
## May C Morris

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1488567/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Shining Light on Protein Kinase Biomarkers with Fluorescent Peptide Biosensors. Life, 2022, 12, 516.                                                                                                       | 1.1 | 1         |
| 2  | A Toolbox of Fluorescent Peptide Biosensors to Highlight Protein Kinases in Complex Samples: Focus<br>on Cyclinâ€Đependent Kinases. European Journal of Organic Chemistry, 2022, 2022, .                   | 1.2 | 2         |
| 3  | Fbxo7 promotes Cdk6 activity to inhibit PFKP and glycolysis in T cells. Journal of Cell Biology, 2022, 221, .                                                                                              | 2.3 | 5         |
| 4  | Fluorescent Peptide Biosensor for Probing CDK6 Kinase Activity in Lung Cancer Cell Extracts.<br>ChemBioChem, 2021, 22, 1065-1071.                                                                          | 1.3 | 13        |
| 5  | Nanobiosensor Reports on CDK1 Kinase Activity in Tumor Xenografts in Mice. Small, 2021, 17, 2007177.                                                                                                       | 5.2 | 4         |
| 6  | Fluorescent Peptide Biosensors for Probing CDK Kinase Activity in Cell Extracts. Methods in<br>Molecular Biology, 2021, 2329, 39-50.                                                                       | 0.4 | 3         |
| 7  | When mentoring matters: a French mentoring program for women in science. Nature Biotechnology, 2021, 39, 776-779.                                                                                          | 9.4 | 2         |
| 8  | Quinolimide-based peptide biosensor for probing p25 in vitro and in living cells. Sensors and Actuators B: Chemical, 2021, 339, 129929.                                                                    | 4.0 | 6         |
| 9  | Identification of Quinazolinone Analogs Targeting CDK5 Kinase Activity and Glioblastoma Cell<br>Proliferation. Frontiers in Chemistry, 2020, 8, 691.                                                       | 1.8 | 9         |
| 10 | Fluorescent Biosensor of CDK5 Kinase Activity in Glioblastoma Cell Extracts and Living Cells.<br>Biotechnology Journal, 2020, 15, e1900474.                                                                | 1.8 | 18        |
| 11 | Stapled peptide targeting the CDK4/Cyclin D interface combined with Abemaciclib inhibits KRAS mutant lung cancer growth. Theranostics, 2020, 10, 2008-2028.                                                | 4.6 | 15        |
| 12 | Microneedle Arrayâ€Based Platforms for Future Theranostic Applications. ChemBioChem, 2019, 20,<br>2198-2202.                                                                                               | 1.3 | 8         |
| 13 | Fluorescent Biosensor for Detection of the R248Q Aggregationâ€Prone Mutant of p53. ChemBioChem, 2019, 20, 605-613.                                                                                         | 1.3 | 9         |
| 14 | Rationally Designed Peptides as Efficient Inhibitors of Nucleic Acid Chaperone Activity of HIV-1<br>Nucleocapsid Protein. Biochemistry, 2018, 57, 4562-4573.                                               | 1.2 | 4         |
| 15 | Fluorescent peptide biosensor for probing CDK5 kinase activity in glioblastoma and its applications<br>for diagnostics and drug discovery in vitro and by fluorescence Imaging. FASEB Journal, 2018, 32, . | 0.2 | 0         |
| 16 | Targeting Conformational Activation of CDK2 Kinase. Biotechnology Journal, 2017, 12, 1600531.                                                                                                              | 1.8 | 13        |
| 17 | Lanthanide-based peptide biosensor to monitor CDK4/cyclin D kinase activity. Chemical<br>Communications, 2017, 53, 6109-6112.                                                                              | 2.2 | 19        |
| 18 | Rational Design of Nanobody80 Loop Peptidomimetics: Towards Biased β 2 Adrenergic Receptor Ligands.<br>Chemistry - A European Journal, 2017, 23, 9632-9640.                                                | 1.7 | 13        |

| #  | Article                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Highly solvatochromic and tunable fluorophores based on a 4,5-quinolimide scaffold: novel CDK5 probes. Chemical Communications, 2016, 52, 9652-9655.                                        | 2.2 | 25        |
| 20 | Fluorescent peptide biosensor for monitoring CDK4/cyclin D kinase activity in melanoma cell extracts, mouse xenografts and skin biopsies. Biosensors and Bioelectronics, 2016, 85, 371-380. | 5.3 | 18        |
