonated covalent organic framework nanosheets. International Journal of Hydrogen Energy, 2021, 46, 26550-26559.	7.1	23
287	Performance comparison of immobilized enzyme on the titanate nanotube surfaces modified by poly(dopamine) and poly(norepinephrine). RSC Advances, 2015, 5, 42461-42467.	3.6	22
288	Layer-by-layer self-assembled nanocomposite membranes via bio-inspired mineralization for pervaporation dehydration. Journal of Membrane Science, 2019, 570-571, 44-52.	8.2	22

#	Article	IF	CITATIONS
289	Enhancing Proton Conductivity of Sulfonated Poly(ether ether ketone)-Based Membranes by Incorporating Phosphotungstic-Acid-Coupled Graphene Oxide. Industrial & Engineering Chemistry Research, 2021, 60, 4460-4470.	3.7	22
290	Anionic covalent organic framework engineered high-performance polyamide membrane for divalent anions removal. Journal of Membrane Science, 2022, 650, 120451.	8.2	22
291	Enhanced water retention and stable dynamic water behavior of sulfonated poly(ether ether ketone) membranes under low humidity by incorporating humidity responsive double-shelled hollow spheres. Journal of Materials Chemistry A, 2013, 1, 11762.	10.3	21
292	One-Pot Fabrication of C–Fe-Codoped TiO ₂ Sheets with Dominant {001} Facets for Enhanced Visible Light Photocatalytic Activity. Industrial & Engineering Chemistry Research, 2014, 53, 19249-19256.	3.7	21
293	Accelerating CO ₂ capture of highly permeable polymer through incorporating highly selective hollow zeolite imidazolate framework. AICHE Journal, 2020, 66, e16800.	3.6	21
294	Constructing a zwitterionic ultrafiltration membrane surface via multisite anchorage for superior long-term antifouling properties. RSC Advances, 2015, 5, 40126-40134.	3.6	20
295	Facilitated transport membranes by incorporating different divalent metal ions as CO ₂ carriers. RSC Advances, 2016, 6, 65282-65290.	3.6	20
296	Plant polyphenol-inspired nano-engineering topological and chemical structures of commercial sponge surface for oils/organic solvents clean-up and recovery. Chemosphere, 2019, 218, 559-568.	8.2	20
297	Synthesis of high-efficient g-C3N4/polydopamine/CdS nanophotocatalyst based on bioinspired adhesion and chelation. Materials Research Bulletin, 2020, 131, 110970.	5.2	20
298	Confined facilitated transport within covalent organic frameworks for propylene/propane membrane separation. Chemical Engineering Journal, 2022, 439, 135657.	12.7	20
299	Nanotube-doped alginate gel as a novel carrier for BSA immobilization. Journal of Biomaterials Science, Polymer Edition, 2006, 17, 21-35.	3.5	19
300	Sol–Gel Derived Boehmite as an Efficient and Robust Carrier for Enzyme Encapsulation. Industrial & Engineering Chemistry Research, 2012, 51, 255-261.	3.7	19
301	Bioinspired synthesis of mesoporous ZrO ₂ nanomaterials with elevated defluoridation performance in agarose gels. RSC Advances, 2014, 4, 49811-49818.	3.6	19
302	An Efficient, Recyclable, and Stable Immobilized Biocatalyst Based on Bioinspired Microcapsules-in-Hydrogel Scaffolds. ACS Applied Materials & Interfaces, 2016, 8, 25152-25161.	8.0	19
303	Highly Hydroxide-Conductive Nanostructured Solid Electrolyte via Predesigned Ionic Nanoaggregates. ACS Applied Materials & Interfaces, 2017, 9, 28346-28354.	8.0	19
304	Embedding Molecular Amine Functionalized Polydopamine Submicroparticles into Polymeric Membrane for Carbon Capture. Industrial & Engineering Chemistry Research, 2017, 56, 8103-8110.	3.7	19
305	Chloroplast-Inspired Artificial Photosynthetic Capsules for Efficient and Sustainable Enzymatic Hydrogenation. ACS Sustainable Chemistry and Engineering, 2018, 6, 17114-17123.	6.7	19
