Veronica Papa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1488930/publications.pdf

Version: 2024-02-01

1307594 1588992 9 666 8 7 citations g-index h-index papers 9 9 9 756 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Development of a practical non-noble metal catalyst for hydrogenation of N-heteroarenes. Nature Catalysis, 2020, 3, 135-142.	34.4	120
2	Homogeneous and heterogeneous catalytic reduction of amides and related compounds using molecular hydrogen. Nature Communications, 2020, 11 , 3893 .	12.8	130
3	Homogeneous cobalt-catalyzed deoxygenative hydrogenation of amides to amines. Catalysis Science and Technology, 2020, 10, 6116-6128.	4.1	15
4	Chemoselective semihydrogenation of alkynes catalyzed by manganese(<scp>i</scp>)-PNP pincer complexes. Catalysis Science and Technology, 2020, 10, 3994-4001.	4.1	43
5	Bis(benzo[<i>h</i>]quinolin-10-olato-l̂e ² <i>N</i> , <i>O</i>)bromidomanganese(III). IUCrData, 2020, 5, .	0.3	0
6	Cobalt–Pincer Complexes in Catalysis. Chemistry - A European Journal, 2019, 25, 122-143.	3.3	140
7	Efficient and selective hydrogenation of amides to alcohols and amines using a well-defined manganese–PNN pincer complex. Chemical Science, 2017, 8, 3576-3585.	7.4	181
8	Unprecedented selective homogeneous cobalt-catalysed reductive alkoxylation of cyclic imides under mild conditions. Chemical Science, 2017, 8, 5536-5546.	7.4	31
9	Simple Zn(II) Salts as Efficient Catalysts for the Homogeneous Trans-Esterification of Methyl Esters. Catalysis Letters, 2016, 146, 1113-1117.	2.6	6