
Beatriz del Rio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1488670/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Are there profiles of cheeses with a high GABA and safe histamine content?. Food Control, 2022, 132, 108491.	2.8	2
2	Investigating the biotechnological potential of lactic acid bacteria strains isolated from different Algerian dairy and farm sources. Archives of Microbiology, 2022, 204, 220.	1.0	2
3	GABA-Producing Lactococcus lactis Strains Isolated from Camel's Milk as Starters for the Production of GABA-Enriched Cheese. Foods, 2021, 10, 633.	1.9	17
4	The biogenic amine tryptamine, unlike β-phenylethylamine, shows in vitro cytotoxicity at concentrations that have been found in foods. Food Chemistry, 2020, 331, 127303.	4.2	42
5	Aminas biógenas en alimentos: métodos moleculares para la detección e identificación de bacterias productoras. Arbor, 2020, 196, 545.	0.1	0
6	Histamine production in Lactobacillus vaginalis improves cell survival at low pH by counteracting the acidification of the cytosol. International Journal of Food Microbiology, 2020, 321, 108548.	2.1	17
7	Isolation and Characterization of Enterococcus faecalis-Infecting Bacteriophages From Different Cheese Types. Frontiers in Microbiology, 2020, 11, 592172.	1.5	11
8	Identification of technological/metabolic/environmental profiles of cheeses with high GABA contents. LWT - Food Science and Technology, 2020, 130, 109603.	2.5	11
9	Polyphasic Characterisation of Non-Starter Lactic Acid Bacteria from Algerian Raw Camel's Milk and Their Technological Aptitudes. Food Technology and Biotechnology, 2020, 58, 260-272.	0.9	5
10	Construction and characterization of a double mutant of Enterococcus faecalis that does not produce biogenic amines. Scientific Reports, 2019, 9, 16881.	1.6	2
11	The biogenic amines putrescine and cadaverine show in vitro cytotoxicity at concentrations that can be found in foods. Scientific Reports, 2019, 9, 120.	1.6	126
12	Enterococcus faecalis Bacteriophage 156 Is an Effective Biotechnological Tool for Reducing the Presence of Tyramine and Putrescine in an Experimental Cheese Model. Frontiers in Microbiology, 2019, 10, 566.	1.5	19
13	Lactic Acid Bacteria as a Live Delivery System for the in situ Production of Nanobodies in the Human Gastrointestinal Tract. Frontiers in Microbiology, 2019, 9, .	1.5	21
14	Lactobacillus rossiae strain isolated from sourdough produces putrescine from arginine. Scientific Reports, 2018, 8, 3989.	1.6	27
15	An altered gene expression profile in tyramine-exposed intestinal cell cultures supports the genotoxicity of this biogenic amine at dietary concentrations. Scientific Reports, 2018, 8, 17038.	1.6	19
16	<i>Lactobacillus parabuchneri</i> produces histamine in refrigerated cheese at a temperatureâ€dependent rate. International Journal of Food Science and Technology, 2018, 53, 2342-2348.	1.3	19
17	Spermine and spermidine are cytotoxic towards intestinal cell cultures, but are they a health hazard at concentrations found in foods?. Food Chemistry, 2018, 269, 321-326.	4.2	40
18	A UHPLC method for the simultaneous analysis of biogenic amines, amino acids and ammonium ions in beer. Food Chemistry, 2017, 217, 117-124.	4.2	61