306	Metal–Organic Frameworks Corset with a Thermosetting Polymer for Improved Molecular-Sieving Property of Mixed-Matrix Membranes. ACS Applied Materials & Interfaces, 2020, 12, 55308-55315.	8.0	19

#	Article	IF	CITATIONS
307	Oil/water separation membranes with a fluorine island structure for stable high flux. Journal of Materials Chemistry A, 2021, 9, 6905-6912.	10.3	19
308	Bioinspired construction of carbonized poly(tannic acid)/g-C3N4 nanorod photocatalysts for organics degradation. Applied Surface Science, 2021, 562, 150256.	6.1	19
309	Diffusion of Nicotinamide Adenine Dinuncleotide in Calcium Alginate Hydrogel Beads Doped with Carbon and Silica Nanotubes. Journal of Chemical & Engineering Data, 2005, 50, 1319-1323.	1.9	18
310	Heterostructured graphene oxide membranes with tunable water-capture coatings for highly selective water permeation. Journal of Materials Chemistry A, 2021, 9, 7903-7912.	10.3	18
311	Vapor-liquid interfacial polymerization of covalent organic framework membranes for efficient alcohol dehydration. Journal of Membrane Science, 2022, 641, 119905.	8.2	18
312	Open-mouthed hybrid microcapsules with elevated enzyme loading and enhanced catalytic activity. Chemical Communications, 2014, 50, 12500-12503.	4.1	17
313	Robust and Recyclable Two-Dimensional Nanobiocatalysts for Biphasic Reactions in Pickering Emulsions. Industrial & Engineering Chemistry Research, 2018, 57, 8708-8717.	3.7	17
314	Surface Modification of TFC-PA RO Membrane by Grafting Hydrophilic pH Switchable Poly(Acrylic Acid) Brushes. Advances in Polymer Technology, 2020, 2020, 1-12.	1.7	17
315	Solvent-processable 0D covalent organic framework quantum dot engineered composite membranes for biogas upgrading. Journal of Membrane Science, 2021, 640, 119803.	8.2	17
316	Sulfonated lignin intercalated graphene oxide membranes for efficient proton conduction. Journal of Membrane Science, 2022, 644, 120126.	8.2	17
317	Nanoporous Phyllosilicate Assemblies for Enzyme Immobilization. ACS Applied Bio Materials, 2019, 2, 777-786.	4.6	16
318	Mixed matrix membrane contactor containing core-shell hierarchical Cu@4A filler for efficient SO2 capture. Journal of Hazardous Materials, 2019, 376, 160-169.	12.4	16
319	Incorporating dual-defense mechanism with functionalized graphene oxide and perfluorosulfonic acid for anti-fouling membranes. Separation and Purification Technology, 2020, 234, 116082.	7.9	16
320	Constructing high-efficiency facilitated transport pathways via embedding heterostructured Ag+@MOF/GO laminates into membranes for pervaporative desulfurization. Separation and Purification Technology, 2020, 245, 116858.	7.9	16
321	Tuning the pore size of graphene quantum dots composite nanofiltration membranes by P-aminobenzoic acid for enhanced dye/salt separation. Separation and Purification Technology, 2021, 263, 118372.	7.9	16
322	Graphene oxide membranes tuned by metal-phytic acid coordination complex for butanol dehydration. Journal of Membrane Science, 2021, 638, 119736.	8.2	16
323	Exploring the Segregating and Mineralization-Inducing Capacities of Cationic Hydrophilic Polymers for Preparation of Robust, Multifunctional Mesoporous Hybrid Microcapsules. ACS Applied Materials & Interfaces, 2013, 5, 5174-5185.	8.0	15
324	Enhanced water retention and proton conductivity of proton exchange membranes by incorporating hollow polymer microspheres grafted with sulfonated polystyrene brushes. RSC Advances, 2015, 5, 5343-5356.	3.6	15

#	Article	IF	CITATIONS
325	Elevated Pervaporative Desulfurization Performance of Pebax-Ag ⁺ @MOFs Hybrid Membranes by Integrating Multiple Transport Mechanisms. Industrial & Engineering Chemistry Research, 2019, 58, 16911-16921.	3.7	15
