Yuanyuan Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1489047/publications.pdf

Version: 2024-02-01

331670 276875 1,802 47 21 41 h-index citations g-index papers 47 47 47 2599 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A versatile protoplast system and its application in <i>Cannabis sativa</i> L Botany, 2023, 101, 291-300.	1.0	5
2	Particle-size-based elution of petroleum hydrocarbon contaminated soil by surfactant mixture. Journal of Environmental Management, 2022, 302, 113983.	7.8	9
3	Effectiveness and mechanism of cyanide remediation from contaminated soils using thermally activated persulfate. Chemosphere, 2022, 292, 133463.	8.2	12
4	Fucosylated oligosaccharide Lacto-N-fucopentaose I ameliorates enterovirus 71 infection by inhibiting apoptosis. Food Chemistry: X, 2022, 13, 100244.	4.3	6
5	Treponema primitia $\hat{l}\pm 1\hat{a}\in "2$ -fucosyltransferase-catalyzed one-pot multienzyme synthesis of fucosylated oligosaccharide lacto-N-fucopentaose I with antiviral activity against enterovirus 71. Food Chemistry: X, 2022, 14, 100273.	4.3	5
6	FFGA1 Protein Is Essential for Regulating Vegetative Growth, Cell Wall Integrity, and Protection against Stress in Flammunina filiformis. Journal of Fungi (Basel, Switzerland), 2022, 8, 401.	3.5	6
7	Quantitative Assessment of Coal Seam Permeability Improvement Around an Enlarged Borehole in Gas Extraction Engineering: A Method for Field Application. Transport in Porous Media, 2022, 143, 103-125.	2.6	3
8	Simultaneously promoted reactive manganese species and hydroxyl radical generation by electro-permanganate with low additive ozone. Water Research, 2021, 189, 116623.	11.3	43
9	Three novel transcription factors involved in cannabinoid biosynthesis in Cannabis sativa L Plant Molecular Biology, 2021, 106, 49-65.	3.9	26
10	CannabisGDB: a comprehensive genomic database for <i>Cannabis Sativa</i> L. Plant Biotechnology Journal, 2021, 19, 857-859.	8.3	16
11	Highly stretchable and tough alginate-based cyclodextrin/Azo-polyacrylamide interpenetrating network hydrogel with self-healing properties. Carbohydrate Polymers, 2021, 256, 117595.	10.2	35
12	Effects of pore morphology and moisture on CBMâ€related sorptionâ€induced coal deformation: An experimental investigation. Energy Science and Engineering, 2021, 9, 1180-1201.	4.0	8
13	Donnan Dialysis-Osmotic Distillation (DD-OD) Hybrid Process for Selective Ammonium Recovery Driven by Waste Alkali. Environmental Science & Eamp; Technology, 2021, 55, 7015-7024.	10.0	17
14	The transcriptional dynamics during <i>de novo</i> shoot organogenesis of Ma bamboo (<i>Dendrocalamus latiflorus</i> Munro): implication of the contributions of the abiotic stress response in this process. Plant Journal, 2021, 107, 1513-1532.	5.7	10
15	Interfacial self-assembled behavior of pH/light-responsive host-guest alginate-based supra-amphiphiles for controlling emulsifying property. Carbohydrate Polymers, 2021, 266, 118121.	10.2	14
16	The anti-hyperuricemic effects of green alga Enteromorpha prolifera polysaccharide via regulation of the uric acid transporters in vivo. Food and Chemical Toxicology, 2021, 158, 112630.	3.6	17
17	AOPs-based remediation of petroleum hydrocarbons-contaminated soils: Efficiency, influencing factors and environmental impacts. Chemosphere, 2020, 246, 125726.	8.2	109
18	Transcriptome profiling reveals the crucial biological pathways involved in cold response in Moso bamboo (Phyllostachys edulis). Tree Physiology, 2020, 40, 538-556.	3.1	27

