Rajesh Kumar Jyothi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1488489/publications.pdf Version: 2024-02-01

PAIESH KUMAP IVOTHI

#	Article	IF	CITATIONS
1	Separation of vanadium and tungsten from synthetic and spent catalyst leach solutions using an ion-exchange resin. RSC Advances, 2022, 12, 3635-3645.	3.6	10
2	Sustainable environmentally friendly approaches to the recycling of spent selective catalytic reduction (SCR) catalysts. , 2022, , 765-787.		1
3	Novel Environmentally Friendly Leaching Process for Vanadium and Tungsten Recovery from Spent SCR Catalyst. Minerals, Metals and Materials Series, 2022, , 111-117.	0.4	2
4	Recovery of Rare Earth Metals (REMs) from Nickel Metal Hydride Batteries of Electric Vehicles. Minerals (Basel, Switzerland), 2022, 12, 34.	2.0	14
5	Selective recovery of thorium and uranium from leach solutions of rare earth concentrates in continuous solvent extraction mode with primary amine N1923. Hydrometallurgy, 2022, 213, 105933.	4.3	11
6	Coal Burn Ash: A Sustainable Future Resource for Critical Metals Production. , 2021, , 473-485.		0
7	Investigation on Extraction and Recovery of Rare Earth Elements from Coal Combustion Products. , 2021, , 311-337.		Ο
8	Studies on Extraction of Heavy Metal (s) from Fly Ash through Hydroprocessing Approach. , 2021, , 289-310.		0
9	Characteristic and Equilibrium Adsorption Studies of Biochar. , 2021, , 143-160.		Ο
10	Ionic Liquids for the Recovery of Rare Earth Elements from Coal Combustion Products. , 2021, , 617-638.		2
11	Environmentally sound technology development for processing of rare earth elements from waste permanent magnets synthetic leach solutions: recovery and separation perspectives. Separation and Purification Technology, 2021, 275, 119225.	7.9	7
12	Anhydrous oxygen-free rare earth material preparation and characterization. Materials Today Chemistry, 2021, 22, 100608.	3.5	0
13	Hydrometallurgical process development to recycle valuable metals from spent SCR deNOX catalyst. Scientific Reports, 2021, 11, 22131.	3.3	4
14	Development of Hydrometallurgical Process for Recovery of Rare Earth Metals (Nd, Pr, and Dy) from Nd-Fe-B Magnets. Metals, 2021, 11, 1987.	2.3	11
15	Solvent Extraction of the Thorium from Monazite Leaching Solution by Primene-JM-T. , 2021, 30, 32-37.		Ο
16	Solvent extraction, separation and recovery of thorium from Korean monazite leach liquors for nuclear industry applications. Journal of Industrial and Engineering Chemistry, 2020, 83, 72-80.	5.8	15
17	Optimization of sulfuric acid leaching of a Vietnamese rare earth concentrate. Hydrometallurgy, 2020, 191, 105195.	4.3	12
18	Environmentally friendly comprehensive hydrometallurgical method development for neodymium recovery from mixed rare earth aqueous solutions using organo-phosphorus derivatives. Scientific Reports, 2020, 10, 16911.	3.3	14