326	Supramolecular Calix[<i>n</i>]arenes-Intercalated Graphene Oxide Membranes for Efficient Proton Conduction. ACS Applied Materials & Interfaces, 2019, 11, 42250-42260.	8.0	15
327	Biomimetic synthesis of 2D/2D mixed graphitic carbon nitride /carbonized polydopamine nanosheets with excellent photocatalytic performance. Materials Chemistry and Physics, 2020, 256, 123621.	4.0	15
328	Polymer Electrolyte Membranes with Hybrid Cluster Network for Efficient CO ₂ /CH ₄ Separation. ACS Sustainable Chemistry and Engineering, 2020, 8, 6815-6825.	6.7	15
329	Tight Covalent Organic Framework Membranes for Efficient Anion Transport via Molecular Precursor Engineering. Angewandte Chemie, 2021, 133, 17779-17787.	2.0	15
330	Hydrogen crossover through microporous anion exchange membranes for fuel cells. Journal of Power Sources, 2022, 527, 231143.	7.8	15
331	Pervaporation dehydration of an acetone/water mixture by hybrid membranes incorporated with sulfonated carbon molecular sieves. RSC Advances, 2016, 6, 55272-55281.	3.6	14
332	Graphene Oxide Membranes with Conical Nanochannels for Ultrafast Water Transport. ACS Applied Materials & Interfaces, 2018, 10, 37489-37497.	8.0	14
333	Crackled nanocapsules: the "imperfect―structure for enzyme immobilization. Chemical Communications, 2019, 55, 7155-7158.	4.1	14
334	Flexible, transparent ion-conducting membranes from two-dimensional nanoclays of intrinsic conductivity. Journal of Materials Chemistry A, 2019, 7, 25657-25664.	10.3	14
335	Simultaneous size control and surface functionalization of titania nanoparticles through bioadhesion-assisted bio-inspired mineralization. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	13
336	Fabrication and characterization of antifouling carbon nanotube/polyethersulfone ultrafiltration membranes. RSC Advances, 2016, 6, 35532-35538.	3.6	13
337	Constructing asymmetric membranes via surface segregation for efficient carbon capture. Journal of Membrane Science, 2016, 500, 25-32.	8.2	13
338	Graphene Oxide Membranes with Heterogeneous Nanodomains for Efficient CO ₂ Separations. Angewandte Chemie, 2017, 129, 14434-14439.	2.0	13
339	Improved oil/water emulsion separation performance of PVC/CPVC blend ultrafiltration membranes by fluorination treatment. Desalination and Water Treatment, 2015, 55, 304-314.	1.0	12
340	Phosphorylated graphene monoliths with high mixed proton/electron conductivity. Journal of Materials Chemistry A, 2018, 6, 8499-8506.	10.3	12
341	Mussel-Inspired pH-Switched Assembly of Capsules with an Ultrathin and Robust Nanoshell. ACS Applied Materials & amp; Interfaces, 2019, 11, 28228-28235.	8.0	12
342	Hollow monocrystalline silicaliteâ€1 hybrid membranes for efficient pervaporative desulfurization. AICHE Journal, 2019, 65, 196-206.	3.6	12

#	Article	IF	CITATIONS
343	Selfâ€Assembled Facilitated Transport Membranes with Tunable Carrier Distribution for Ethylene/Ethane Separation. Advanced Functional Materials, 2021, 31, 2104349.	14.9	12
344	Oil/water separation membranes with stable ultra-high flux based on the self-assembly of heterogeneous carbon nanotubes. Journal of Membrane Science, 2022, 644, 120148.	8.2	12
345	Bioinspired Construction of g-C ₃ N ₄ Nanolayers on a Carbonized Polydopamine Nanosphere Surface with Excellent Photocatalytic Performance. Industrial & Engineering Chemistry Research, 2020, 59, 12389-12398.	3.7	11
346	Fouling-resistant robust membranes via electrostatic complexation for water purification. Chemical Engineering Journal, 2021, 416, 129139.	12.7	11