#	Article	IF	CITATIONS
19	Reduction and stabilization of Cr(VI) in soil by using calcium polysulfide: Catalysis of natural iron oxides. Environmental Research, 2020, 190, 109992.	7.5	31
20	Development of Rapid Curing SiO2 Aerogel Composite-Based Quasi-Solid-State Dye-Sensitized Solar Cells through Screen-Printing Technology. ACS Applied Materials & Interfaces, 2020, 12, 48794-48803.	8.0	23
21	Remediation of hexavalent chromium in contaminated soil using amorphous iron pyrite: Effect on leachability, bioaccessibility, phytotoxicity and long-term stability. Environmental Pollution, 2020, 264, 114804.	7.5	43
22	Optimization of extraction technology of poly-mannuronic acid to a green delivery system for the water-insoluble pesticide, î»-Cyhalothrin. International Journal of Biological Macromolecules, 2020, 153, 17-25.	7.5	5
23	Hepatoprotective activity of Ganoderma lucidum triterpenoids in alcohol-induced liver injury in mice, an iTRAQ-based proteomic analysis. Food Chemistry, 2019, 271, 148-156.	8.2	45
24	Research progress of in-situ gelling ophthalmic drug delivery system. Asian Journal of Pharmaceutical Sciences, 2019, 14, 1-15.	9.1	170
25	Enhanced Reactive Oxygen Species Generation by Mitochondria Targeting of Anticancer Drug To Overcome Tumor Multidrug Resistance. Biomacromolecules, 2019, 20, 3755-3766.	5 . 4	34
26	Segmental Janus nanoparticles of polymer composites. Chemical Communications, 2019, 55, 8114-8117.	4.1	13
27	Online Adaptive Approximate Stream Processing With Customized Error Control. IEEE Access, 2019, 7, 25123-25137.	4.2	3
28	Hypoglycemic activity and gut microbiota regulation of a novel polysaccharide from Grifola frondosa in type 2 diabetic mice. Food and Chemical Toxicology, 2019, 126, 295-302.	3.6	108
29	Enhanced dielectric performance and energy storage of PVDFâ€HFPâ€based composites induced by surface charged Al ₂ O ₃ . Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 574-583.	2.1	33
30	A two-wavelength fluorescence recovery method for the simultaneous determination of aureomycin and oxytetracycline by using gold nanocrystals modified with serine and 11-mercaptoundecanoic acid. Mikrochimica Acta, 2018, 185, 222.	5.0	6
31	Dual pH-responsive multifunctional nanoparticles for targeted treatment of breast cancer by combining immunotherapy and chemotherapy. Acta Biomaterialia, 2018, 66, 310-324.	8.3	159
32	A novel \hat{l}_{\pm} _V \hat{l}^{2} ₃ ligand-modified HPMA copolymers for anticancer drug delivery. Journal of Drug Targeting, 2018, 26, 231-241.	4.4	4
33	Effect of Marine Microalga Chlorella pyrenoidosa Ethanol Extract on Lipid Metabolism and Gut Microbiota Composition in High-Fat Diet-Fed Rats. Marine Drugs, 2018, 16, 498.	4.6	50
34	Structural characterization and antidiabetic potential of a novel heteropolysaccharide from Grifola frondosa via IRS1/PI3K-JNK signaling pathways. Carbohydrate Polymers, 2018, 198, 452-461.	10.2	98
35	Gold Nanobipyramids as Dual-Functional Substrates for in Situ "Turn On―Analyzing Intracellular Telomerase Activity Based on Target-Triggered Plasmon-Enhanced Fluorescence. ACS Applied Materials & Interfaces, 2018, 10, 26851-26858.	8.0	52
36	Charge-Reversible Multifunctional HPMA Copolymers for Mitochondrial Targeting. ACS Applied Materials & Description of the Company of the Comp	8.0	27

3

#	Article	IF	CITATIONS
37	Regio- and stereoselective reduction of 17-oxosteroids to $17\hat{l}^2$ -hydroxysteroids by a yeast strain Zygowilliopsis sp. WY7905. Steroids, 2017, 118, 17-24.	1.8	9
38	Transplantation of mesenchymal stem cells improves type 1 diabetes mellitus. Cell and Tissue Research, 2016, 364, 345-355.	2.9	16
39	Label free detection of lead using impedimetric sensor based on ordered mesoporous carbon–gold nanoparticles and DNAzyme catalytic beacons. Talanta, 2016, 146, 641-647.	5.5	64
40	The Optimization of DNA Encoding Based on Chaotic Optimization Particle Swarm Algorithm. Journal of Computational and Theoretical Nanoscience, 2016, 13, 443-449.	0.4	6
41	A polymeric prodrug of cisplatin based on pullulan for the targeted therapy against hepatocellular carcinoma. International Journal of Pharmaceutics, 2015, 483, 89-100.	5.2	38
42	Highly effective adsorption of cationic and anionic dyes on magnetic Fe/Ni nanoparticles doped bimodal mesoporous carbon. Journal of Colloid and Interface Science, 2015, 448, 451-459.	9.4	113
43	Core–Shell Nanoparticles Based on Pullulan and Poly(β-amino) Ester for Hepatoma-Targeted Codelivery of Gene and Chemotherapy Agent. ACS Applied Materials & Interfaces, 2014, 6, 18712-18720.	8.0	42
44	Mesoporous carbon nitride based biosensor for highly sensitive and selective analysis of phenol and catechol in compost bioremediation. Biosensors and Bioelectronics, 2014, 61, 519-525.	10.1	132
45	Removal of Methylene Blue from Aqueous Solutions by Sewage Sludge Based Granular Activated Carbon: Adsorption Equilibrium, Kinetics, and Thermodynamics. Journal of Chemical & Engineering Data, 2013, 58, 2248-2253.	1.9	107
46	Performance of a sequential anaerobic baffled reactor (ABR)/membrane bioreactor (MBR) system treating caffeine wastewater. , 2011 , , .		1
47	Feasibility study: Low-cost dual energy CT for security inspection. , 2009, , .		2