| 21 | TPâ€⊋Rho Is a Sensitive Solvatochromic Redâ€Shifted Probe for Monitoring the Interactions between CDK4 and Cyclinâ€D. ChemBioChem, 2016, 17, 737-744.                                       | 1.3 | 6         |
| 22 | Carbon nanotube biosensors. Frontiers in Chemistry, 2015, 3, 59.                                                                                                                            | 1.8 | 252       |
| 23 | Fluorescent Reporters and Biosensors for Probing the Dynamic Behavior of Protein Kinases.<br>Proteomes, 2015, 3, 369-410.                                                                   | 1.7 | 43        |
| 24 | Tampering with Cell Division by Using Smallâ€Molecule Inhibitors of CDK–CKS Protein Interactions.<br>ChemBioChem, 2015, 16, 432-439.                                                        | 1.3 | 6         |
| 25 | Conformational Equilibrium of CDK/Cyclin Complexes by Molecular Dynamics with Excited Normal<br>Modes. Biophysical Journal, 2015, 109, 1179-1189.                                           | 0.2 | 21        |
| 26 | Targeting Cyclin-Dependent Kinases in Human Cancers: From Small Molecules to Peptide Inhibitors.<br>Cancers, 2015, 7, 179-237.                                                              | 1.7 | 257       |
| 27 | Meeting report: 3rdMeeting of the Biosensor Workgroup of the GDR2588. Biotechnology Journal, 2014, 9, 178-179.                                                                              | 1.8 | 0         |
| 28 | Fluorescent biosensors for drug discovery new tools for old targets – Screening for inhibitors of<br>cyclin-dependent kinases. European Journal of Medicinal Chemistry, 2014, 88, 74-88.    | 2.6 | 13        |
| 29 | Editorial: Fluorescent biosensors. Biotechnology Journal, 2014, 9, 171-173.                                                                                                                 | 1.8 | 6         |
| 30 | Fluorescent biosensors for high throughput screening of protein kinase inhibitors. Biotechnology<br>Journal, 2014, 9, 253-265.                                                              | 1.8 | 25        |
| 31 | Spotlight on Fluorescent Biosensors—Tools for Diagnostics and Drug Discovery. ACS Medicinal<br>Chemistry Letters, 2014, 5, 99-101.                                                          | 1.3 | 11        |
| 32 | Fluorescent Protein Biosensor for Probing CDK/Cyclin Activity in vitro and in Living Cells.<br>ChemBioChem, 2014, 15, 2298-2305.                                                            | 1.3 | 18        |
| 33 | Fluorescent Sensors of Protein Kinases. Progress in Molecular Biology and Translational Science, 2013, 113, 217-274.                                                                        | 0.9 | 31        |
| 34 | Fluorescent biosensors — Probing protein kinase function in cancer and drug discovery. Biochimica<br>Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 1387-1395.                   | 1.1 | 56        |
| 35 | Modeling of non-covalent complexes of the cell-penetrating peptide CADY and its siRNA cargo.<br>Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 499-509.                          | 1.4 | 14        |
| 36 | Fluorescent Biosensors –Promises for Personalized Medicine. Journal of Biosensors & Bioelectronics,<br>2012, 03, .                                                                          | 0.4 | 4         |

| #  | Article                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Complex Peptide Biosensors for Detection of Intracellular Kinase Biomarkers. FASEB Journal, 2012, 26, 755.1.                                                            | 0.2 | 0         |
| 38 | A Non-covalent Peptide-Based Strategy for Ex Vivo and In Vivo Oligonucleotide Delivery. Methods in<br>Molecular Biology, 2011, 764, 59-73.                              | 0.4 | 20        |
| 39 | Fluorescent Peptide Biosensor for Probing the Relative Abundance of Cyclin-Dependent Kinases in<br>Living Cells. PLoS ONE, 2011, 6, e26555.                             | 1.1 | 19        |
| 40 | Abstract 2959: The Syk tyrosine kinase negatively affects cell cycle progression through phosphorylation of the Cdk1 kinase in response to DNA damage. , 2011, , .      |     | 0         |
| 41 | Fluorescent Biosensors of Intracellular Targets from Genetically Encoded Reporters to Modular<br>Polypeptide Probes. Cell Biochemistry and Biophysics, 2010, 56, 19-37. | 0.9 | 63        |
| 42 | Cell ycle Markers and Biosensors. ChemBioChem, 2010, 11, 1037-1047.                                                                                                     | 1.3 | 23        |