347	Enzymatic Conversion of Carbon Dioxide to Methanol by Dehydrogenases Encapsulated in Sol—Gel Matrix. ACS Symposium Series, 2003, , 212-218.	0.5	10
348	One-pot biosynthesis of polymer–inorganic nanocomposites. Journal of Nanoparticle Research, 2011, 13, 2661-2670.	1.9	10
349	Biomimetic synthesis of inorganic nanocomposites by a de novo designed peptide. RSC Advances, 2014, 4, 434-441.	3.6	10
350	Fabrication of Chitosan Membranes with High Flux by Magnetic Alignment of In Situ Generated Fe ₃ O ₄ . Chemical Engineering and Technology, 2016, 39, 969-978.	1.5	10
351	Water-selective hybrid membranes with improved interfacial compatibility from mussel-inspired dopamine-modified alginate and covalent organic frameworks. Chinese Journal of Chemical Engineering, 2020, 28, 90-97.	3.5	10
352	Manipulating the cross-layer channels in g-C ₃ N ₄ nanosheet membranes for enhanced molecular transport. Journal of Materials Chemistry A, 2021, 9, 4193-4202.	10.3	10
353	Highly Proton Conductive Phosphoric Acid Porous Organic Polymers via Knitting Method. Industrial & Engineering Chemistry Research, 2021, 60, 6337-6343.	3.7	10
354	Enhanced Electrochemical Performance of Poly(ethylene oxide) Composite Polymer Electrolyte via Incorporating Lithiated Covalent Organic Framework. Transactions of Tianjin University, 2022, 28, 67-72.	6.4	10
355	On-Surface Bottom-Up Construction of COF Nanoshells towards Photocatalytic H ₂ Production. Research, 2021, 2021, 9798564.	5.7	10
356	Photocatalytic MOF membranes with two-dimensional heterostructure for the enhanced removal of agricultural pollutants in water. Chemical Engineering Journal, 2022, 435, 133870.	12.7	10
357	Perfluorooctanoyl chloride engineering toward high-flux antifouling polyamide nanofilms for desalination. Journal of Membrane Science, 2022, 644, 120166.	8.2	10
358	Charged nanochannels endow COF membrane with weakly concentration-dependent methanol permeability. Journal of Membrane Science, 2022, 645, 120186.	8.2	10
359	Modular assembly of electron transfer pathways in bimetallic MOFs for photocatalytic ammonia synthesis. Catalysis Science and Technology, 2022, 12, 2015-2022.	4.1	10
360	Tröger's Base Polyimide Hybrid Membranes by Incorporating UiO-66-NH ₂ Nanoparticles for Gas Separation. Industrial & Engineering Chemistry Research, 2022, 61, 3418-3427.	3.7	10

ZHONGYI JIANG

#	Article	IF	CITATIONS
361	Microstructure Manipulation of Covalent Organic Frameworks (COFs)-based Membrane for Efficient Separations. Chemical Research in Chinese Universities, 2022, 38, 325-338.	2.6	10
362	Enhanced proton conductivity of proton exchange membranes by incorporating phosphorylated hollow titania spheres. RSC Advances, 2016, 6, 68407-68415.	3.6	9
363	Assembly of self-cleaning perfluoroalkyl coating on separation membrane surface. Applied Surface Science, 2019, 496, 143674.	6.1	9
364	Antifouling and Flux Enhancement of Reverse Osmosis Membrane by Grafting Poly (3-Sulfopropyl) Tj ETQq0 0 0 r	gBT /Over 3.0	loçk 10 Tf 50
365	Pyrimidine-modified g-C3N4 nanosheets for enhanced photocatalytic H2 evolution. Materials Research Bulletin, 2021, 144, 111498.	5.2	9
366	General framework for enzyme-photo-coupled catalytic system toward carbon dioxide conversion. Current Opinion in Biotechnology, 2022, 73, 67-73.	6.6	9
367	Highly Cationized and Porous Hyper-cross-linked Polymer Nanospheres for Composite Anion Exchange Membranes. ACS Applied Polymer Materials, 2021, 3, 5612-5621.	4.4	9
368	Hybrid membranes with 2D vertical continuous channels from layered double hydroxides array for high-efficiency ethanol dehydration. Journal of Membrane Science, 2022, 643, 120040.	8.2	9