BEATRIZ DEL RIO

#	Article	IF	CITATIONS
19	The dietary biogenic amines tyramine and histamine show synergistic toxicity towards intestinal cells in culture. Food Chemistry, 2017, 218, 249-255.	4.2	115
20	The Relationship among Tyrosine Decarboxylase and Agmatine Deiminase Pathways in Enterococcus faecalis. Frontiers in Microbiology, 2017, 8, 2107.	1,5	16
21	Q69 (an E. faecalis-Infecting Bacteriophage) As a Biocontrol Agent for Reducing Tyramine in Dairy Products. Frontiers in Microbiology, 2016, 7, 445.	1.5	28
22	Biofilm-Forming Capacity in Biogenic Amine-Producing Bacteria Isolated from Dairy Products. Frontiers in Microbiology, 2016, 7, 591.	1.5	39
23	Putrescine production by Lactococcus lactis subsp. cremoris CECT 8666 is reduced by NaCl via a decrease in bacterial growth and the repression of the genes involved in putrescine production. International Journal of Food Microbiology, 2016, 232, 1-6.	2.1	16
24	Transcriptome profiling of TDC cluster deletion mutant of Enterococcus faecalis V583. Genomics Data, 2016, 9, 67-69.	1.3	7
25	Data on recovery of 21 amino acids, 9 biogenic amines and ammonium ions after spiking four different beers with five concentrations of these analytes. Data in Brief, 2016, 9, 398-400.	0.5	2
26	Putrescine biosynthesis in Lactococcus lactis is transcriptionally activated at acidic pH and counteracts acidification of the cytosol. International Journal of Food Microbiology, 2016, 236, 83-89.	2.1	15
27	Nucleotide sequence alignment of hdcA from Gram-positive bacteria. Data in Brief, 2016, 6, 674-679.	0.5	5
28	Histamine-producing Lactobacillus parabuchneri strains isolated from grated cheese can form biofilms on stainless steel. Food Microbiology, 2016, 59, 85-91.	2.1	35
29	Comparative analysis of the in vitro cytotoxicity of the dietary biogenic amines tyramine and histamine. Food Chemistry, 2016, 197, 658-663.	4.2	154
30	A PCR-DGGE method for the identification of histamine-producing bacteria in cheese. Food Control, 2016, 63, 216-223.	2.8	55
31	Transcriptome profiling of Lactococcus lactis subsp. cremoris CECT 8666 in response to agmatine. Genomics Data, 2016, 7, 112-114.	1.3	4
32	Mastitis Modifies the Biogenic Amines Profile in Human Milk, with Significant Changes in the Presence of Histamine, Putrescine and Spermine. PLoS ONE, 2016, 11, e0162426.	1.1	14
33	Transcriptomic profile of aguR deletion mutant of Lactococcus lactis subsp. cremoris CECT 8666. Genomics Data, 2015, 6, 228-230.	1.3	3
34	Implementation of the agmatine-controlled expression system for inducible gene expression in Lactococcus lactis. Microbial Cell Factories, 2015, 14, 208.	1.9	19
35	AguR, a Transmembrane Transcription Activator of the Putrescine Biosynthesis Operon in Lactococcus lactis, Acts in Response to the Agmatine Concentration. Applied and Environmental Microbiology, 2015, 81, 6145-6157.	1.4	20
36	IS <i>256</i> abolishes gelatinase activity and biofilm formation in a mutant of the nosocomial pathogen <i>Enterococcus faecalis</i> V583. Canadian Journal of Microbiology, 2015, 61, 517-519.	0.8	20