| 43 | PEP and CADY-mediated delivery of fluorescent peptides and proteins into living cells. Biochimica Et<br>Biophysica Acta - Biomembranes, 2010, 1798, 2274-2285.          | 1.4 | 65        |
| 44 | Fluorescent Peptide Biosensors for Imaging Protein Kinases involved in Cell Proliferation and Cancer.<br>FASEB Journal, 2010, 24, 903.1.                                | 0.2 | 0         |
| 45 | Targeting cyclin B1 through peptide-based delivery of siRNA prevents tumour growth. Nucleic Acids<br>Research, 2009, 37, 4559-4569.                                     | 6.5 | 169       |
| 46 | Twenty years of cellâ€penetrating peptides: from molecular mechanisms to therapeutics. British Journal of Pharmacology, 2009, 157, 195-206.                             | 2.7 | 783       |
| 47 | Delivery of proteins and nucleic acids using a non-covalent peptide-based strategy. Advanced Drug<br>Delivery Reviews, 2008, 60, 537-547.                               | 6.6 | 169       |
| 48 | Cellâ€penetrating peptides: from molecular mechanisms to therapeutics. Biology of the Cell, 2008, 100, 201-217.                                                         | 0.7 | 312       |
| 49 | Differential phosphorylation of Cdc25C phosphatase in mitosis. Biochemical and Biophysical Research<br>Communications, 2008, 370, 483-488.                              | 1.0 | 22        |
| 50 | Peptide-Based Nanoparticle for Ex Vivo and In Vivo Dug Delivery. Current Pharmaceutical Design, 2008,<br>14, 3656-3665.                                                 | 0.9 | 92        |
| 51 | Characterization of centrosomal localization and dynamics of Cdc25C phosphatase in mitosis. Cell<br>Cycle, 2008, 7, 1991-1998.                                          | 1.3 | 34        |
| 52 | Peptide-Mediated Delivery of Nucleic Acids into Mammalian Cells. Methods in Molecular Biology, 2007,<br>386, 299-308.                                                   | 0.4 | 6         |
| 53 | A non-covalent peptide-based carrier for in vivo delivery of DNA mimics. Nucleic Acids Research, 2007,<br>35, e49-e49.                                                  | 6.5 | 112       |
| 54 | The peptide carrier Pep-1 forms biologically efficient nanoparticle complexes. Biochemical and Biophysical Research Communications, 2007, 355, 877-882.                 | 1.0 | 67        |

| #  | Article                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | The Alpha Helix of Ubiquitin Interacts with Yeast Cyclin-Dependent Kinase Subunit CKS1â€. Biochemistry, 2007, 46, 45-54.                                                                                                | 1.2  | 10        |
| 56 | Interactions of amphipathic CPPs with model membranes. Biochimica Et Biophysica Acta -<br>Biomembranes, 2006, 1758, 328-335.                                                                                            | 1.4  | 39        |
| 57 | Light controllable siRNAs regulate gene suppression and phenotypes in cells. Biochimica Et Biophysica<br>Acta - Biomembranes, 2006, 1758, 394-403.                                                                      | 1.4  | 70        |
| 58 | A non-covalent peptide-based strategy for protein and peptide nucleic acid transduction. Biochimica Et<br>Biophysica Acta - Biomembranes, 2006, 1758, 384-393.                                                          | 1.4  | 160       |
| 59 | A Peptide Carrier for the Delivery of Biologically Active Proteins into Mammalian CellsApplication to the Delivery of Antibodies and Therapeutic Proteins. , 2006, , 13-18.                                             |      | 6         |
| 60 | Interactions of amphipathic carrier peptides with membrane components in relation with their ability to deliver therapeutics. Journal of Peptide Science, 2006, 12, 758-765.                                            | 0.8  | 21        |
| 61 | Cell-penetrating peptides: tools for intracellular delivery of therapeutics. Cellular and Molecular<br>Life Sciences, 2005, 62, 1839-1849.                                                                              | 2.4  | 454       |
| 62 | Interactions of Primary Amphipathic Cell Penetrating Peptides with Model Membranes: Consequences<br>on the Mechanisms of Intracellular Delivery of Therapeutics. Current Pharmaceutical Design, 2005, 11,<br>3629-3638. | 0.9  | 27        |
| 63 | Design of a Novel Class of Peptide Inhibitors of Cyclin-dependent Kinase/Cyclin Activation. Journal of<br>Biological Chemistry, 2005, 280, 13793-13800.                                                                 | 1.6  | 49        |
| 64 | Peptide-Based Strategy for siRNA Delivery into Mammalian Cells. , 2005, 309, 251-260.                                                                                                                                   |      | 34        |