Rajesh Kumar Jyothi

#	Article	IF	CITATIONS
19	Separation of thorium and uranium from xenotime leach solutions by solvent extraction using primary and tertiary amines. Hydrometallurgy, 2020, 198, 105506.	4.3	18
20	Environmentally friendly approach to recover vanadium and tungsten from spent SCR catalyst leach liquors using Aliquat 336. RSC Advances, 2020, 10, 19736-19746.	3.6	26
21	Separation, purification and recovery of thorium from monazite leach liquors by counter-current extraction process. Journal of Radioanalytical and Nuclear Chemistry, 2020, 324, 245-255.	1.5	4
22	Recovery of Rare Earth Elements from Waste Permanent Magnets Leach Liquors. Minerals, Metals and Materials Series, 2020, , 335-345.	0.4	2
23	Review of rare earth elements recovery from secondary resources for clean energy technologies: Grand opportunities to create wealth from waste. Journal of Cleaner Production, 2020, 267, 122048.	9.3	161
24	Introduction of Rare Earth Metal Recovery for Green and Clean Energy Technologies. , 2020, , 1-8.		0
25	Spent SCR Catalyst Leach Liquor Processed for Valuable Metals Extraction by Solvent Extraction Technique#. Journal of the Korean Institute of Resources Recycling, 2020, 29, 55-61.	0.4	1
26	Alkali fusion using sodium carbonate for extraction of vanadium and tungsten for the preparation of synthetic sodium titanate from spent SCR catalyst. Scientific Reports, 2019, 9, 12316.	3.3	14
27	Stabilization and Rheological Behavior of Fly Ash–Water Slurry Using a Natural Dispersant in Pipeline Transportation. ACS Omega, 2019, 4, 21604-21611.	3.5	33
28	Hydrometallurgical processing of spent selective catalytic reduction (SCR) catalyst for recovery of tungsten. Hydrometallurgy, 2018, 178, 137-145.	4.3	40
29	Modeling the UO2 ex-AUC pellet process and predicting the fuel rod temperature distribution under steady-state operating condition. Journal of Nuclear Materials, 2018, 504, 191-197.	2.7	6
30	Hydrometallurgical process development for the extraction, separation and recovery of vanadium from spent desulfurization catalyst bio-leach liquors. Journal of Cleaner Production, 2018, 187, 449-458.	9.3	42
31	Spent V2O5-WO3/TiO2 catalyst processing for valuable metals by soda roasting-water leaching. Hydrometallurgy, 2018, 175, 292-299.	4.3	71
32	Extraction of tungsten and vanadium from spent selective catalytic reduction catalyst for stationary application by pressure leaching process. Journal of Cleaner Production, 2018, 197, 163-169.	9.3	53
33	Recovery of Tungsten from Spent V2O5–WO3/TiO2 Catalyst. Minerals, Metals and Materials Series, 2018, , 2455-2469.	0.4	1
34	Diluents Role in Extraction and Possible Separation of Light Rare Earth Elements from Chloride Solutions by using Cyanex® 272 used as an Extractant. Journal of Korean Institute of Metals and Materials, 2018, 56, 763-771.	1.0	3
35	The UO 2 ex-ADU powder preparation and pellet sintering for optimum efficiency: experimental and modeling studies. Journal of Nuclear Materials, 2017, 496, 177-181.	2.7	6
36	Brandon mathematical model describing the effect of calcination and reduction parameters on specific surface area of UO2 powders. Journal of Nuclear Materials, 2016, 474, 150-154.	2.7	7

Rajesh Kumar Jyothi

#	Article	IF	CITATIONS
37	Modeling conversion of ammonium diuranate (ADU) into uranium dioxide (UO2) powder. Journal of Nuclear Materials, 2016, 479, 483-488.	2.7	13
38	The role of macrocyclic compounds in the extraction and possible separation of platinum and rhodium from chloride solutions. Scientific Reports, 2016, 6, 27668.	3.3	7
39	Synergistic extraction of uranium from Korean black shale ore leach liquors using amine with phosphorous based extractant systems. Journal of Radioanalytical and Nuclear Chemistry, 2016, 307, 843-854.	1.5	17
40	Factors affect on bioremediation of Co(II) and Pb(II) onto <i>Lonicera japonica</i> flowers powder. Desalination and Water Treatment, 2016, 57, 13066-13080.	1.0	18
41	Process development for recovery of dysprosium from permanent magnet scraps leach liquor by hydrometallurgical techniques. Canadian Metallurgical Quarterly, 2015, 54, 318-327.	1.2	19
42	Status and Preparation Technology of Rare Earth Materials. , 2013, , 1765-1774.		1
43	Status and Preparation Technology of Rare Earth Materials. , 2013, , 1765-1774.		1
44	Development of a highly sensitive and selective method for extractive spectrophotometric determination of aluminum(III) from environmental matrices, synthetic mixtures, and alloys using orthohydroxypropiophenoneisonicotinoylhydrazone. Environmental Monitoring and Assessment, 2010, 160, 23-31.	2.7	1
45	Electrochemical Determination of Phenothrin in Agricultural Formulations, Vegetables, and Storage Bags of Wheat and Rice by Differential Pulse Adsorptive Stripping Voltammetry (DP-AdSV). Food Analytical Methods, 2009, 2, 66-72.	2.6	4