BEATRIZ DEL RIO

#	Article	IF	CITATIONS
37	Isolation and typification of histamine-producing Lactobacillus vaginalis strains from cheese. International Journal of Food Microbiology, 2015, 215, 117-123.	2.1	38
38	Lactose-mediated carbon catabolite repression of putrescine production in dairy Lactococcus lactis is strain dependent. Food Microbiology, 2015, 48, 163-170.	2.1	26
39	Draft Genome Sequence of the Putrescine-Producing Strain Lactococcus lactis subsp. <i>lactis</i> lactislactis, 2015, 3, .	0.8	0
40	Putrescine production via the agmatine deiminase pathway increases the growth of Lactococcus lactis and causes the alkalinization of the culture medium. Applied Microbiology and Biotechnology, 2015, 99, 897-905.	1.7	40
41	Genome Sequence Analysis of the Biogenic Amine-Producing Strain Lactococcus lactis subsp. <i>cremoris</i> CECT 8666 (Formerly CE2-14). Genome Announcements, 2014, 2, .	0.8	9
42	An agmatine-inducible system for the expression of recombinant proteins in Enterococcus faecalis. Microbial Cell Factories, 2014, 13, 169.	1.9	22
43	Genome Sequence Analysis of the Biogenic Amine-Degrading Strain Lactobacillus casei 5b. Genome Announcements, 2014, 2, .	0.8	8
44	Generation of food-grade recombinant Lactobacillus casei delivering Myxococcus xanthus prolyl endopeptidase. Applied Microbiology and Biotechnology, 2014, 98, 6689-6700.	1.7	21
45	The putrescine biosynthesis pathway in Lactococcus lactis is transcriptionally regulated by carbon catabolic repression, mediated by CcpA. International Journal of Food Microbiology, 2013, 165, 43-50.	2.1	30
46	Draft Genome Sequence of the Tyramine Producer Enterococcus durans Strain IPLA 655. Genome Announcements, 2013, 1, .	0.8	11
47	Draft Genome Sequence of Lactobacillus plantarum Strain IPLA 88. Genome Announcements, 2013, 1, .	0.8	5
48	Factors Influencing Biogenic Amines Accumulation in Dairy Products. Frontiers in Microbiology, 2012, 3, 180.	1.5	193
49	The tyrosyl-tRNA synthetase like gene located in the tyramine biosynthesis cluster of Enterococcus duransis transcriptionally regulated by tyrosine concentration and extracellular pH. BMC Microbiology, 2012, 12, 23.	1.3	17
50	Immune Response to Lactobacillus plantarum Expressing Borrelia burgdorferi OspA Is Modulated by the Lipid Modification of the Antigen. PLoS ONE, 2010, 5, e11199.	1.1	23
51	Platform technology to deliver prophylactic molecules orally: An example using the Class A select agent Yersinia pestis. Vaccine, 2010, 28, 6714-6722.	1.7	16
52	A novel real-time polymerase chain reaction-based method for the detection and quantification of lactose-fermenting Enterobacteriaceae in the dairy and other food industries. Journal of Dairy Science, 2010, 93, 860-867.	1.4	21
53	Fast real-time polymerase chain reaction for quantitative detection of Lactobacillus delbrueckii bacteriophages in milk. Food Microbiology, 2008, 25, 978-982.	2.1	18
54	Oral Immunization with Recombinant <i>Lactobacillus plantarum</i> Induces a Protective Immune Response in Mice with Lyme Disease. Vaccine Journal, 2008, 15, 1429-1435.	3.2	65

BEATRIZ DEL RIO

#	Article	IF	CITATIONS
55	Multiplex Fast Real-Time PCR for Quantitative Detection and Identification of <i>cos</i> - and <i>pac</i> -Type <i>Streptococcus thermophilus</i> Bacteriophages. Applied and Environmental Microbiology, 2008, 74, 4779-4781.	1.4	34
56	HPLC quantification of biogenic amines in cheeses: correlation with PCR-detection of tyramine-producing microorganisms. Journal of Dairy Research, 2007, 74, 276-282.	0.7	116
57	Multiplex PCR for the detection and identification of dairy bacteriophages in milk. Food Microbiology, 2007, 24, 75-81.	2.1	72
58	Real-Time Polymerase Chain Reaction for Quantitative Detection of Histamine-Producing Bacteria: Use in Cheese Production. Journal of Dairy Science, 2006, 89, 3763-3769.	1.4	83
59	Detection and Characterization of Streptococcus thermophilus Bacteriophages by Use of the Antireceptor Gene Sequence. Applied and Environmental Microbiology, 2005, 71, 6096-6103.	1.4	63
60	Melatonin, an Endogenous-specific Inhibitor of Estrogen Receptor α via Calmodulin. Journal of Biological Chemistry, 2004, 279, 38294-38302.	1.6	118
61	Calmodulin Is a Selective Modulator of Estrogen Receptors. Molecular Endocrinology, 2002, 16, 947-960.	3.7	69
62	Melatonin blocks the activation of estrogen receptor for DNA binding. FASEB Journal, 1999, 13, 857-868.	0.2	112
63	Disentangling the Effects of Mating Propensity and Mating Choice in Drosophila. Evolution; International Journal of Organic Evolution, 1998, 52, 126.	1.1	26
64	DISENTANGLING THE EFFECTS OF MATING PROPENSITY AND MATING CHOICE IN <i>DROSOPHILA</i> . Evolution; International Journal of Organic Evolution, 1998, 52, 126-133.	1.1	37