| 65 | Combination of a new generation of PNAs with a peptide-based carrier enables efficient targeting of cell cycle progression. Gene Therapy, 2004, 11, 757-764.                                                            | 2.3  | 65        |
| 66 | Insight into the Mechanism of Internalization of the Cell-Penetrating Carrier Peptide Pep-1 through<br>Conformational Analysis. Biochemistry, 2004, 43, 1449-1457.                                                      | 1.2  | 183       |
| 67 | On the mechanism of non-endosomial peptide-mediated cellular delivery of nucleic acids. Biochimica<br>Et Biophysica Acta - Biomembranes, 2004, 1667, 141-147.                                                           | 1.4  | 105       |
| 68 | Cks1-dependent proteasome recruitment and activation of CDC20 transcription in budding yeast.<br>Nature, 2003, 423, 1009-1013.                                                                                          | 13.7 | 113       |
| 69 | Functional cdc25C Dual-Specificity Phosphatase Is Required for S-Phase Entry in Human Cells.<br>Molecular Biology of the Cell, 2003, 14, 2984-2998.                                                                     | 0.9  | 73        |
| 70 | Insight into the mechanism of the peptide-based gene delivery system MPG: implications for delivery of siRNA into mammalian cells. Nucleic Acids Research, 2003, 31, 2717-2724.                                         | 6.5  | 416       |
| 71 | Kinetic Mechanism of Activation of the Cdk2/Cyclin A Complex. Journal of Biological Chemistry, 2002, 277, 23847-23853.                                                                                                  | 1.6  | 56        |
| 72 | A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nature<br>Biotechnology, 2001, 19, 1173-1176.                                                                                  | 9.4  | 933       |

| #  | Article                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Translocating peptides and proteins and their use for gene delivery. Current Opinion in<br>Biotechnology, 2000, 11, 461-466.                                                    | 3.3 | 127       |
| 74 | An Essential Phosphorylation-site Domain of Human cdc25C Interacts with Both 14-3-3 and Cyclins.<br>Journal of Biological Chemistry, 2000, 275, 28849-28857.                    | 1.6 | 36        |
| 75 | Effects of Phosphorylation of Threonine 160 on Cyclin-dependent Kinase 2 Structure and Activity.<br>Journal of Biological Chemistry, 1999, 274, 8746-8756.                      | 1.6 | 198       |
| 76 | A novel potent strategy for gene delivery using a single peptide vector as a carrier. Nucleic Acids<br>Research, 1999, 27, 3510-3517.                                           | 6.5 | 170       |
| 77 | A New Potent HIV-1 Reverse Transcriptase Inhibitor. Journal of Biological Chemistry, 1999, 274, 24941-24946.                                                                    | 1.6 | 63        |
| 78 | Design and synthesis of a peptide derived from positions 195-244 of human cdc25C phosphatase. , 1999, 5, 263-271.                                                               |     | 14        |
| 79 | The Thumb Domain of the P51-Subunit Is Essential for Activation of HIV Reverse Transcriptaseâ€.<br>Biochemistry, 1999, 38, 15097-15103.                                         | 1.2 | 31        |
| 80 | Characterization of the interactions between human cdc25c, cdks, cyclins and cdk-cyclin complexes 1<br>1Edited by J. Karn. Journal of Molecular Biology, 1999, 286, 475-487.    | 2.0 | 12        |
| 81 | Kinetics of Dimerization and Interactions of p13suc1with Cyclin-Dependent Kinasesâ€. Biochemistry, 1998, 37, 14257-14266.                                                       | 1.2 | 11        |
| 82 | A new peptide vector for efficient delivery of oligonucleotides into mammalian cells. Nucleic Acids<br>Research, 1997, 25, 2730-2736.                                           | 6.5 | 452       |
| 83 | Interactions of Cyclins with Cyclin-Dependent Kinases: A Common Interactive Mechanismâ€.<br>Biochemistry, 1997, 36, 4995-5003.                                                  | 1.2 | 56        |
| 84 | Conformations of a synthetic peptide which facilitates the cellular delivery of nucleic acids.<br>International Journal of Peptide Research and Therapeutics, 1997, 4, 227-230. | 0.1 | 0         |
| 85 | Peptide-Mediated Delivery of Nucleic Acids into Mammalian Cells. , 0, , 299-308.                                                                                                |     | 1         |