369	Molecule stratification in 2D heterostructured nanochannels towards enhanced selective permeation. Chemical Engineering Journal, 2022, 440, 135828.	12.7	9
370	Active site engineering in heterovalent metal organic frameworks for photocatalytic ammonia synthesis. Chemical Engineering Journal, 2022, 443, 136559.	12.7	9
371	Vermiculite membranes intercalated with amino acids for efficient biogas upgrading. Separation and Purification Technology, 2022, 297, 121465.	7.9	9
372	In-situ construction of water capture layer through reaction enhanced surface segregation for	8.2	9

372	pervaporation desalination. Journal of Membrane Science, 2022, 658, 120708.	8.2	9
373	The molecular surface conformation of surface-tethered polyelectrolytes on PDMS surfaces. Soft Matter, 2010, , .	2.7	8
374	Polydopamine coated poly(m-phenylene isophthalamid) membrane as heat-tolerant separator for lithium-ion batteries. Ionics, 2020, 26, 5471-5480.	2.4	8
375	Vertically oriented Fe3O4 nanoflakes within hybrid membranes for efficient water/ethanol separation. Journal of Membrane Science, 2021, 620, 118916.	8.2	8
376	<i>Granum</i> -Inspired Photoenzyme-Coupled Catalytic System <i>via</i> Stacked Polymeric Carbon Nitride. ACS Catalysis, 2021, 11, 9210-9220.	11.2	8
377	Highly permeable and antioxidative graphene oxide membranes for concentration of hydrogen peroxide aqueous solution. Journal of Membrane Science, 2022, 643, 120036.	8.2	8
378	Advanced organic molecular sieve membranes for carbon capture: Current status, challenges and prospects. , 2022, 2, 100028.		8

22

#	Article	IF	CITATIONS
379	Enhanced Electro-Fenton Degradation of Ciprofloxacin by Membrane Aeration. Industrial & Engineering Chemistry Research, 2022, 61, 8141-8148.	3.7	8
380	Investigation of antifouling universality of polyvinyl formal (PVF) membranes utilizing atomic force microscope (AFM) force curves. RSC Advances, 2015, 5, 36894-36901.	3.6	7
381	Enhanced desulfurization performance of hybrid membranes using embedded hierarchical porous SBA-15. Frontiers of Chemical Science and Engineering, 2020, 14, 661-672.	4.4	7
382	Scalable Fabrication of Crystalline COF Membranes from Amorphous Polymeric Membranes. Angewandte Chemie, 2021, 133, 18199-18206.	2.0	7
383	Oil–Water–Oil Triphase Synthesis of Ionic Covalent Organic Framework Nanosheets. Angewandte Chemie, 2021, 133, 27284-27291.	2.0	7
384	Fabrication of composite nanofiltration membranes with enhanced structural stability for concentrating oligomeric proanthocyanidins in ethanol aqueous solution. Korean Journal of Chemical Engineering, 2015, 32, 1902-1909.	2.7	6
385	Polyelectrolyte membranes with tunable hollow CO2-philic clusters via sacrificial template for biogas upgrading. Journal of Membrane Science, 2020, 612, 118445.	8.2	6
386	Enhancement in proton conductivity by blending poly(polyoxometalate)-b-poly(hexanoic acid) block copolymers with sulfonated polysulfone. International Journal of Hydrogen Energy, 2020, 45, 15495-15506.	7.1	6
387	Enhanced CO2-capture performance of polyimide-based mixed matrix membranes by incorporating ZnO@MOF nanocomposites. Separation and Purification Technology, 2022, 289, 120714.	7.9	6
388	Synthesis of Proton Conductive Copolymers of Inorganic Polyacid Cluster Polyelectrolytes and PEO Bottlebrush Polymers. Macromolecules, 2022, 55, 3301-3310.	4.8	6
389	Calix[4]arene-filled poly dimethylsiloxane (PDMS) membranes for the pervaporative removal of benzene from dilute aqueous solution. Journal of Applied Polymer Science, 2006, 101, 90-100.	2.6	5
390	Mussel- inspired capsules toward reaction-triggered cargo release. Materials Chemistry Frontiers, 2021, 5, 792-798.	5.9	5
