Shenglu Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/148849/publications.pdf Version: 2024-02-01

SHENCULLU

#	Article	IF	CITATIONS
1	Massive transformation in Ti–6Al–4V additively manufactured by selective electron beam melting. Acta Materialia, 2016, 104, 303-311.	7.9	155
2	Additively manufactured CoCrFeNiMn high-entropy alloy via pre-alloyed powder. Materials and Design, 2019, 168, 107576.	7.0	124
3	Additive manufacturing of a high niobium-containing titanium aluminide alloy by selective electron beam melting. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 636, 103-107.	5.6	123
4	Microstructure and Mechanical Properties of Long Ti-6Al-4V Rods Additively Manufactured by Selective Electron Beam Melting Out of a Deep Powder Bed and the Effect of Subsequent Hot Isostatic Pressing. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 3824-3834.	2.2	99
5	Fabrication of TiÂ+ÂMg composites by three-dimensional printing of porous Ti and subsequent pressureless infiltration of biodegradable Mg. Materials Science and Engineering C, 2020, 108, 110478.	7.3	44
6	3D characterization of defects in deep-powder-bed manufactured Ti–6Al–4V and their influence on tensile properties. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 761, 138031.	5.6	40
7	Binder Jetting Additive Manufacturing of High Porosity 316L Stainless Steel Metal Foams. Materials, 2020, 13, 3744.	2.9	34
8	High oxygen-content titanium and titanium alloys made from powder. Journal of Alloys and Compounds, 2020, 836, 155526.	5.5	33
9	Study of Direct Fabrication of a Ti-6Al-4V Impeller on a Wrought Ti-6Al-4V Plate by Electron Beam Melting. Jom, 2017, 69, 2738-2744.	1.9	29
10	Characterization and decompositional crystallography of the massive phase grains in an additively-manufactured Ti-6Al-4V alloy. Materials Characterization, 2017, 127, 146-152.	4.4	26
11	Fatigue Performance of Additively Manufactured Ti-6Al-4V: Surface Condition vs. Internal Defects. Jom, 2020, 72, 1022-1030.	1.9	22
12	Laser welding of electron beam melted Ti-6Al-4V to wrought Ti-6Al-4V: Effect of welding angle on microstructure and mechanical properties. Journal of Alloys and Compounds, 2019, 782, 967-972.	5.5	21
13	Effect of overlap distance on the microstructure and mechanical properties of in situ welded parts built by electron beam melting process. Journal of Alloys and Compounds, 2019, 772, 247-255.	5.5	20
14	Intensified texture in selective electron beam melted Ti-6Al-4V thin plates by hot isostatic pressing and its fundamental influence on tensile fracture and properties. Materials Characterization, 2019, 152, 162-168.	4.4	19
15	Realizing a full volume component by in-situ welding during electron beam melting process. Additive Manufacturing, 2018, 22, 375-380.	3.0	18
16	Sliding wear behavior and electrochemical properties of binder jet additively manufactured 316SS /bronze composites in marine environment. Tribology International, 2021, 156, 106810.	5.9	18
17	Layer Additive Production or Manufacturing of Thick Sections of Ti-6Al-4V by Selective Electron Beam Melting (SEBM). Jom, 2017, 69, 1836-1843.	1.9	16
18	Microstructure, tensile properties and deformation behaviour of a promising bio-applicable new Ti35Zr15Nb25Ta25 medium entropy alloy (MEA). Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 824, 141805.	5.6	16

Shenglu Lu

#	Article	IF	CITATIONS
19	Hybrid Binder to Mitigate Feed Powder Segregation in the Inkjet 3D Printing of Titanium Metal Parts. Metals, 2018, 8, 322.	2.3	12
20	Detailed assessments of tribological properties of binder jetting printed stainless steel and tungsten carbide infiltrated with bronze. Wear, 2021, 477, 203788.	3.1	12
21	A yttrium-containing high-temperature titanium alloy additively manufactured by selective electron beam melting. Journal of Central South University, 2015, 22, 2857-2863.	3.0	11
22	Improving the accuracy and reliability of temperature field simulation during laser metal deposition. Australian Journal of Mechanical Engineering, 2021, 19, 630-641.	2.1	1