
Olivia Lenoir

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1488919/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cell stress response impairs de novo NAD+ biosynthesis in the kidney. JCI Insight, 2022, 7, .	5.0	23
2	Sarilumab in adults hospitalised with moderate-to-severe COVID-19 pneumonia (CORIMUNO-SARI-1): An open-label randomised controlled trial. Lancet Rheumatology, The, 2022, 4, e24-e32.	3.9	34
3	FIBER-ML, an Open-Source Supervised Machine Learning Tool for Quantification of Fibrosis in Tissue Sections. American Journal of Pathology, 2022, 192, 783-793.	3.8	3
4	Should we consider calcimimetics as a therapeutic option for nephrotic syndrome?. Kidney International, 2022, 101, 1110-1112.	5.2	1
5	Effect of Tocilizumab vs Usual Care in Adults Hospitalized With COVID-19 and Moderate or Severe Pneumonia. JAMA Internal Medicine, 2021, 181, 32.	5.1	654
6	Effect of anakinra versus usual care in adults in hospital with COVID-19 and mild-to-moderate pneumonia (CORIMUNO-ANA-1): a randomised controlled trial. Lancet Respiratory Medicine,the, 2021, 9, 295-304.	10.7	232
7	Glomerular Endothelial Cell Crosstalk With Podocytes in Diabetic Kidney Disease. Frontiers in Medicine, 2021, 8, 659013.	2.6	28
8	Calpastatin prevents Angiotensin II–mediated podocyte injury through maintenance of autophagy. Kidney International, 2021, 100, 90-106.	5.2	13
9	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq1 1 0.784314 rgBT /	Overlock 1	0 Tf 50 422 T
10	Podocytes maintain high basal levels of autophagy independent of mtor signaling. Autophagy, 2020, 16, 1932-1948.	9.1	69
11	Podocyte healthy self-eating boosted by a spermidine meal?. Kidney International, 2020, 98, 1390-1392.	5.2	2
12	Deletion of the myeloid endothelin-B receptor confers long-term protection from angiotensin II-mediated kidney, eye and vessel injury. Kidney International, 2020, 98, 1193-1209.	5.2	8
13	Parietal epithelial cells role in repair versus scarring after glomerular injury. Current Opinion in Nephrology and Hypertension, 2020, 29, 293-301.	2.0	12
14	The tetraspanin CD9 controls migration and proliferation of parietal epithelial cells and glomerular disease progression. Nature Communications, 2019, 10, 3303.	12.8	52
15	Local miscommunications between glomerular cells as potential therapeutic targets for crescentic glomerulonephritides. Nephrologie Et Therapeutique, 2019, 15, S1-S5.	0.5	0
16	A novel role for myeloid endothelin-B receptors in hypertension. European Heart Journal, 2019, 40, 768-784.	2.2	31
17	Immunofluorescence Staining of WT-1/Podocalyxin on Mouse Kidney Sections. Bio-protocol, 2019, 9, e3210.	0.4	0
18	The endothelin B receptor plays a crucial role in the adhesion of neutrophils to the endothelium in sickle cell disease. Haematologica, 2017, 102, 1161-1172.	3.5	33

OLIVIA LENOIR

#	Article	IF	CITATIONS
19	Endothelial Epas1 Deficiency Is Sufficient To Promote Parietal Epithelial Cell Activation and FSGS in Experimental Hypertension. Journal of the American Society of Nephrology: JASN, 2017, 28, 3563-3578.	6.1	20
20	Genetic and pharmacological inhibition of microRNA-92a maintains podocyte cell cycle quiescence and limits crescentic glomerulonephritis. Nature Communications, 2017, 8, 1829.	12.8	50
21	Hmox1Deficiency Sensitizes Mice to Peroxynitrite Formation and Diabetic Clomerular Microvascular Injuries. Journal of Diabetes Research, 2017, 2017, 1-7.	2.3	5
22	Endothelin-1 Induces Proteinuria by Heparanase-Mediated Disruption of the Glomerular Glycocalyx. Journal of the American Society of Nephrology: JASN, 2016, 27, 3545-3551.	6.1	93
23	Autophagy in kidney disease and aging: lessons from rodent models. Kidney International, 2016, 90, 950-964.	5.2	114
24	Nuclear Factor Erythroid 2-Related Factor 2 Drives Podocyte-Specific Expression of Peroxisome Proliferator-Activated Receptor Î ³ Essential for Resistance to Crescentic GN. Journal of the American Society of Nephrology: JASN, 2016, 27, 172-188.	6.1	38
25	The Endothelin Receptor Etb Plays a Crucial Role for Recruitment of Neutrophils to the Vascular Wall in Sickle Cell Disease. Blood, 2016, 128, 857-857.	1.4	0
26	Endothelial cell and podocyte autophagy synergistically protect from diabetes-induced glomerulosclerosis. Autophagy, 2015, 11, 1130-1145.	9.1	224
27	Direct Action of Endothelin-1 on Podocytes Promotes Diabetic Glomerulosclerosis. Journal of the American Society of Nephrology: JASN, 2014, 25, 1050-1062.	6.1	87
28	Analysis of the expression patterns, subcellular localisations and interaction partners of <i>Drosophila</i> proteins using a <i>pigP</i> protein trap library. Development (Cambridge), 2014, 141, 3994-4005.	2.5	160
29	Update on crescentic glomerulonephritis. Seminars in Immunopathology, 2014, 36, 479-490.	6.1	29
30	Specific Control of Pancreatic Endocrine β- and δ-Cell Mass by Class IIa Histone Deacetylases HDAC4, HDAC5, and HDAC9. Diabetes, 2011, 60, 2861-2871.	0.6	119
31	Directing cell differentiation with small-molecule histone deacetylase inhibitors: The example of promoting pancreatic endocrine cells. Cell Cycle, 2009, 8, 536-544.	2.6	39
32	Histone Deacetylase Inhibitors Modify Pancreatic Cell Fate Determination and Amplify Endocrine Progenitors. Molecular and Cellular Biology, 2008, 28, 6373-6383.	2.3	167