391	Alkaline stable piperidinium-based biphenyl polymer for anion exchange membranes. Solid State Ionics, 2022, 383, 115969.	2.7	5
392	Maskâ€Like Symmetrical Microclusters through a Diffusionâ€Limited Assembly Approach. Chemistry - A European Journal, 2015, 21, 10185-10190.	3.3	4
393	Oneâ€Pot Synthesis of Chloromethylated Mesoporous Silica Nanoparticles as Multifunctional Fillers in Hybrid Anion Exchange Membranes. Chinese Journal of Chemistry, 2017, 35, 673-680.	4.9	4
394	Two types of oil modified tips as force sensors to detect adhesion forces between oil and membrane surfaces in fluid. Sensors and Actuators A: Physical, 2017, 267, 127-134.	4.1	4
395	Improved performance of polyamide nanofiltration membranes by incorporating reduced glutathione during interfacial polymerization. Korean Journal of Chemical Engineering, 2018, 35, 2487-2495.	2.7	4
396	<i>In situ</i> knitted microporous polymer membranes for efficient CO ₂ capture. Journal of Materials Chemistry A, 2021, 9, 2126-2134.	10.3	4

#	ARTICLE	IF	CITATIONS
397	Multilevel/hierarchical nanocomposite-imprinted regenerated cellulose membranes for high-efficiency separation: a selective recognition method with Au/PDA-loaded surface. Environmental Science: Nano, 2021, 8, 1978-1991.	4.3	4
398	One-pot Synthesis of Multifunctional KGM/PDA/PVDF Composite Membrane for Efficient Treatment of Oil–water Emulsion and Dye. Nano, 2021, 16, 2150025.	1.0	4
399	Enhanced water-selective performance of dual-layer hybrid membranes by incorporating carbon nanotubes. Chemical Engineering Science: X, 2021, 11, 100102.	1.5	4
400	Separation membranes with long-term stability and high flux prepared through intramembrane dopamine-based nanoparticle assembly. Journal of Membrane Science, 2022, 654, 120563.	8.2	4
401	Bioinspired synthesis of nanofibers on monolithic scaffolds for enzyme immobilization with enhanced loading capacity and activity recovery. Journal of Chemical Technology and Biotechnology, 2019, 94, 3763-3771.	3.2	3
402	Analogous Mixed Matrix Membranes with Selfâ€Assembled Interface Pathways. Angewandte Chemie, 2021, 133, 5928-5934.	2.0	3
403	Synergism of orderly intrinsic and extrinsic proton-conducting sites in covalent organic framework membranes. Chemical Engineering Research and Design, 2022, 179, 484-492.	5.6	3
404	Bioinspired construction of g-C3N4 isotype heterojunction on carbonized poly(tannic acid) nanorod surface with multistep electron transfer path. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 431, 114045.	3.9	3
405	Template-free synthesis of TiO2 microcages in agarose gels with improved photocatalytic activity. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	2
406	Fuel Cells: Graphene Oxideâ€Based Solid Electrolytes with 3D Prepercolating Pathways for Efficient Proton Transport (Adv. Funct. Mater. 50/2018). Advanced Functional Materials, 2018, 28, 1870358.	14.9	2
407	Shielding of Enzymes on the Surface of Graphene-Based Composite Cellular Foams Through Bioinspired Mineralization. Methods in Enzymology, 2018, 609, 355-370.	1.0	1
408	Engineering dual-heterogeneous membrane surface with heterostructured modifier to integrate multi-defense antifouling mechanisms. Chemical Engineering Science: X, 2021, 11, 100103.	1.5	1
409	General model for artificial photosynthesis with capsuleâ€immobilized enzyme. AICHE Journal, 0, , e17409.	3.6	1
410	Block Copolymers for Fabrication of Asymmetric Ultrafiltration Membranes Through Surface Segregation Method. World Scientific Series in Nanoscience and Nanotechnology, 2019, , 285-310.	0.1	0